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Abstract
Current engineering design trends, such as lightweight machines and human–machine inter-
action, often lead to underactuated systems. Output trajectory tracking of such systems is a
challenging control problem. Here, we use a two-design-degree of freedom control approach
by combining funnel feedback control with feedforward control based on servo-constraints.
We present experimental results to verify the approach and demonstrate that the addition of
a feedforward controller mitigates drawbacks of the funnel controller. We also present new
experimental results for the real-time implementation of a feedforward controller based on
servo-constraints on a minimum phase system.

Keywords Multibody systems · Funnel control · Servo-constraints · Underactuation

1 Introduction

Current engineering trends include the development of lightweight machines, many types
of cable-driven manipulators, and flexible joint robots. These systems have more degrees of
freedom than independent control inputs and are called underactuated systems [1, 2]. Under-
actuation occurs naturally in the design of many mechanical systems. With the development
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of new mechanical designs and functionalities, control strategies must be designed accord-
ingly to meet accuracy requirements. For underactuated systems, it is usually not possible to
control all degrees of freedom independently and therefore output trajectory tracking control
of such systems is a challenging problem. In this study, we follow the popular two degree
of freedom control methodology [3] to solve the trajectory tracking control problem since
it can be applied efficiently to underactuated systems. In particular, the considered control
strategy combines funnel control [4, 5] (as the feedback component) with feedforward con-
trol based on servo-constraints [6, 7]. This combination has been shown in simulation to be
a successful control strategy for underactuated multibody systems, cf. [5, 8].

In this article, we present results to experimentally validate the two-design-degree of
freedom control strategy applied to a torsional oscillator. The oscillator consists of two fly-
wheels connected by a rod, introduced in Sect. 5 and depicted in Fig. 3a. This system can be
considered as a simplified model of a drive-train, cf. [9]. Therefore, experimentally validat-
ing control strategies with this setup is an important step towards application of the proposed
controller to real systems such as drive-trains.

1.1 Background and motivation

In the feedforward branch, we aim to cancel out all known dynamics by using an inverse
model as a feedforward controller. Classical approaches, such as the Byrnes–Isidori nor-
mal form [10], are often burdensome to derive for complex underactuated multibody sys-
tems due to the involved algebraic manipulations of the system dynamics. In contrast, the
servo-constraints approach is an efficient strategy to compute the inverse model of under-
actuated multibody systems [6, 7]. For this purpose, the equations of motion are appended
by so-called servo-constraints, which constrain the system output to a prescribed trajectory.
The resulting set of differential-algebraic equations (DAEs) describes the inverse model.
The solution of the DAE problem directly includes the control inputs that move the (nom-
inal) system on the prescribed trajectory. The inverse model DAEs can be solved in real
time [11]. In the context of servo-constraints, the DAEs are often solved using the implicit
Euler scheme [6, 12], but there also exist results for higher order integration schemes, such as
backwards differentiation formulas [13, 14]. This methodology has shown to be an efficient
control strategy for complex underactuated multibody systems. Typical application exam-
ples lie in the class of differentially flat systems, such as cranes [11, 15, 16] or mass-spring
chains [13, 17]. However, the method is also applicable to minimum phase systems [12] or
nonminimum phase systems. Nonminimum phase systems involve a stable inversion, which
is reformulated for the servo-constraints framework in [18] and applied to flexible manipu-
lators in [19–21].

While there exist many theoretical results, only few experimental studies are documented
for the application of servo-constraints. An experimental study is presented in [22] for a
mass-spring system and in [23] for a small scale crane system. An experimental study
of the real-time capabilities of the scheme is presented in [11] for the differentially flat
crane system. There are even less experimental results for the real-time application of servo-
constraints on minimum phase systems. For example in [24], the method is applied to a
flexible manipulator, for which stable internal dynamics is obtained by adding a counter-
weight as well as using output relocation.

