Flows, diffeomorphism groups, and regularity

Helge Glöckner (Paderborn)

September 22, 2023

Helge Glöckner (Paderborn) Flows, diffeomorphism groups, and regularity

Flows for complete time-dependent vector fields give rise to curves in diffeomorphism groups.

How do the diffeomorphisms depend on the vector field?

Answer will involve

- $\bullet~\infty\text{-dim}$ calculus and $\infty\text{-dim}$ Lie groups
- Lie groups Diff(M) and Diff^{\u03c6}(M) of smooth and real-analytic diffeomorphisms, respectively, for a compact manifold M

Answers also for ODEs with right-hand sides merely L^1 in time

§1 Infinite-dimensional calculus and Lie groups

E, *F* locally convex topological vector spaces

 $U \subseteq E$ open

Definition (Andrée Bastiani '64)

A map $f: U \rightarrow F$ is called C^1 if it is continuous, the directional derivative

$$df(x,y) := \lim_{t\to 0} \frac{f(x+ty) - f(x)}{t}$$

exists for each $x \in U$ and $y \in E$, and $df: U \times E \rightarrow F$ is continuous.

If f is C^1 and df is C^k , say that f is a C^{k+1} -map.

Call f a C^{∞} -map (or "smooth") if f is C^k for all finite k.

Then $f'(x) := df(x, \cdot) \colon E \to F$ is continuous linear.

Chain Rule: Compositions of composable C^k -maps are C^k .

Remark. In the special case of normed spaces E and F, let us compare with k times continuously Fréchet differentiable mappings (FC^{k} -maps). Then

$$C^{k+1} \Rightarrow FC^k \Rightarrow C^k.$$

Notably, same smooth maps, $FC^{\infty} = C^{\infty}$.

Returning to general locally convex spaces:

Chain Rule: \rightsquigarrow can define smooth manifolds and Lie groups modeled on a locally convex space, as expected.

Smooth manifold modeled on locally convex space *E*:

Hausdorff topological space M with maximal atlas of local parametrizations (homeomorphisms from open subsets of E onto open subsets of M) which are C^{∞} -compatible

Lie group modeled on E:

group G with smooth manifold structure modeled on E turning group operations

 $egin{array}{ll} G imes G o G, & (x,y)\mapsto xy\ G o G, & x\mapsto x^{-1} \end{array}$

into smooth maps.

Remark. The main point of a Lie group structure is to have a local parametrization $\phi: V \rightarrow U$

from an open subset $V \subseteq E$ onto an open *e*-neighbourhood $U \subseteq G$. Then the translates

$$g\phi\colon V \to gU, \quad x \mapsto g\phi(x)$$

provide an atlas of local parametrizations for G for $g \in G$.

Main classes of examples:

- Linear Lie groups like A[×] for a Banach algebra A and its Lie subgroups (or other topological algebras)
- Mapping groups like C^k(M, G) for G a Lie group, M a compact smooth manifold
- **Diffeomorphism groups** like the Lie group Diff(M) of all C^{∞} -diffeomorphisms $\psi \colon M \to M$
- Direct limit groups: Ascending unions ⋃_{n∈ℕ} G_n of finite-dimensional Lie groups G₁ ⊆ G₂ ⊆ ···, e.g. GL_∞(ℝ) := ⋃_{n∈ℕ} GL_n(ℝ), A = (A 0 0 1)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Infinite-dimensional calculus, manifolds and Lie groups:

Hamilton '82, Milnor '84, G. '02a, Neeb '06, G.–Neeb '23, Schmeding '23; cf. also Keller '74 (where Bastiani's calculus is called C_c^k -theory)

Compare Kriegl-Michor '97 for an inequivalent approach to infinite-dimensional differential calculus, the so-called convenient differential calculus.

Lie group structure on the main classes of examples of infinite-dimensional Lie groups:

See, for example, Michor '80, Hamilton '82, Milnor '84, Kriegl–Michor '97, Omori '97, G. '02b, G. '02c, G. '05, Neeb '06, G.–Neeb '23.

