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Funnel control in the presence of delays

System class

ẋi,j(t) = xi,j+1(t),

ẋi,n(t) = fi(t, x̄(t)) +
m∑
k=1

gi,kuk(t − τu),

system state x̄ = (x1,1, . . . , x1,n, . . . , xm,1, . . . , xm,n)⊤

control inputs ui, i = 1, . . . ,m
system outputs yi := xi,1, i = 1, . . . ,m
input delay τu > 0, measurement delay τs > 0
initial history x̄n|[−τs−τu,0] = φ ∈ C([−τs − τu,0],Rnm)

Assumption: there exists di ∈ L∞(R≥0,R) s.t.
∀ (t, x) ∈ R≥0 × Rmn : |fi(t, x)| ≤ |di(t)|(∥x∥+ 1)
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Funnel control in the presence of delays

Assumption on nonlinearities

ẋ(t) = x(t)2 + u(t − τ), x|[−τ,0] ≡ x0 > 0

∀ t ∈ [−τ,0] : u(t) = 0
=⇒ ẋ(t) = x(t)2, x(0) = x0, t ∈ [0, τ ]

=⇒ x(t) =
(
1
x0 − t

)−1
, t ∈ [0,min{τ, 1/x0})

1
x0 < τ =⇒ blow-up of the solutions
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Funnel control in the presence of delays

Control objective

System

Controller

Delay τsDelay τu

yd(t)

x̄(t)u
(
t − τu

)

x̄
(
t − τs

)
u(t)

givenψi,1 (positive, bounded, bounded reciprocal) and reference signals
yd,i, the controller achieves |yi(t)− yd,i(t)| < ψi,1(t)
all closed-loop signals are bounded
the controller does not require knowledge of the system parameters and is
of low complexity
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Funnel control in the presence of delays

Funnel control – without delays

System

u(t) = −k(t)e(t) +

y(t)u(t)

−yref(t)e(t)

t

ψ(t)

∥e(t)∥

k(t) = 1
1− ∥e(t)/ψ(t)∥2

[Ilchmann, Ryan, Sangwin ’02]:
Works, if

order n = 1
minimum phase
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Funnel control in the presence of delays

Funnel control for systems of arbitrary order n ∈ N

ẋi,j(t) = xi,j+1(t), ẋi,n(t) = fi(t, x̄(t)) +
m∑
k=1

gi,kuk(t),

zi,1(t) =
(
xi,1(t)− yd,i(t)

)
/ψi,1(t),

zi,j(t) =
(
xi,j(t) + ki,j−1(t)zi,j−1(t)

)
/ψi,j(t),

ki,j−1(t) = 1/(1− zi,j−1(t)2), j = 2, . . . , n

zn(t) =
(
z1,n(t), . . . , zm,n(t)

)⊤
,

ui(t) = −zi,n(t)/(1− ∥zn(t)∥2)
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Funnel control in the presence of delays

Funnel control for systems of arbitrary order n ∈ N

ẋi,j(t) = xi,j+1(t), ẋi,n(t) = fi(t, x̄(t)) +
m∑
k=1

gi,kuk(t),

Theorem [B., Lê, Reis ’18] (with modifications)
yd ∈ W2,∞,G = (gi,k) ∈ Rm×m is pos. definite
=⇒ ui, ki,j, xi,j ∈ L∞ and |yi(t)− yd,i(t)| ≤ ψi,1(t)− ε

In the presence of delays a modification is necessary!
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Funnel control in the presence of delays

Funnel control for systems with delays

ẋi,j(t) = xi,j+1(t), ẋi,n(t) = fi(t, x̄(t)) +
m∑
k=1

gi,kuk(t − τu),

zi,1(t) =
(
xi,1(t − τs)− yd,i(t − τs) + Ii,1(t)

)
/ψi,1(t − τs),

zi,j(t) =
(
xi,j(t−τs)+ki,j−1(t)zi,j−1(t)+

∑j
k=1

(j−1
j−k

)
(−α)j−kIi,k(t)

)
/ψi,2(t−τs),

ki,j−1(t) = 1/(1− zi,j−1(t)2), j = 2, . . . , n
zn(t) =

(
z1,n(t), . . . , zm,n(t)

)⊤
,

ui(t) = −zi,n(t)/(1− ∥zn(t)∥2)

İi,j(t) = Ii,j+1(t)− αIi,j(t), Ii,j(0) = 0, j = 1, . . . , n− 1,

İi,n(t) = −αIi,n(t) +
∑m

k=1 si,k
(
uk(t)− uk(t−τs−τu)

)
, Ii,n(0) = 0
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Funnel control in the presence of delays

Funnel control for systems with delays

ẋi,j(t) = xi,j+1(t), ẋi,n(t) = fi(t, x̄(t)) +
m∑
k=1

gi,kuk(t − τu),

Theorem
yd ∈ W2,∞, α > 0, S = (si,k) ∈ Rm×m pos. definite s.t.

∥G− S∥+ C(τs, τu) < λmin(S)

=⇒ ui, ki,j, xi,j, Ii,j ∈ L∞ and |yi(t)− yd,i(t) + Ii,1(t)| ≤ ψi,1(t)− ε
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Funnel control in the presence of delays

Simulation

F

y

a=const

s

[
m1 +m2 m2 cosϑ
m2 cosϑ m2

](
z̈
s̈

)
=

(
u

−ks− dṡ+m2g sinϑ

)
System parameters:m1 = 4,m2 = 1, k = 2, d = 1, ϑ = π/4
Delays and controller parameters: τs = 0.05, τu = 0.05, α = 1, s1,1 = 1/9
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Funnel control in the presence of delays

Comparison with the result of Bikas & Rovithakis [IEEE-TAC, 2023]

no Lipschitz assumption on fi → blow-up possible
no correction terms Ii,j (only one term

∫ t
t−τs−τu

ui(s)ds appearing in zi,n(t),
but error in the proof)
algorithm is unstable in simulations

Extension of system class in joint work:
ẋi,j(t) = xi,j+1(t),

ẋi,n(t) = fi(t, x̄(t), η(t)) +
m∑
k=1

gi,k(t, x̄(t), η(t))uk(t − τu(t)),

η̇(t) = h(t, x̄(t), η(t))
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Funnel control in the presence of delays

Outlook

extension to general nonlinear systems
relax assumptions on input matrix G and delays τs, τu
allow for time-varying delays τs(t)
replace Lipschitz assumption on fi by a proper choice of the initial history
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