Of course, the nominal model that forms the basis for the inversion can never capture all
physical effects. There always remain some uncertainties, which are for example classified
into five categories in [25]. Therefore, there will be a tracking error when the feedforward
strategy is applied to the real system. This tracking error has to be compensated by a suitable
feedback strategy.
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As the feedback component in the present work, we apply the so-called funnel controller,
first proposed in the seminal work [4]. It is an adaptive high-gain feedback control strategy,
which admits the following features. First, it achieves that the output y(t) of a system tracks
a given reference signal yref(t) with prescribed accuracy. This means that the tracking error
e(t) := y(t) − yref(t) is guaranteed to evolve within given (possibly time-varying) bounds,
i.e., ‖e(t)‖ < ψ(t) for all t ≥ 0, where ψ is the error tolerance given by the engineer. Sec-
ond, the controller is model-free in the sense that the feedback law requires only the instan-
taneous values of the error signal e(t); in particular, no system parameters are utilized (for
systems with higher relative degree the feedback law involves the higher order derivatives
of the error signal, but no system parameters). Funnel control proved to be a powerful tool
for tracking problems in various applications. To name but a few, it has been investigated in
control of industrial servo-systems [26], underactuated multibody systems [5, 8], electrical
circuits [27, 28], peak inspiratory pressure [29], and adaptive cruise control [30]. Moreover,
even control of infinite-dimensional systems has been investigated. For instance, a bound-
ary controlled heat equation in [31], performing reference tracking of a moving water tank
was studied in [32], and defibrillation processes of the human heart were considered in [33].
For a more comprehensive review and further applications, see the recent work [34]. More-
over, in that article a funnel controller that achieves asymptotic exact tracking for unknown
nonlinear systems with arbitrary relative degree was designed. The aspect of exact tracking
has been further considered in [35], where exact output tracking in predefined finite time
is achieved with funnel control. Since in real applications system data are only available
at discrete sampling times, a feedback controller for sampled-data systems was developed
in [36], which achieves tracking with predefined (possibly time-varying) accuracy. Recently,
the idea of funnel control was utilized to design a model predictive control scheme [37, 38],
which involves a particular stage cost and thus achieves reference tracking with prescribed
error tolerance with superior control performance compared to pure feedback controllers.
This MPC scheme was further equipped with a feedback loop in [39] to obtain a robust con-
troller, and a learning scheme was added in [40] to improve the underlying model during the
control phase.

Experimental results involving funnel control are presented in [41–44]. In [41] a funnel
controller was combined with a PI controller to perform speed control of an electrical drive,
where the measurement data is noisy. In [42] the bang-bang funnel controller, proposed
in [45], was extended with a neutral mode, and its functioning was experimentally verified
with position control of an electrical drive. In [43] position and speed control of an electrical
drive using a saturated funnel controller for systems with relative degree two was success-
fully tested in the laboratory. In [44] the application of a funnel controller combined with an
extended state observer was experimentally verified for a permanent-magnet synchronous
motor.

1.2 Problem statement

The objective of this contribution is to address the need for experimental validation of the
two-component control strategy described above. In terms of the feedforward control strat-
egy, experimental results for its real-time application are so far limited for a minimum phase
system. In terms of the combined strategy, despite theoretical results [5, 8], the lack of em-
pirical evidence hinders the practical application of the proposed control strategy. Therefore,
this research aims to provide experimental results that validate the efficiency and reliability
of the control strategy under real-world conditions. By conducting comprehensive experi-
ments and analyzing the obtained data, this study seeks to bridge the gap between theory
and practice.
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1.3 Scope and contribution

In our previous works [5, 8], we analyze the described control strategy in a theoretical frame-
work with supporting simulation results. In this contribution, we provide experimental data
which support the theoretical results. We apply the control strategy described above to a
torsional oscillator with two rotating flywheels. We present experimental results that vali-
date the real-time application of servo-constraints for a minimum phase system. Further, we
present experimental data to show that the proposed combined control strategy can compen-
sate the known drawbacks of the funnel controller, in particular, peaky input signals cf. [38].
In addition, we present insights about the discrete implementation of funnel control on a
test bench. This aspect was also considered in the numerical example in [37]. Thus, we take
another step towards the application of funnel control to real-world applications.

1.4 Organization of the paper

The remainder of the paper is organized as follows. First, we briefly introduce the mod-
eling approach based on multibody system dynamics and the considered control strategy
in Sect. 2. Afterwards, the feedforward control strategy based on servo-constraints is in-
troduced in Sect. 3.1, while the funnel controller is presented in Sect. 3.2. In Sect. 4, we
describe the experimental setup and analyze its dynamics and properties with respect to the
controller design. The experimental results are shown in Sect. 5. Finally, we conclude the
paper with summarizing remarks and an outlook in Sect. 6.