周 ト イ ヨ ト イ ヨ ト

$\S2$ Mapping groups / path groups

If *E* is a locally convex space, give $C^{k}([0, 1], E)$ the topology of uniform convergence of all derivatives of order $j \leq k$. It can be defined using the seminorms

$$C^k([0,1],E)
ightarrow [0,\infty[,\quad f\mapsto \sup_{t\in [0,1]}p(f^{(j)}(t))$$

for j as before and continuous seminorms $p \colon E \to [0,\infty[$.

Path groups

Let $k \in \mathbb{N}_0 \cup \{\infty\}$ and G be a Lie group G modelled on a locally convex space E. Then $C^k([0,1], G)$ can be made a Lie group modelled on $C^k([0,1], E)$.

Idea. Pick a local parametrization $\phi: V \to U \subseteq G$ around *e*. Then $C^k([0,1],V)$ is open in $C^k([0,1],E)$ and the map

 $C^k([0,1],\phi)\colon C^k([0,1],V) o C^k([0,1],U), \quad f\mapsto \phi\circ f$

is a bijection which can be used as a local parametrization around the neutral element $t \mapsto e$ (cf., e.g., Milnor '84 or G, '02b).

§3 The diffeomorphism group of a compact C^{∞} -manifold

Let M be a compact smooth manifold and $\Gamma^{\infty}(TM)$ be the vector space of smooth vector fields $X: M \to TM$ on M, with its natural locally convex topology (see appendix).

Thus $X(p) \in T_p M$ for all $p \in M$.

Lie groups of smooth diffeomorphisms

The group Diff(M) of all C^{∞} -diffeomorphisms $\psi \colon M \to M$ can be made a Lie group modelled on $\Gamma^{\infty}(TM)$.

Idea. Pick a Riemannian metric g on M and let $\exp_g: TM \to M$ be the Riemannian exponential map. For an open 0-neighbourhood $V \subseteq \Gamma^{\infty}(TM)$, the map

$$V o \mathsf{Diff}(M), \quad X \mapsto \exp_g \circ X$$

is a local parametrization around id_M , when considered as a map to its image (cf. Michor '80, Hamilton '82, Milnor '84, Kriegl–Michor '97).

§4 Diffeomorphism groups of real-analytic manifolds

Let M be a compact real-analytic manifold (changes between local parametrizations are locally given by convergent power series). Let $\Gamma^{\omega}(TM)$ be the locally convex space of real-analytic vector fields $X: M \to TM$ on M (see end of talk).

Lie groups of real-analytic diffeomorphisms

The group $\text{Diff}^{\omega}(M)$ of all real-analytic diffeomorphisms $\psi \colon M \to M$ can be made a Lie group modelled on $\Gamma^{\omega}(TM)$.

Idea. Pick a real-analytic Riemannian metric g on M (which is possible as M embeds in some \mathbb{R}^n , see Grauert '58). Let $\exp_g: TM \to M$ be the Riemannian exponential map. For an open 0-neighbourhood $V \subseteq \Gamma^{\omega}(TM)$, the map

$$V o \mathsf{Diff}^\omega(M), \quad X \mapsto \exp_g \circ X$$

is a local parametrization around id_M , when considered as a map to its image (cf. Kriegl-Michor'97, Dahmen-Schmeding'15, Leslie '82-'83).

$\S5$ Flows and parameter-dependence

We are interested in differential equations on an open subset $U \subseteq \mathbb{R}^n$ with parameter in an open subset $P \subseteq \mathbb{R}^m$. Let $\mathbb{I} := [0, 1]$ and

$$f: \mathbb{I} \times U \times P \to \mathbb{R}^n$$

be a C^k -function with $k \in \mathbb{N} \cup \{\infty\}$. For simplicity, assume completeness: For all $t_0 \in \mathbb{I}$, $y_0 \in U$, and $p \in P$, the initial value problem

$$y'(t) = f(t, y(t), p), \quad y(t_0) = y_0$$

has a (necessarily unique) solution $\phi_{t_0,y_0,p} \colon \mathbb{I} \to U$. We get a globally defined flow

