5. Übungsblatt zur "Analysis I"

Hausübungen

Aufgabe H1 (Iterierte Suprema; 5 Punkte)

Seien (K, K_+) ein vollständig angeordneter Körper. Ist $(a_i)_{i \in I}$ eine Familie von Elementen aus K, so schreiben wir $\sup_{i \in I} a_i := \sup\{a_i : i \in I\}$. Seien nun $I, J \neq \emptyset$ Mengen und $(a_{i,j})_{(i,j)\in I\times J}$ eine Familie von Elemnten aus K mit $\sup_{(i,j)\in I\times J} a_{i,j} < \infty$. Zeigen Sie:

- (a) $\sup_{j\in J} a_{i_0,j} \leq \sup_{(i,j)\in I\times J} a_{i,j}$ für alle $i_0\in I$
- (b) $\sup_{i \in I} \sup_{j \in J} a_{i,j} \le \sup_{(i,j) \in I \times J} a_{i,j}$
- (c) $a_{i_0,j_0} \leq \sup_{i \in I} \sup_{j \in J} a_{(i,j)}$ für alle $i_0 \in I$ und $j_0 \in J$
- (d) $\sup_{i \in I} \sup_{j \in J} a_{i,j} = \sup_{(i,j) \in I \times J} a_{i,j}$.

Lösung:

- (a) Sei $i_0 \in I$ für alle $j \in J$ gilt $a_{i_0,j} \leq \sup_{(i,j) \in I \times J} a_{i,j}$. Durch Übergang zum Supremum in j erhalten wir $\sup_{j \in J} a_{i_0,j} \leq \sup_{(i,j) \in I \times J} a_{i,j}$.
- (b) Da $i_0 \in I$ in (a) beliebig war, können wir über $i \in I$ das Supremum bilden und erhalten $\sup_{i \in I} \sup_{j \in J} a_{i,j} \leq \sup_{(i,j) \in I \times J} a_{i,j}$.
- (c) Es gilt $a_{i_0,j_0} \leq \sup_{i \in J} a_{i_0,j} \leq \sup_{i \in I} \sup_{i \in I} a_{i,j}$.
- (d) Da in (c) $i_0 \in I$ und $j_0 \in J$ beliebig waren können wir das Supremum über $(i, j) \in I \times J$ bilden und erhalten $\sup_{i \in I} \sup_{j \in J} a_{i,j} = \sup_{(i,j) \in I \times J} a_{i,j}$.

Aufgabe H2 (Einbettung von \mathbb{Z} ; 5 Punkte)

Sei (K, K_+) ein angeordneter Körper. In der Vorlesung wurde die Abbildung $\mathbb{Z} \to K$, $z \mapsto z \cdot 1$ definiert. Hierbei haben wir $0 \cdot x := 0$ für $x \in K$ und $0 \in \mathbb{Z}$ definiert sowie rekursiv $n \cdot x := (n-1) \cdot x + x$ für $n \in \mathbb{N}$. Für n < 0 haben wir $n \cdot x := -(-n \cdot x)$ definiert.

- (a) Zeigen Sie $(n \cdot 1)x = n \cdot x$ für alle $n \in \mathbb{Z}, x \in K$. (Hinweis: Zeigen Sie zunächst den Fall $n \in \mathbb{N}_0$ per Induktion.)
- (b) Zeigen Sie nun $(n \cdot 1)(m \cdot 1) = (nm) \cdot 1$ für alle $n, m \in \mathbb{Z}$.

Lösung:

(a) Wir zeigen die Aussage zunächst für $n \geq 0$ durch Induktion.

IA: Es gilt $(0 \cdot 1)x = 0x = 0 \cdot x$ für $x \in K$.

IS: Es glete $((n-1)\cdot 1)x=(n-1)\cdot x$ für ein $n\in\mathbb{N}$. Wir rechnen

$$(n \cdot 1)x = ((n-1) \cdot 1 + 1)x = ((n-1) \cdot 1)x + x = (n-1) \cdot x + x = n \cdot x.$$

Für n < 0 rechnen wir $n \cdot x = -((-n) \cdot x) = -(((-n) \cdot 1)x) = (n \cdot 1)x$.

5. Übung Analysis I

(b) Es gitl mit Hilfe von (a) $(n \cdot 1)(m \cdot 1) = n \cdot (m \cdot 1) = (nm) \cdot 1$, wobei die letzte der Gleichheiten aus der Vorlesung folgt.

Aufgabe H3 (Rechenregeln für das Supremum; 5 Punkte)

Sei (K, K_+) ein angeordneter Körper, $N, M \subseteq K$. Zeigen Sie:

- (a) Wenn $\sup M$ und $\sup N$ in K existieren, dann existiert auch $\sup(M+N)$ in K und es gilt $\sup(M+N) = \sup(M) + \sup(N)$.
- (b) Wenn $\sup M$ und $\sup N$ in K existieren und $N, M \ge 0$ gilt, dann existiert auch $\sup(M \cdot N)$ in K und es gilt $\sup(M \cdot N) = \sup(M) \cdot \sup(N)$.