2 Modeling and control strategy

We model the considered mechanical system using concepts from multibody dynamics [46].
Here, we consider holonomic systems with n degrees of freedom in minimal coordinates,
which are described by generalized coordinates q . The equations of motion are given by

q̇(t) = v(t),

M(q(t))v̇(t) = f
(
q(t), v(t)

) + B(q(t)) u(t),

y(t) = h
(
q(t), v(t)

)
(1)

with

• the generalized coordinates q : I → R
n and generalized velocities v : I → R

n, where
I ⊆ R≥0 is some interval,

• the generalized mass matrix M : Rn →R
n×n,

• the generalized forces f :Rn ×R
n →R

n,
• the input distribution matrix B : Rn →R

n×m,
• the output measurement function h :Rn ×R

n →R
m.

The functions u : R≥0 → R
m describe the inputs that act on the multibody system (1). For

underactuated systems, we have m < n, and it is not possible to control all degrees of free-
dom independently. The functions y : R≥0 → R

m are the outputs associated with the multi-
body system (1). The functions in (1) are assumed to be sufficiently smooth, and the mass
matrix is assumed to be pointwise symmetric positive definite, i.e.,

∀q ∈ R
n : M(q) = M(q)� > 0 . (2)
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Fig. 1 Two-design-degree of
freedom control approach for
multibody systems

The control objective is that the system output y tracks a prescribed trajectory yref : R≥0 →
R

m. We follow the popular two-design-degree of freedom control structure, which com-
bines a feedforward controller with a feedback controller, see e.g. [3]. A block diagram of
the methodology is shown in Fig. 1. While the feedforward controller is responsible for
steering the system output to the reference trajectory and accounts for most of the motion,
the feedback controller rejects disturbances and accounts for modeling errors. As in our pre-
liminary simulation-based work [5, 8], we choose a feedforward control strategy based on
the method of servo-constraints and a funnel controller as the feedback component. Both
concepts are briefly introduced in the following.

3 Controller components

In this section we introduce the two controller components. First, the feedforward compo-
nent based on the concept of servo-constraints is explained. Further, we discuss its imple-
mentation in the current context. Second, the feedback component funnel control is intro-
duced.

3.1 Feedforward control based on servo-constraints

The feedforward controller is computed in terms of an inverse model of the system to cancel
out all known dynamics. The method of servo-constraints provides an efficient and very gen-
eral approach for complex underactuated multibody systems [6, 7]. Motivated by modeling
classical mechanical constraints, such as joints, the equations of motion (1) are appended by
m servo-constraints

h(q(t), v(t)) − yref(t) = 0, (3)

which enforce the output to stay on the prescribed trajectory yref. This results in the DAEs

q̇(t) = v(t),

M(q(t))v̇(t) = f
(
q(t), v(t)

) + B(q(t)) u(t),

0 = h
(
q(t), v(t)

) − yref(t),

(4)

which have to be solved numerically for the coordinates q and v as well as the input u. For
minimum phase systems, the DAEs (4) can be integrated forward in time. For nonminimum
phase systems, integration forward in time is not possible since the states of the internal dy-
namics can become unbounded. In this case, a boundary value problem must be formulated
to compute a bounded solution for the internal dynamics [18, 47]. In the present article,
we consider minimum phase systems and solve an initial value problem for (4). The initial
values q(0), v(0), u(0) for (4) must be chosen so that they are consistent and the desired
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trajectory yref must be compatible with the possible motion of the system, i.e., it is required
that a solution of (4) exists on R≥0.

To compute the feedforward control input, we solve the inverse model DAEs (4) using
the implicit Euler scheme

q̂(tn+1) = q̂(tn) + �t v̂(tn+1),

v̂(tn+1) = v̂(tn) + �t M(q̂(tn+1))
−1

(
f

(
q̂(tn+1), v̂(tn+1)

) + B(q̂(tn+1)) û(tn+1)
)
,

0 = h
(
q̂(tn+1), v̂(tn+1)

) − yref(tn+1)

(5)

with step size �t and the numerical approximations q̂(tn), v̂(tn) of the solution at time
tn. This integration scheme is a common choice in the context of servo-constraints [6, 12]
because of its simplicity and its real-time capabilities. Starting with initial values q̂(t0), v̂(t0),
û(t0), the nonlinear set of equations (5) is solved for the solution q̂(tn+1), v̂(tn+1), û(tn+1) at
the next time instance in each control loop iteration. For this purpose Newton’s method with
a maximum of ten iterations is applied.

