12. Übungsblatt zur "Grundlagen der Differentialgeometrie"

Gruppenübungen

Aufgabe G 30 (Quotientengruppen)

Sei G eine Liegruppe, $H \subseteq G$ eine Unterliegruppe und $q \colon G \to G/H$ die Quotientenabbildung.

(a) Sei $R := \{(x,y) \in G \times G : q(x) = q(y)\}$ wie in der Vorlesung. Zeigen Sie

$$R = \{(x, xy) \colon x \in G, y \in H\}$$

und schließen Sie daraus $R \cong G \times H$. Insbesondere gilt also dim $R = \dim G + \dim H$.

- (b) Begründen Sie die Gleichheit dim(ker $T_e q$) + dim G/H = dim G.
- (c) Zeigen Sie ker $T_eq=T_eH$. Hinweis: Beachten Sie Schritt 6 aus dem Beweis des Satzes von Godement. Begründen Sie dim $W=\dim N$ (in der Notation des Beweises).

Lösungsvorschlag: (a) Offensichtlich gilt $\{(x, xy) : x \in G, y \in H\} \subseteq R$. Sei umgekehrt $(x, z) \in R$ dann folgt $z^{-1}x = h$ für ein $h \in H$ und somit $z = xh^{-1}$. Die Abbildung

$$R \to G \times H, \quad (x,xy) \mapsto (x,x^{-1}xy) = (x,y)$$

ist also wohldefiniert und glatt und $(x,y) \mapsto (x,xy)$ definiert eine ebenfalls glatte Umkehrabbildung.

- (b) Da q eine Submersion ist, gilt $\dim(\operatorname{Im} T_e q) = \dim T_e G/H = \dim G/H$. Wegen $\dim T_e G = \dim G$ folgt die Aussage nun aus der Dimensionsformel.
- (c) Aus Schritt 6 des Beweises folgt, dass q(U) = q(W) für eine offene Umgebung $U \subseteq M$ gilt. Da q eine Submersion ist hat N also die gleiche Dimension wie $\operatorname{Im}(q)$ und da $q|_W$ ein Diffeomorphismus nach q(W) ist also auch die gleiche Dimension wie W. Nun gilt dim $W = \dim K = 2m r$ wobei $r = \dim R$ und $m = \dim M$ (Anmerkung: dim $W' = \dim W$ im Beweis). In unserer Situation folgt mit M = G, N = G/H und dim $R = \dim G + \dim H$ also dim $G/H = \dim G \dim H$. Wegen (b) muss also dim $G/H = \dim G \dim H$ gelten. Aus der Vorlesung ist $G/H = \dim G \dim G$ bekannt und somit folgt Gleichheit.

Aufgabe G 31 (Komponenten der Tangentialabbildung)

Sei $f: M_1 \times M_2 \to M$ eine glatte Abbildung zwischen glatten Mannigfaltigkeiten. Wir identifizieren

$$\Phi: T(M_1 \times M_2) \to TM_1 \times TM_2, \quad [(\gamma, \eta)] \mapsto ([\gamma], [\eta])$$

wie in G18. Zeigen Sie die Gleichheit

$$\left(Tf \circ \Phi^{-1}\right)(v, w) = T(f(x, \bullet))(w) + T(f(\bullet, y))(v)$$

für alle $v \in T_x M_1$ und $w \in T_y M_2$.

Lösungsvorschlag: Sei $v = [\gamma]$ und $w = [\eta]$. Vorüberlegung: Sei $[c_y]$ der Konstante Weg durch $y \in M_2$ dann gilt $[c_y] = 0 \in T_y M_2$ und demnach $[\gamma, c_y] = (v, 0) \in T_{(x,y)} M_1 \times M_2$. Wir rechnen also

$$Tf \circ \Phi^{-1}([\gamma], [\eta]) = Tf([\gamma, \eta]) = Tf(v, w)$$

$$= Tf((v, 0) + (0, w)) = Tf(0, w) + Tf(v, 0)$$

$$= Tf([c_x, \eta]) + Tf([\gamma, c_y]) = [t \mapsto f(x, \eta(t))] + [t \mapsto f(\gamma(t), y)]$$

$$= T(f(x, \bullet))(w) + T(f(\bullet, y))(v).$$

Aufgabe G 32 (Spezielle lineare Gruppe)

Die spezielle lineare Gruppe $\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{GL}_n(\mathbb{R}) : \det(A) = 1\}$ ist als Untergruppe der $\mathrm{GL}_n(\mathbb{R})$, die gleichzeitig eine Untermannigfaltigkeit ist, eine Liegruppe.

