Homotopy groups of topological spaces containing a dense directed union of manifolds

Helge Glöckner (Paderborn)

Consider a topological space X which is a union $X = \bigcup_{n=1}^{\infty} X_n$ of topological spaces

$$X_1 \subseteq X_2 \subseteq \cdots,$$

such that all inclusion maps $X_n \to X_{n+1}$ and $X_n \to X$ are continuous. If every compact subset of X is a compact subset of some X_n (i.e., in the case of *compact regularity*), it is easy to see that the homotopy groups of X can be expressed as direct limits of those of the steps:

$$\pi_k(X, p) = \lim \pi_k(X_n, p), \tag{1}$$

for all $k \in \mathbb{N}$ and $p \in X$. In the talk, I discuss situations where (1) still holds, although compact regularity need not be available. The alternative approach is based on approximation arguments, and assumes (among other things) that each X_n is a (possibly infinite-dimensional) manifold. It applies just as well if the union $\bigcup_{n=1}^{\infty} X_n$ is merely dense in X, and also in the case of uncountable directed unions.

Fundamental groups and second homotopy groups are needed in the extension theory of infinite-dimensional Lie groups (as developed recently by K.-H. Neeb). Many infinite-dimensional Lie groups can be expressed as ascending unions of better-understood Lie groups, or contain such a union as a dense subgroup.

The results entail a solution to a long-standing open problem. Given a Lie group H with Lie algebra L(H), one can consider a certain "weighted mapping group" $\mathcal{S}(\mathbb{R}^{\ell}, H)$ modelled on the Schwartz space $\mathcal{S}(\mathbb{R}^{\ell}, L(H))$ of L(H)-valued rapidly decreasing functions. Answering a question by BOSECK, CZICHOWSKI and RUDOLPH from 1984 in the affirmative, one deduces that always

$$\pi_k(\mathcal{S}(\mathbb{R}^\ell, H)) \cong \pi_{k+\ell}(H).$$