 $\mathsf{FI} \colon \mathbb{I} \times \mathbb{I} \times U \times P \to U, \quad (t, t_0, y_0, p) \mapsto \mathsf{FI}^{p}_{t, t_0}(y_0) := \phi_{t_0, y_0, p}(t).$

It is classical that FI is C^k . Since

$$\mathsf{Fl}_{t_0,t}^p \circ \mathsf{Fl}_{t,t_0}^p = \mathsf{Fl}_{t_0,t_0}^p = \mathsf{id}_U,$$

the map $\mathsf{Fl}^p_{t,t_0} \colon U \to U$ is a C^k -diffeomorphism for all $t, t_0 \in \mathbb{I}$.

We mention that P may be replaced by an open subset of an arbitrary locally convex space (G.-Neeb'23).

For a compact C^{∞} -manifold M, consider the differential equation

 $\dot{y}(t) = X_t(y(t))$

on M with $X \in C^{\infty}(\mathbb{I}, \Gamma^{\infty}(TM))$ as a parameter (a timedependent smooth vector field $t \mapsto X_t$ with smooth time dependence). We deduce that the flow

$$\mathsf{FI} \colon \mathbb{I} \times \mathbb{I} \times M \times C^{\infty}(\mathbb{I}, \Gamma^{\infty}(M)) \to M, (t, t_0, y_0, X) \mapsto \mathsf{FI}^X_{t, t_0}(y_0)$$

is smooth. Fixing t_0 and using twice an exponential law like

$$C^{\infty}(U \times V, F) \cong C^{\infty}(U, C^{\infty}(V, F)), \ f \doteq (x \mapsto f(x, \cdot)),$$

one can reformulate smooth parameter-dependence as follows:

Theorem A. The following map is smooth:

$$C^{\infty}(\mathbb{I},\Gamma^{\infty}(TM)) \to C^{\infty}(\mathbb{I},\mathsf{Diff}(M)), \quad X\mapsto (t\mapsto \mathsf{Fl}^{X}_{t,t_{0}}(\cdot)).$$

Similar formulations are possible in situations where smoothness of FI: $\mathbb{I} \times \mathbb{I} \times M \times P \to M$ does not make sense. $\square \to \square \to \square \to \square \to \square$

§6 Differential equations with measurable right-hand sides

If *E* is a Fréchet space, call $f: [0,1] \to E$ absolutely continuous if there exists $g \in L^1([0,1], E)$ with

$$f(t)=f(0)+\int_0^t g(s)\,ds$$
 for all $t\in[0,1].$

Thus $g: [0,1] \to E$ is Borel-measurable, g([0,1]) is separable and $\|p \circ g\|_{L^1} < \infty$ for each continuous seminorm p on E.

For λ_1 -almost all $t \in [0, 1]$, the derivative f'(t) exists and equals g(t) (see, e.g., G. '15).

It therefore makes sense to consider absolutely continuous solutions to differential equations

$$y'(t)=f(t,y(t)),$$

requiring equality only λ_1 -almost everywhere (cf. also Schechter '97 if *E* is Banach). Likewise in manifolds:

Definition

A function $f: [0,1] \rightarrow M$ to a Fréchet manifold is absolutely continuous if it is absolutely continuous piecewise in local charts.

The space AC([0, 1], E) of absolutely continuous functions is a Fréchet space with seminorms

$$f\mapsto \|p\circ f\|_{\infty}+\|p\circ f'\|_{L^1}.$$

Given a Fréchet-Lie group G, obtain a Fréchet-Lie group

AC([0, 1], G)

as in the case of C([0,1], G) (see G. '15).

Remark. Similar concepts are available for sequentially complete locally convex spaces (see Thomas '74, Florencio et al. '95 and Nikitin '21; cf. also Lewis '22).

$\S7$ Vector fields L^1 in time

Let M be a compact smooth manifold.