The numerical solution contains the trajectory for u, which is directly used as feedfor-
ward control, uffw := u. For a theoretical ideal model with exact parameters, this feedforward
control ensures exact tracking with y = yref. However, in practical applications model mis-
matches, disturbances, and parameter uncertainties result in tracking errors. Reducing the
latter effects is the purpose for adding a feedback controller, which is introduced in the next
section.

3.2 Funnel control feedback component

We briefly introduce the feedback-component of the control strategy, namely the funnel
controller, first proposed in [4]. Although generalizations in several directions have been
developed (see e.g. [34] and the references therein), the version from [4] for systems of
relative degree one suffices for our purposes. For unknown nonlinear dynamical multi-input
multi-output systems

ẋ(t) = f (x(t)) + g(x(t))u(t), x(0) = x0 ∈ R
n,

y(t) = h(x(t))

with h′(x)g(x) invertible for all x ∈R
n, i.e., relative degree 1, stable internal dynamics, and

g(x) sign definite (v�g(x)v > 0 or v�g(x)v < 0 for v ∈ R
m \ {0}) for all x ∈R

n, the funnel
controller achieves that the output y(t) follows a given reference yref(t) with prescribed
accuracy. The latter means that the tracking error satisfies

∀ t ≥ 0 : ‖y(t) − yref(t)‖ < ψ(t), (6)

where ψ is a Lipschitz continuous and bounded function with infs≥0 ψ(s) > 0. The situation
is depicted in Fig. 2.

The feedback law has the strikingly simple form

ufb(t) := − ψ(t)2(y(t) − yref(t))

ψ(t)2 − ‖y(t) − yref(t)‖2
. (7)

Note that no system parameters are incorporated in the feedback law. Only the input/output
dimension m ∈ N is assumed to be known, and the structural assumptions that the system
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Fig. 2 Evolution of the tracking
error e(t) = y(t) − yref(t) within
funnel boundary ψ(t); the figure
is based on [48, Fig. 1], edited for
present purpose

Table 1 Nominal model
parameters Nominal model

I1 0.136 kg m2

I2 0.12 kg m2

k 33.6 N m

d 0.016 N m s−1

is minimum phase (stability of the internal dynamics), satisfy h′(x)g(x) > 0 for all x ∈ R
n,

and g(·) sign definite is assumed.
The intuition behind the feedback law (7) is as follows. Whenever the output tracking

performs well, not much input action is required, i.e., a small tracking error y(t) − yref(t)

results in a small signal ufb(t). If, however, the tracking error approaches the prescribed
tolerance, i.e., if ‖y(t) − yref(t)‖ → ψ(t), then the expression 1/(ψ(t)2 − ‖y(t) − yref(t)‖2)

grows rapidly and “pushes the error away from the boundary ψ(t)”. Note that 1/(ψ(t)2 −
‖y(t) − yref(t)‖2) exceeds any bounded value for ‖y(t) − yref(t)‖ → ψ(t). This fact is used
in the feasibility proof [4] to show that the closed-loop system has a global solution, and all
signals remain bounded.

4 Experimental setup and model

The control strategy described in Sect. 2, with components introduced in Sect. 3, has so
far been tested in simulations [5, 8]. In this contribution, we validate the control scheme
experimentally on a torsional oscillator with two flywheels and a connecting rod. This is a
simplified model of a drive train, e.g., such as [9]. A picture of the experimental setup is
shown in Fig. 3a. The lower flywheel is attached to the direct-drive actuator. The connecting
shaft with 6 mm diameter connects the first and second flywheel. The system is modeled by
two rigid bodies with inertia I1, I2, which are connected by a linear spring-damper combi-
nation with coefficients k, d , see Fig. 3b. The rotation of the flywheels is described by the
angle variables ϕ1, ϕ2 and therefore the generalized coordinates are chosen as q = (

ϕ1, ϕ2
)�

and v = (
ϕ̇1, ϕ̇2

)�
. The parameters of model (8) are identified for the experimental setup

shown in Fig. 3a and are listed in Table 1.
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Fig. 3 Experimental setup and multibody model

