5. Übungsblatt zur "Algebraischen Topologie"

Gruppenübungen

Aufgabe G 10 Gegeben einen punktierten topologischen Raum (X,x) sei $F(X,x) := C(x) \subseteq X$ die Zusammenhangskomponente von x. Für einen Morphismus $f \colon (X,x) \to (Y,y)$ punktierter topologischer Räume (also eine stetige Abbildung $f \colon X \to Y$ mit f(x) = y) sei F(f) die Abbildung $f|_{C(x)}^{C(y)} \colon C(x) \to C(y)$. Zeigen Sie, dass F ein sinnvoll definierter Funktor von Top₀ nach Top ist.

Aufgabe G 11 Es sei (X, \leq) eine partiell geordnete Menge. Zeigen Sie, dass man wie folgt eine Kategorie X erhält: Als Klasse von Objekten nimmt man die Menge X. Gegeben $x, y \in X$ gebe es einen Morphismus von x nach y genau dann, wenn $x \geq y$ (und dies sei dann auch der einzige Morphismus). Die Verknüpfung ist dann schon festgelegt. Sei nun auch (Y, \leq) eine partiell geordnete Menge, $F: X \to Y$ ein Funktor und

$$f: X \to Y, \quad x \mapsto F(x)$$

die zum Funktor gehörige Abbildung zwischen den Klassen von Objekten. Zeigen Sie, dass f eine ordnungserhaltende Abbildung ist. Lässt sich jede ordnungserhaltende Abbildung so erhalten?

Aufgabe G 12 Es seien (X,x) und (Y,y) punktierte topologische Räume. In dieser Aufgabe soll gezeigt werden, dass die Gruppen $\pi_1(X \times Y, (x,y))$ und $\pi_1(X,x) \times \pi_1(Y,y)$ isomorph sind. Hierzu seien $p \colon X \times Y \to X$ und $q \colon X \times Y \to Y$ die Projektion auf die erste bzw. zweite Komponente und

$$\Phi := (p_*, q_*) \colon \pi_1(X \times Y, (x, y)) \to \pi_1(X, x) \times \pi_1(Y, y).$$

- (a) Zeigen Sie, dass Φ surjektiv ist.
- (b) Zeigen Sie: Ist F_1 eine Homotopie relativ $\{0,1\}$ von einem Weg γ_1 in X, zu einem Weg η_1 , und ist F_2 eine Homotopie relativ $\{0,1\}$ von einem Weg γ_2 in Y zu einem Weg η_2 , so ist $F = (F_1, F_2)$ eine Homotopie relativ $\{0,1\}$ von (γ_1, γ_2) nach (η_1, η_2) .
- (c) Zeigen Sie, dass Φ auch injektiv ist und somit ein Isomorphismus.

Hausübungen

- **Aufgabe H 9** (a) Es sei G ein Gruppoid über der Menge X mit den Abbildungen $\alpha\colon G\to X$ (Anfangspunkt) und $\varepsilon\colon G\to X$ (Endpunkt). Zeigen Sie, dass man eine Kategorie erhält, wenn man X als Menge von Objekten nimmt und $\operatorname{Mor}(x,y)$ definiert als die Menge aller $g\in G$ mit $\alpha(g)=x$ und $\varepsilon(g)=y$. Die Verknüpfung ist $f\circ g:=gf$ für $f,g\in G$ mit $\varepsilon(g)=\alpha(f)$.
- (b) Zeigen Sie, dass in der Kategorie aus (a) jeder Morphismus $g \colon x \to y$ ein Isomorphismus ist (d.h. es existiert ein Morphismus $h \colon y \to x$ mit $h \circ g = \mathrm{id}_x$, $g \circ h = \mathrm{id}_y$). Zudem ist dies eine sogenannte *kleine Kategorie*, d.h. die Klasse der Objekte ist eine Menge.
- (c) Sei nun umgekehrt eine kleine Kategorie gegeben mit der Menge X von Objekten. Angenommen, jeder Morphismus ist ein Isomorphismus. Zeigen Sie, dass sich dann die Menge G aller Morphismen als Gruppoid auffassen lässt.
- (d) Was muss man in (c) ändern damit sich G sogar als Gruppe auffassen lässt.