Theorem B (G. '15 and G. '20)

Each $X \in L^1(\mathbb{I}, \Gamma^{\infty}(TM))$, $t \mapsto X_t$ yields a globally defined flow

$$\mathbb{I} \times \mathbb{I} \times M \to M, \quad (t, t_0, y_0) \mapsto \mathsf{Fl}_{t, t_0}^X(y_0)$$

for the differential equation

$$\dot{y}(t) = X_t(y(t))$$

on M, and $\operatorname{Fl}_{t,t_0}^X(\cdot) \in \operatorname{Diff}(M)$ holds for all $t, t_0 \in \mathbb{I}$. For fixed t_0 , the map $\mathbb{I} \to \operatorname{Diff}(M)$, $t \mapsto \operatorname{Fl}_{t,t_0}^X(\cdot)$ is absolutely continuous. For $t_0 = 0$, the following map is smooth

$$L^1(\mathbb{I}, \Gamma^\infty(TM)) \to \mathsf{AC}(\mathbb{I}, \mathsf{Diff}(M)), \quad X \mapsto (t \mapsto \mathsf{Fl}^X_{t,t_0}(\cdot)).$$

G.'20: If *M* is a compact real-analytic manifold, can replace $\Gamma^{\infty}(TM)$ with $\Gamma^{\omega}(TM)$ and Diff(M) with $\text{Diff}_{\Box}^{\omega}(M)_{\mathbb{P}}(\text{Theorem C})_{\mathbb{P}}$

Complementary approach also for non-compact M, emphasizing germs around a point: Jafarpour and Lewis '14.

Compare also Schuricht-von der Mosel '00 and Klose-Schuricht '11.

4 3 6 4 3 6

§8 Lie-theoretic background: regularity properties

Let G be a Lie group modeled on a locally convex space E, with neutral element e; let $\mathfrak{g} := T_e G \cong E$ be its Lie algebra. For $g \in G$, consider the right translation $\rho_g \colon G \to G$, $x \mapsto xg$. Passing to tangent maps, we get a smooth right action

$$TG \times G \rightarrow TG$$
, $(v,g) \mapsto v.g := T\rho_g(v)$

of G on TG. Let $k \in \mathbb{N}_0 \cup \{\infty\}$.

The Lie group G is called C^k -semiregular if, for each $\gamma \in C^k([0,1],\mathfrak{g})$, there exists a (necessarily unique) C^1 -function $\eta \colon [0,1] \to G$ such that

$$\dot{\eta}(t) = \gamma(t).\eta(t)$$
 and $\eta(0) = e$.

Then η is C^{k+1} and we call $Evol(\gamma) := \eta$ the (right) evolution of γ .

If G is C^k -semiregular and Evol: $C^k([0,1],\mathfrak{g}) \to C([0,1],G)$ is smooth, then G is called C^k -regular ($\Leftrightarrow C^{\infty}$ as map to $C^{k+1}([0,1],G)$).

C^k -regularity implies C^ℓ -regularity for all $\ell \geq k$.

Thus C^{∞} -regularity (introduced by John Milnor in 1984 and abbreviated "regularity") is the weakest property.

Definition (G. '15, Nikitin '21)

For $p \in [1, \infty]$, say that a Lie group G modelled on a sequentially complete locally convex space is L^{p} -regular if each $\gamma \in L^{p}([0, 1], \mathfrak{g})$ has a right evolution $Evol(\gamma) \in AC([0, 1], G)$ and $Evol: L^{p}([0, 1], \mathfrak{g}) \rightarrow C([0, 1], G)$ is smooth (equivalently, as a map to AC([0, 1], G)).

Then

$$L^{1}\text{-}\mathsf{reg.} \Rightarrow L^{p}\text{-}\mathsf{reg.} \Rightarrow L^{\infty}\text{-}\mathsf{reg.} \Rightarrow C^{0}\text{-}\mathsf{reg.} \Rightarrow C^{k}\text{-}\mathsf{reg.} \Rightarrow \mathsf{regular}$$

Theorem (Milnor '84)

Let G and H be Lie groups and $\psi: \mathfrak{g} \to \mathfrak{h}$ be a continuous Lie algebra homomorphism. If G is 1-connected and H is regular, then $\psi = T_e \phi$ for a smooth group homomorphism $\phi: G \to H$.