According to the multibody dynamics approach described in Sect. 2, the equations of
motion are given by

[
I1 0
0 I2

](
ϕ̈1(t)

ϕ̈2(t)

)
=

[−d d

d −d

](
ϕ̇1(t)

ϕ̇2(t)

)
+

[−k k

k −k

](
ϕ1(t)

ϕ2(t)

)

+
[
Ff,1(ϕ̇1(t))

0

]
+

[
1
0

]
u(t) (8)

with friction Ff,1 acting on the first degree of freedom. The system input u is given as a
torque acting on the first flywheel. The constant model parameters I1, I2 can be accurately
measured, and the parameters k, d can be estimated with sufficient accuracy. However, the
friction force Ff,1 is more difficult to estimate. A simple approximation is given by assuming
constant Coulomb friction, i.e., Ff,1(s) = F̃ sign(s), with F̃ > 0, and sign(·) is the sign
function.

We choose the angular velocity of the first flywheel as system output, which is to be
tracked. Therefore, we have y(t) = ϕ̇1(t).

For analysis of the system, we introduce the relative motion �ϕ := ϕ1 − ϕ2. Thus, the
rigid body motion is removed from the equations of motion (8), cf. [9]. We define the matri-
ces

M :=
⎡

⎣
1 0 0
0 I1 0
0 0 I2

⎤

⎦ , Ã :=
⎡

⎣
0 1 −1

−k −d d

k d −d

⎤

⎦ , B̃ :=
⎡

⎣
0
1
0

⎤

⎦ ,

A := M−1Ã, B := M−1B̃,

(9)

and we set F1(s) := Ff,1(s)/I1 and F(s) := (0,F1(s),0)�. With x := (�ϕ, ϕ̇1, ϕ̇2)
� the

equations of motion for the reduced dynamics (the rigid body motion is removed) are given
by

ẋ(t) = Ax(t) + F(x(t)) + Bu(t), x(0) = x0 ∈R
3,

y(t) = Cx(t) = [0,1,0]x(t) = ϕ̇1(t).
(10)

This dynamics describes the vibration around the rigid body motion. Since CB = 1/I1 
= 0,
system (9) has relative degree r = 1. In the next step, we decouple the internal dynamics
from the equations of motion to analyze their stability. Invoking the findings from [10] and
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Fig. 4 Overview of the tested
controllers

its extension for linear systems with bounded disturbances in [49, Ch. 3], we may equiva-
lently represent (9) as

ẏ(t) = Ry(t) + Sη(t) + F1(y(t)) + �u(t),

η̇(t) = Qη(t) + Py(t),
(11)

where � = CB = 1/I1, and

R = −d

I1
, S = 1

I1

[
k d

]
, Q = 1

I2

[
0 I2

−k −d

]
, P = 1

I2

[−I2

d

]
.

In (11), y = ϕ̇1 is the output and η is the internal state given as η = (−�ϕ, ϕ̇2)
�, which

cannot be seen directly in the output. Since all eigenvalues of the matrix Q have a negative
real part, the internal dynamics of system (9) are bounded-input bounded-output stable, i.e.,
the system is minimum phase. In particular, the internal dynamics are not directly effected
by the roughly estimated Coulomb friction term. Therefore, the control concepts described
in Sect. 3 are applicable to the model.

5 Experimental results

We performed a series of experiments on the experimental setup to validate the control
scheme. An overview of the experiments is shown in Fig. 4. The experimental setup offers
two different control frequencies of 1 kHz and 2 kHz. Advantages and disadvantages of the
controllers are discussed for both frequencies. We first present measurements for the pure
feedforward control and the pure feedback control, respectively. Afterwards, the combined
control strategy is validated. We conclude this section by comparing all measurements using
two different quantitative metrics.