- (a) Sei $A \in \mathbb{R}^{n \times n}$. Zeigen Sie $\det(e^A) = e^{\operatorname{tr}(A)}$. Hinweis: Ähnliche Matrizen haben die gleiche Spur.
- (b) Folgern Sie, dass die Liealgebra $\mathfrak{sl}_n(\mathbb{R}) := L(\mathrm{SL}_n(\mathbb{R}))$ genau aus den Matrizen $A \in \mathbb{R}^{n \times n}$ mit $\mathrm{tr}(A) = 0$ besteht.

Lösungsvorschlag: (a) Angenommen A ist eine obere Dreiecksmatrix, etwa

$$A = \begin{bmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & \dots & * \\ \vdots & 0 & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}.$$

Dann folgt

$$e^{A} = \begin{bmatrix} e^{\lambda_{1}} & * & \dots & * \\ 0 & e^{\lambda_{2}} & \dots & * \\ \vdots & 0 & \ddots & \vdots \\ 0 & \dots & 0 & e^{\lambda_{n}} \end{bmatrix}$$

und somit $\det(e^A) = e^{\operatorname{tr}(A)}$. Sei nun $A \in \mathbb{R}^{n \times n}$ beliebig. Da alle Matrizen über \mathbb{C} triagonalisierbar sind, existiert ein $S \in \operatorname{GL}_n(\mathbb{C})$ und eine obere Dreiecksmatrix $Y \in \mathbb{C}^{n \times n}$ so, dass $X = SYS^{-1}$. Es ergibt sich

$$e^X = \sum_{k=0}^{\infty} \frac{(SYS^{-1})^k}{k!} = S\sum_{k=0}^{\infty} \frac{(Y)^k}{k!} S^{-1}$$

und daraus folgt det $e^X = \det e^Y = e^{\operatorname{tr}(Y)}$. Da ähnliche Matrizen immer die gleiche Spur haben folgt die Aussage.

(b) Sei $\iota : \mathrm{SL}_n(\mathbb{R}) \to \mathrm{GL}_n(\mathbb{R})$ die Inklusion, dann gilt

$$\begin{array}{c|c}
\operatorname{SL}_{n}(\mathbb{R}) & \xrightarrow{\iota} & \operatorname{GL}_{n}(\mathbb{R}) \\
\operatorname{exp}_{\operatorname{SL}_{n}(\mathbb{R})} & & & \uparrow \\
L(\operatorname{SL}_{n}(\mathbb{R})) & \xrightarrow{L(\iota)} & L(\operatorname{GL}_{n}(\mathbb{R}))
\end{array}$$

wobei $L(\iota): L(\mathrm{SL}_n(\mathbb{R})) \to L(\mathrm{GL}_n(\mathbb{R}))$ ebenfalls die Inklusion ist. Bekanntlich gilt

$$\exp_{\mathrm{GL}_n(\mathbb{R})} : L(\mathrm{GL}_n(\mathbb{R})) = \mathbb{R}^{n \times n} \to \mathrm{GL}_n(\mathbb{R}), \quad A \mapsto e^A.$$

D.h. $\mathfrak{sl}_n(\mathbb{R})$ besteht genau aus den Matrizen $A \in \mathbb{R}^{n \times n}$ mit $e^A \in \mathrm{SL}_n(\mathbb{R})$. Es muss also $1 = \det e^A = e^{\mathrm{tr}(A)}$ gelten und somit $\mathrm{tr}(A) = 0$. Gilt umgekehrt $\mathrm{tr}(A) = 0$, so folgt mit dem gleichen Argument $e^A \in \mathrm{SL}_n(\mathbb{R})$