Every regular Lie group has a smooth exponential function,

$$\exp_G : \mathfrak{g} \to G, \quad v \mapsto \operatorname{Evol}(t \mapsto v)(1);$$

i.e.,
$$\exp_G((t+s)v) = \exp_G(tv) \exp_G(sv)$$
 for all $s, t \in \mathbb{R}$ and
 $\frac{d}{dt}\Big|_{t=0} \exp_G(tv) = v.$

Theorem (cf. G. '15)

If G is L^{∞} -regular, then the Trotter product formula holds, $\exp_G(x+y) = \lim_{n \to \infty} (\exp_G(x/n) \exp_G(y/n))^n$.

Hanusch '20: C⁰-regularity suffices. Background: Hanusch '22

Useful for representation theory (see, e.g., Neeb-Salmasian '13)

Examples. (a) All Banach–Lie groups are L^1 -regular (G. '15).

(b) A^{\times} is L^1 -regular for each locally *m*-convex Fréchet algebra with open unit group (G. '15).

(c) For $k \in \mathbb{N}_0$, the Banach–Lie group $C^k(M, G)$ is L^1 -regular for each compact smooth manifold M and Banach–Lie group G, and also the Fréchet–Lie group $C^{\infty}(M, G) = \lim_{\leftarrow} C^k(M, G)$ (G. '15).

(d) $\lim_{n \to \infty} G_n$ is L^1 -regular for all fin-dim Lie groups $G_1 \subseteq G_2 \subseteq \cdots$ (G. '15; C^0 -regularity G. '05).

(e) Diff(M) is L^1 -regular for each compact smooth manifold M, with Evol the map $X \mapsto (t \mapsto \operatorname{Fl}_{t,0}^X(\cdot))$ from Theorem B. Likewise for Diff_c(M) if M is a paracompact, fin-dim C^{∞} -mfd (G. '15; C^0 -reg. Schmeding '15; regularity for compact M Milnor '84, Kriegl-Michor '97). (f) Diff^{ω}(M) is L^1 -regular for each compact real-analytic

manifold M (G. '20; C^1 -regularity Dahmen–Schmeding '15).

Diff_c(*M*) Lie group of C^{∞} -diffeos $f: M \to M$ s.t. f(x) = x off a compact set; modelled on the locally convex space $\Gamma_c^{\infty}(TM) = \lim_{x \to \infty} \Gamma_K^{\infty}(TM)$ of compactly supported smooth vector fields (cf. Michor '80). Helpful theoretical results available, for example:

Theorem (G. '15 + G. '20)

If Evol exists on a 0-neighbourhood in $L^1([0, 1], \mathfrak{g})$ and is continuous at 0, then G is L^1 -regular.

Theorem (Hanusch '19)

If a Fréchet-Lie group G is C^k -semiregular, then G is C^k -regular.

Thus: If Evol exists, its smoothness is automatic!

General references: Milnor '84, Kriegl–Michor '97, Neeb '06, G. '15, G. '16, G. '20, Nikitin '21, Hanusch '22, G.-Hilgert '23

$\S9$ The topology on the space of real-analytic vector fields

Let *M* be a compact real-analytic manifold. Then the vector space $\Gamma^{\omega}(TM)$ of real-analytic vector fields can be made a locally convex space and is a so-called **Silva space** (cf. Floret '71 for this notion):

A locally convex space is called a **Silva space** if it is a locally convex direct limit

$$E = \bigcup_{n \in \mathbb{N}} E_n = \lim_{\to} E_n$$

for an ascending sequence $E_1 \subseteq E_2 \subseteq \cdots$ of Banach spaces, such that all inclusion maps $E_n \to E_{n+1}$ are compact operators.