Lösung:

- (a) Die Menge M+N is nach oben beschränkt, denn es gilt offensichtlich $M+N \leq \sup M+\sup N$. Wir müssen zeigen, dass $\sup M+\sup N$ die kleinste obere Schranke für M+N ist. Sei $M+N \leq x$ für $x \in K$. Seien $m \in M$ fest. Für alle $n \in N$, gilt dann $m+n \leq x$, also auch $n \leq x-m$ (es gilt also $N \leq x-m$). Durch Übergang zum Supremum erhalten wir $\sup N \leq x-m$, bzw. $m \leq x-\sup N$. Da $m \in M$ beliebig war können wir zum Supremum übergehen (es gilt ja $M \leq x-\sup N$) und erhalten $\sup M \leq x-\sup N$. Wir erhalten also $\sup M+\sup N \leq x$.
- (b) Wir können o.B.d.A. $N, M \neq \{0\}$ annehmen. Es gelten also sup $M = \sup M \setminus \{0\}$, sup $N = \sup N \setminus \{0\}$ und sup $M \cdot N = \sup M \setminus \{0\} \cdot N \setminus \{0\}$ weshalb wir N, M > 0 annehmen können. Die Aussage lässt sich nun, durch Vertauschen der additiven mit den multiplikativen Zeichen, genau so zeigen wie in (a).

Aufgabe H4 (Ein Intervall; 5 Punkte)

Wir definieren die Menge $I := \{x \in \mathbb{Q}_+ : x^2 < 2\}.$

- (a) Zeigen Sie, dass I in \mathbb{Q} ein beschränktes Intervall ist.
- (b) Zeigen Sie, dass I nicht von der Form]0,a] für ein $a \in \mathbb{Q}$ ist.
- (c) Zeigen Sie, dass I nicht von der Form]0, a[für ein $a \in \mathbb{Q}$ ist. Sie dürfen verwenden, dass es kein $q \in \mathbb{Q}$ mit $q^2 = 2$ gibt.

Sie müssen für diese Aufgabe nicht zeigen, dass in \mathbb{Q} der Satz des Archimedes gilt. (Hinweis: Machen Sie sich klar, dass es für $p,q\in\mathbb{Q}_+$ ein $n\in\mathbb{N}$ existiert mit $\frac{1}{n}\cdot q< q$)

Lösung:

- (a) I ist nach unten durch 0 beschränkt. I ist nach oben durch 2 beschränkt, denn für $x \in I$ gilt $x^2 < 2 \le 2 \cdot 2$. Es folgt also $x \le 2$. Seien nun $x, z \in I$ und $y \in \mathbb{Q}$ mit $x \le y \le z$. $y \in \mathbb{Q}_+$ folgt direkt. Aus $y \le z$ und y, z > 0 folgt damit also $y \cdot y \le z \cdot y \le z \cdot z$.
- (b) Angenommen es gilt I =]0, a] für ein $a = \frac{b}{c} \in \mathbb{Q}$. Es gilt also $a^2 < 2$ und wir können b, c > 0 annehmen. Wir definieren $\varepsilon := 2 \frac{b^2}{c^2}$. Es gilt $\varepsilon > 0$. Da in \mathbb{Q} der Satz des Archimedes gilt, gibt es ein $n \in \mathbb{N}$ mit $\frac{1}{n} \cdot \frac{2b}{c^2} < \frac{\varepsilon}{2}$ und $\mathbf{1}n^2 \cdot \frac{1}{c^2} \le \mathbf{1}n \cdot \frac{1}{c^2}$. Wir setzen $\delta := \frac{1}{n}$ und erhalten

$$\frac{(b+\delta)^2}{c^2} = \frac{b^2}{c^2} + \frac{2\delta b}{c^2} + \frac{\delta^2}{c^2} < \frac{b^2}{c^2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < 2.$$

5. Übung Analysis I

Es glit $\frac{b+\delta}{c}>a$ und $\frac{b+\delta}{c}\in I$. Dies ist ein Widerspruch. (c) Angenommen es gilt I=]0,a[für ein $a=\frac{b}{c}\in\mathbb{Q}.$ Wir wollen zeigen, dass dann $a^2=2$ gelten muss. Angenommen es würde $a^2<2$ gelten. In diesem Fall argumentieren wir genau so wie in in (b). Angenommen es gilt $a^2>2$. Wir definieren $\varepsilon:=\frac{b^2}{c^2}-2>0$ und wählen ein $n\in\mathbb{N}$ mit $\frac{1}{n}< b, \frac{1}{n}\cdot\frac{2b}{c^2}<\frac{\varepsilon}{2}$ und $\frac{1}{n^2}\cdot\frac{1}{c^2}<\frac{\varepsilon}{2}.$ Wir definieren $\delta:=\frac{1}{n}$ und rechnen und rechnen

$$\frac{(b-\delta)^2}{c^2} = \frac{b^2}{c^2} - \frac{2\delta b}{c^2} + \frac{\delta^2}{c^2} > \frac{b^2}{c^2} - \frac{2\delta b}{c^2} - \frac{\delta^2}{c^2} > \frac{b^2}{c^2} - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = 2.$$

Aus $\delta < b$ folgt $\frac{b-\delta}{c} > 0$. Zudem gilt $\frac{b-\delta}{c} < a$. Aber nach obigem gilt nicht $\frac{b-\delta}{c} \in I$. Dies ist ein Widerspruch.

Es muss also $a^2 = 2$ gelten. Das kann aber nicht sein, da $a \in \mathbb{Q}$.