For all experiments, the desired trajectory is chosen as the polynomial

yref(t) =

⎧
⎪⎨

⎪⎩

y0, t < t0

y0 + σ(t) (yf − y0) , t0 ≤ t ≤ tf

yf, t > tf

parameterized by the scalar parameter σ(t). The timing law of σ(t) is chosen as the poly-
nomial

σ(t) = − 3432

(
t

tf

)15

+ 25,740

(
t

tf

)14

− 83,160

(
t

tf

)13

+ 150,150

(
t

tf

)12

− 163,800

(
t

tf

)11

+ 108,108

(
t

tf

)10

− 40,040

(
t

tf

)9

+ 6435

(
t

tf

)8
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Fig. 5 Real-time feedforward control at 1 kHz

with initial time t0 = 0 s and final transition time tf = 10 s. Note that σ(t0) = 0, and
σ(tf) = 1. The initial rotation is y0 = 0 rad s−1 and the final rotation is yf = 4π rad s−1 ≈
12.56 rad s−1, which corresponds to two revolutions per second.

The experimental setup is controlled using the LabVIEW software package. The feed-
forward control is computed by solving the inverse model DAEs (4) in real-time using the
implicit Euler scheme (5). The strategy is implemented in LabVIEW and runs in real-time
at 1 kHz, i.e., the control input in each time step is computed by solving one time step of
algorithm (5) within the available time of �t = 1 ms. The current implementation limits the
control loop frequency to this value. In the following, the results presented for 1 kHz are
obtained for an online feedforward control implementation, while the results for 2 kHz are
computed with an offline feedforward control. The offline feedforward control is obtained
by solving the same set of equations beforehand and accessing a lookup table of the solution
during the control action. The feedback control law (7) is also implemented in LabVIEW
based on the measurements of the instantaneous values of the system output y(t). The sys-
tem output is obtained using angular encoders and filtering its data to obtain an angular
velocity.

5.1 Feedforward control

We first validate the pure feedforward control strategy based on servo-constraints described
in Sect. 3.1. The following results are obtained for a control loop frequency of 1 kHz. We
compute the feedforward control input for the nominal model, which is defined by the pa-
rameters in Table 1 and by setting the unknown friction force to Ff,1 = 0. To compensate
modeling errors, the feedforward control input uffw of the nominal model is adapted with
two tuning factors fact and ffric, such that the actuator input is

u(t) = fact uffw(t) + ffric . (12)

Here, the tuning factor ffric is supposed to compensate static Coulomb friction in the mo-
tion ϕ̇1, and the motor constant fact is supposed to compensate the unidentified motor model
which describes the relationship between the unit of the actuator input (electrical current)
and the force input uffw determined by the inverse model.

The measurements are presented in Fig. 5 for different tuning factors fact and ffric. The
various parameter sets for the tuning factors are listed in Table 2. The system input is shown
in Fig. 5a, while the measurement of the system output is shown in Fig. 5b. Setting ffric = 0
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Table 2 Tuning parameters for
the feedforward controller fact ffric

P ffw
1 0.3 0

P ffw
2 0.1 0.12

P ffw
3 0.1 0.15

P ffw
4 0.1 0.16

P ffw
5 0.08 0.16

Table 3 Parameter for the funnel
function (13) s q c

P fb
1 5 0.1 0.3

P fb
2 1 0.1 0.5

P fb
3 3 0.1 0.5

P fb
4 5 0.1 0.5

P fb
5 8 0.1 0.5

P fb
6 5 0.3 0.3

and therefore not compensating the friction in the system shows that the rotational velocity
goes instantly back to zero due to friction in the actuator bearing. Therefore, different val-
ues for the Coulomb friction compensation are tested. Out of the taken measurements, the
smallest tracking errors are achieved for the parameter set P ffw

5 . These results show that the
nominal model is sensitive to modeling errors. This is mainly due to the friction in the actu-
ator. At the same time, the results validate the real-time application of the servo-constraints
framework for a minimum phase system and demonstrate that accurate tracking is possible
with a suitable feedforward controller.

5.2 Feedback control

To accurately compensate for the unknown friction, we now apply the feedback control strat-
egy described in Sect. 3.2 without the feedforward control part. Since the funnel controller
benefits from a high control loop frequency cf. [37], the following results are obtained for a
frequency of 2 kHz. We choose the exponential function

ψ(t) = se−qt + c (13)

to describe the performance funnel ψ . The scalar parameters s, q , and c change the size
of the performance bound and act as design parameters. The chosen parameters are listed
in Table 3 and the respective funnel functions are visualized in Fig. 6. The performance
funnel ψi , which is plotted in the following figures, corresponds to the parameter set P fb

i .
Figure 7 shows the measurement results for the different parameter combinations P fb

i . Fig-
ure 7a shows the feedback control signal, while Fig. 7b shows the measured system output.
All measurements have two properties in common: there is a time lag between the reference
yref and the measured output y and there is a steady state error for t > tf = 10 s. Figure 7c
shows the tracking error e = y − yref and the performance funnel ψ of the best parameter
set P fb