Use seminorms $p \colon E \to [0,\infty[$ with all $p|_{E_n}$ continuous to topologize E

Analysis on Silva spaces works well: A map $f: E \to F$ is C^k if and only if $f|_{E_n}$ is C^k for each $n \in \mathbb{N}$ (see, e.g., G.-Neeb '23).

To prove L^1 -regularity, one has to prove smoothness of a map on

$$L^{1}([0,1], E) = \lim_{n \to \infty} L^{1}([0,1], E_{n})$$
 (see Florencio et al. '95)

which is not a Silva space; much harder!

Example: The unit circle $\mathbb{S}_1 \subseteq \mathbb{C}$

We describe Banach spaces E_n with $\Gamma^{\omega}(T\mathbb{S}_1) = \lim_{n \to \infty} E_n$.

As a real submanifold of \mathbb{C}^{\times} with $\mathit{T}(\mathbb{C}^{\times})=\mathbb{C}^{\times}\times\mathbb{C},$ we have

 $T_z(\mathbb{S}_1) = \mathbb{R} \ iz \quad \text{for all } z \in \mathbb{S}_1.$

Pick $r_1 > r_2 > \cdots$ with $\lim_{n\to\infty} r_n = 1$ and consider

$$U_n := \big\{ z \in \mathbb{C} \colon \frac{1}{r_n} < |z| < r_n \big\}.$$

Let $(\operatorname{Hol}_b(U_n), \|\cdot\|_{\infty})$ be the Banach space of bounded holomorphic functions on U_n and

$$E_n := \{f \in \operatorname{Hol}_b(U_n) \colon (\forall z \in \mathbb{S}_1) \ f(z) \in \mathbb{R}iz\}$$

be the closed real vector subspace of those functions which restrict to a vector field on \mathbb{S}_1 . The identity theorem implies that the real linear restriction maps $\mathbf{E} \to \mathbf{\Gamma}^{\omega}(\mathbf{T} \mathbb{S}_1) = \mathbf{f} \oplus \mathbf{f}^{\dagger}$

$$E_n \to \Gamma^{\omega}(T\mathbb{S}_1), \quad f \mapsto f|_{\mathbb{S}_1}$$

are injective; identifying E_n with its image, get $\Gamma^{\omega}(T\mathbb{S}_1) = \bigcup_{n \in \mathbb{N}} E_n$ with $E_1 \subseteq E_2 \subseteq \cdots$ and we give it the locally convex direct limit topology. Pick $r'_n \in]r_{n+1}, r_n[$ and define

$$U'_n := \{ z \in \mathbb{C} \colon 1/r'_n < |z| < r'_n \};$$

endow the closed vector subspace

$$E'_n := \{f \in \operatorname{Hol}(U'_n) \colon (\forall z \in \mathbb{S}_1) \ f(z) \in \mathbb{R}iz\}$$

of $\operatorname{Hol}(U'_n)_{c.o.} \subseteq C(U'_n, \mathbb{C})_{c.o.}$ with the compact-open topology. The restriction map $E_n \to E_{n+1}$ is the composition of the continuous linear restriction maps

$$E_n \to E'_n \to E_{n+1}$$

the first of which takes the unit ball to a relatively compact set by Ascoli's Theorem. As a consequence, the composition is a compact operator.

Appendix A: Details concerning real-analytic vector fields*

Let M be an *m*-dimensional compact real-analytic manifold. We want to turn the space $\Gamma^{\omega}(TM)$ of real-analytic vector fields into a locally convex space.

There exists a complex *m*-dimensional complex manifold \widetilde{M} such that $M \subseteq \widetilde{M}$ and $T_p\widetilde{M} = T_pM \oplus iT_pM$ for each $p \in M$. This complexification \widetilde{M} can be chosen such that

$$M = \{z \in \widetilde{M} \colon \tau(z) = z\}$$

for an antiholomorphic involution $\tau \colon \widetilde{M} \to \widetilde{M}$ (Bruhat–Whitney '59).

Example. For the complex unit circle $M = S_1$, the punctured plane $\widetilde{M} = \mathbb{C} \setminus \{0\}$ is a complexification and

$$z\mapsto 1/\overline{z}$$

an antiholomorphic involution.

We pick a basis $U_1 \supseteq U_2 \supseteq \cdots$ of open neighbourhoods of M in \widetilde{M} such that $U_j = \tau(U_j)$.

We endow the space

$$\Gamma^{\mathcal{O}}(TU_j) \subseteq C(U_j, TU_j)$$

of holomorphic vector fields with the compact-open topology and its real vector subspace

$$\Gamma^{\mathcal{O}}(TU_j)_{\mathbb{R}} := \{ X \in \Gamma^{\mathcal{O}}(TU_j) \colon T\tau \circ X \circ \tau = X \}$$

with the induced topology. Then

$$\Gamma^{\mathcal{O}}(\mathcal{T}U_j) = \Gamma^{\mathcal{O}}(\mathcal{T}U_j)_{\mathbb{R}} \oplus i\Gamma^{\mathcal{O}}(\mathcal{T}U_j)_{\mathbb{R}}.$$

The maps

$$\Gamma^{\mathcal{O}}(TU_j)
ightarrow \Gamma^{\omega}(TM), \quad X \mapsto X|_M$$

being injective (if each component of U_j meets M), get vector subspaces

$$\Gamma^{\mathcal{O}}(\mathit{TU}_1)_{\mathbb{R}} \subseteq \Gamma^{\mathcal{O}}(\mathit{TU}_2)_{\mathbb{R}} \subseteq \cdots$$

of $\Gamma^{\omega}(TM)$. Give $\Gamma^{\omega}(TM)$ the topology of the locally convex direct limit $\lim \Gamma^{\mathcal{O}}(TU_j)_{\mathbb{R}}$.

Appendix B: Topology on the space of C^{∞} vector fields*

If M and N are C^k -manifolds modelled on locally convex spaces, give $C^k(M, N)$ the initial topology with respect to the maps $C^k(M, N) \rightarrow C(T^j M, T^j N)_{c.o.}, \quad f \mapsto T^j f \quad \text{for } j \in \mathbb{N}_0 \text{ with } j \leq k,$ where $T^j M := T(T^{j-1}M)$ are the iterated tangent bundles and $T^j f := T(T^{j-1}f)$ "compact-open C^k -topology"

Facts (see, e.g., Neeb '06 or G.–Neeb '23)

(a) If E is a locally convex space, then also $C^{k}(M, E)$.

(b) Let $k = \infty$ and π_{TM} : $TM \to M$, $T_xM \ni v \mapsto x$ be the bundle projection. The induced topology turns the vector space

$$\Gamma^{\infty}(TM) = \{ X \in C^{\infty}(M, TM) \colon \pi_{TM} \circ X = \mathrm{id}_M \}$$

of smooth vector fields into a locally convex space.

If M is σ -compact and finite-dimensional, then $\Gamma^{\infty}(TM)$ is a Fréchet space.

Bibliography

- Bastiani, A., Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math. **13** (1964), 1–114.
- Bruhat, F. and H. Whitney, *Quelques propriétés fondamentales des ensembles analytiques-réels*, Comment. Math. Helv. **33** (1959), 132–160.
- Dahmen, R. and A. Schmeding, *The Lie group of real analytic diffeomorphisms is not real analytic*, Stud. Math. **229** (2015), 141–172.
- Florencio, M., F. Mayoral, and P. J. Paúl, Spaces of vector-valued integrable functions and localization of bounded subsets, Math. Nachr. 174 (1995), 89–111.
- Floret, K., Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), 155–195.
- Glöckner, H., *Infinite-dimensional Lie groups without completeness restrictions*, pp. 43–59 in: Strasburger, A. et al. (eds.), "Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups," Banach Center Publications **55**, Warsaw, 2002a.
- Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002b), 347–409.
- Glöckner, H., Algebras whose groups of units are Lie groups, Stud. Math. 153 (2002c), 147–177.