2 and the worst parameter set P fb
5 . The results show that the tracking error stays close

to the performance funnel ψ . For the tighter funnel, the tracking error comes very close to
the boundary. This results in the chattering, which is visible in the control input signal in



S. Drücker et al.

Fig. 6 Visualization of the funnel
parameters of Table 3

Fig. 7 Funnel feedback control at 2 kHz

Fig. 7a. High chattering motion can introduce undesirable loads on the mechanical parts of
the actuator and should therefore be avoided.

In Table 3 another parameter set is listed, the application of which is not presented in
Fig. 7. The reason of the absence of measurement results with P 6

fb is that the feedback
closed loop was unstable for both sample frequencies because of the very aggressive funnel
function. We plot the experimental results for the feedback controller with parameter set
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Fig. 8 Feedback control with parameter set P fb
6 at 1 kHz and 2 kHz

P fb
6 at 1 kHz and 2 kHz in Fig. 8. The results show that both measurements yield the same

tracking results as long as the controller is stable. However, the controller applied at 1 kHz
becomes unstable after approximately 5 s, while the controller applied at 2 kHz becomes
unstable after 10 s. Both controllers become unstable at some point because the tracking
error evolves too close to the performance bound and is pushed outside the limit by noise
effects. However, as will be demonstrated in the following section, the combined controller
is capable to achieve the control objective for parameter set P 6

fb.
The combination of both, funnel feedback control and feedforward control, is presented

in the following to minimize the drawbacks of the funnel feedback control.

5.3 Combination of both controller parts

In the following, we present measurements for the combined control strategy and compare
them to the results of the individual control strategies. Measurements are shown in Fig. 9
for the lower control loop frequency of 1 kHz with the funnel design parameters P fb

6 and
the feedforward tuning parameters P ffw

5 . We prefer to show these results over the results at
the higher frequency of 2 kHz since the lower frequency is more realistic and applicable to
a broader system class. Moreover, the feedforward solution can be computed in real time
for this case. The solution at the higher frequency of 2 kHz looks similar for the combined
controller, but there are some differences in the application of the pure feedback controller,
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Fig. 9 Combination of feedforward and feedback control at 1 kHz

which are discussed in Sect. 5.2. In the following figures, we compare the pure feedforward
control, the pure feedback control, and the combined strategy.

The results show that the pure feedback controller becomes unstable after a few seconds.
Figure 9c shows that the tracking error e reaches the performance boundary ψ and then
jumps out of the funnel between two time instances since the time discretization is not
sufficiently small. However, applying the same parameter set P fb

6 for the funnel feedback
controller and adding the feedforward control results in a stable control signal. From this it
can be concluded that the combined controller is amenable to operation at lower frequencies
than the pure feedback control.

5.4 Overall comparison

After presenting individual measurements and pointing out different aspects of the analyzed
control strategy, we now present an overall comparison of the control approaches. A quali-
tative comparison is shown in Table 4. The individual feedforward and feedback strategies
have some disadvantages, respectively. The feedforward controller is, in the current imple-
mentation, real-time capable at the lower frequency of 1 kHz. For the higher frequency,
it can only be accessed via a pre-computed look-up table. Here, the real-time solution is
preferred since the feedforward controller can be adapted to varying trajectories or model
parameters. On the other hand, the feedback controller benefits from higher control loop
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Table 4 Overview of qualitative controller properties

frequencies since stricter performance bounds are possible. At the lower control loop fre-
quency, the controller becomes unstable for realistic performance bounds, and the perfor-
mance is only comparable to the feedforward controller. It therefore does not add any value
at the lower frequency. The combined control strategy allows for even stricter performance
bounds at both tested frequencies.

Besides the qualitative comparison, we now introduce two performance measures to com-
pare the overall performance of all performed experiments. First, we compare the perfor-
mance in the transient regime between t = 0 s and t = 10 s. We define the performance
metrics

ut0,t1
sum :=

∫ t1

t0

u(τ)2 dτ,

et0,t1
sum :=

∫ t1

t0

e(τ )2 dτ

(14)

with the tracking error e(t) = y(t) − yref(t). To measure the total amount of input energy

and the total tracking error in the transient regime, we set usum,t := u
0,tf
sum and esum,t := e

0,tf
sum,t,

where tf = 10 s, and the subscript t indicates the transient regime. For integration of the
measurement data, we used the MATLAB routine TRAPZ with equidistant grid since the
sampling rate is fixed. The transient performance comparison is shown in Fig. 10a. The
results show that the pure feedforward control signal uses comparatively large input energy
while resulting in medium-sized tracking errors. The pure feedback controller uses less input
energy with varying tracking errors. The combined control strategy uses more input energy
compared to the feedback control strategy, but also results in smaller overall tracking errors,
or to comparable tracking errors compared to the pure feedback controller. Thus, a direct
comparison between the combined controller and the feedback controller is not possible
based on these two chosen metrics. However, note that the pure feedback controller results
in larger steady state errors, which are not covered in this comparison of the transient regime.
Therefore, we now compare the performance in the stationary regime between t = 10 s and
t = 15 s. To this end, we consider the variance of the control input

σ 2
sum,s(u) = 1

N

N∑

i=1

(u(ti) − ū)2 with ū = 1

N

N∑

i=1

u(ti), (15)

where we identify t1 = tf = 10 s and tN = tf + 5 s = 15 s. The chattering of the control
signal u is estimated by computing the variance σ 2

sum,s. The total tracking error in the sta-
tionary regime is given by esum,s := e10,15

sum according to (14) with the subscript s denoting the
stationary regime.
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Fig. 10 Performance measures in
transient as well as stationary
regime

The stationary performance comparison is shown in Fig. 10b. It is evident that the feed-
forward control strategy has no variance in the control signal while leading to large tracking
errors esum,s. In contrast, the feedback control signal has a comparatively large variance in
the control input signal, while the stationary tracking errors esum,s vary in a large region.
The combined control strategy exhibits the lowest variance in the control signal as well as
the lowest tracking errors. The clustering of two error values esum,t each for the pure feed-
back in Fig. 10a correspond to increasing offset values c of the funnel function (13), i.e.,
the smaller c, the smaller esum,t. Remarkably, the control action usum,t is almost constant for
different funnel functions, with slightly decreasing values of usum,t for larger diameters of
the funnel. Note that some measurements with pure feedforward, which did not achieve the
control objective, may be not present in Fig. 10a by choice of the image section.

This overall comparison supports the finding of the individual experimental results dis-
cussed above: combining funnel control with a feedforward controller can reduce chattering
and enables smaller tracking errors by allowing smaller performance bounds.
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6 Conclusion and outlook

In this contribution, we present experimental data for the combination of a feedforward
controller based on servo-constraints and a feedback controller based on funnel control. A
torsional oscillator serves as an experimental setup. Regarding the application of the method
of servo-constraints, we validate its effectiveness for a real-time implementation on a min-
imum phase system. Regarding the combination of feedforward and funnel control, the ex-
perimental results support the theoretical work we obtained previously. The results show
that this combination retains the advantages of both individual methods. In particular, we
are able to apply funnel control at lower sample frequencies in the combined strategy com-
pared to the application of pure funnel control. Moreover, we see a reduction of the peaky
input signals, which are a known drawback of the funnel controller. Both of these advantages
can lead to an easier application of funnel control in real-world systems.

Future work will focus on the implementation of the sample-and-hold feedback con-
troller [36] in the experimental setup. Since this controller is designed to take only sampled
system measurements, its application seems reasonable as well as promising. Further, the
feedforward controller can be improved during the control phase by implementing a learn-
ing scheme to improve the underlying model of the system. Since the resulting controller
is safeguarded by the funnel control component, this is safe learning in a real experimental
setup. A further extension of the combined controller described in the present article is the
incorporation of a predictive controller, e.g., funnel MPC [38], or its robust variant [39].

Moreover, as can be seen from the summarizing Table 4, applicability and robustness
of pure feedforward/feedback as well as applicability of the combined controller strongly
depends on the sampling frequency. Therefore, in future research, we will conduct a series of
experiments to systematically determine lower and upper limits for the sampling frequency
to ensure safe operation of the combined controller.
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