- Glöckner, H., *Fundamentals of direct limit Lie theory*, Compos. Math. **141** (2005), 1551–1577.
- Glöckner, H., *Measurable regularity properties of infinite-dimensional Lie groups*, preprint, 2015 (see arXiv:1601.02568)
- Glöckner, H., *Regularity properties of infinite-dimensional Lie groups and semiregularity*, preprint, 2016 (see arXiv:1208.0715)
- Glöckner, H., *Diffeomorphism groups of real analytic manifolds are* L¹-regular, preprint, 2020 (see arXiv:2007.15611)
- Glöckner, H. and J. Hilgert, Aspects of control theory on infinite-dimensional Lie groups and G-manifolds, J. Differ. Equations 343 (2023), 186-232.
- Glöckner, H. and K.-H. Neeb, "Infinite-Dimensional Lie Groups," book in preparation, 2023.
- Grauert, H., On Levi's problem and the imbedding of real-analytic manifolds, Ann. Math. **68** (1958), 460–472.
- Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc. 7 (1982), 65–222.
- Hanusch, M., Differentiability of the evolution map and Mackey continuity, Forum Math. **31** (2019), 1139–1177.
- Hanusch, M., The strong Trotter property for locally μ-convex Lie groups, J. Lie Theory 30 (2020), 25–32.

- Hanusch, M., *Regularity of Lie groups*, Commun. Anal. Geom. **30** (2022), 53-152.
- Jafarpour, S. and A. D. Lewis, *Time-varying vector fields and their flows*, Springer, Cham, 2014.
- Keller, H. H., "Differential Calculus in Locally Convex Spaces," Springer, Berlin, 1974.
- Klose, D. and F. Schuricht, Parameter dependence for a class of ordinary differential equations with measurable right-hand side, Math. Nachr. 284 (2011), 507–517.
- Kriegl, A. and P.W. Michor, "The Convenient Setting of Global Analysis," AMS, Providence, 1997.
- Leslie, J. A., On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc. **274** (1982), 651–669.
- Leslie, J. A., A Lie group structure for the group of analytic diffeomorphisms, Boll. Un. Mat. Ital. A 2 (1983), 29–37.
- Lewis, A. D., Integrable and absolutely continuous vector-valued functions, Rocky Mountain J. Math. **52** (2022), 925–947.
- Michael, E. A., Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952), 79 pp.
- Michor, P. W., "Manifolds of Differentiable Mappings", Shiva Publ., Orpington, 1980.

- Milnor, J., *Remarks on infinite-dimensional Lie groups*, pp. 1007–1057 in: B. S. DeWitt and R. Stora (eds.), "Relativité, groupes et topologie II," North-Holland, Amsterdam, 1984.
- Neeb, K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291–468.
- Neeb, K.-H. and H. Salmasian, Differentiable vectors and unitary representations of Fréchet–Lie supergroups, Math. Z. 275 (2013), 419–451.
- Nikitin, N., "Regularity Properties of Infinite-Dimensional Lie Groups and Exponential Laws," Doctoral Thesis, Paderborn, 2021 (see nbn-resolving.de/urn:nbn:de:hbz:466:2-39133).
- Omori, H., "Infinite-Dimensional Lie Groups," Amer. Math. Soc., 1997.
- Schechter, E., "Handbook of Analysis and its Foundations," Academic Press, San Diego, 1997.
- Schmeding, A., *The diffeomorphism group of a non-compact orbifold*, Diss. Math. **507** (2015), 179 pp.
- Schmeding, A., "An Introduction to Infinite-Dimensional Differential Geometry," Cambridge University Press, 2023.

э

- Schuricht, F. and H. von der Mosel, Ordinary differential equations with measurable right-hand side and parameters in metric spaces, Preprint 676, SFB 256, Uni-Bonn, 2000 (cf. http://www.instmath.rwthaachen.de/ heiko/veroeffentlichungen/ode.dvi).
- Thomas, E., *The Lebesgue-Nikodym theorem for vector valued Radon measures*, Mem. Amer. Math. Soc. **139** (1974), 101 pp.
- Waelbroeck, L., Les algèbres à inverse continu, C. R. Acad. Sci. Paris 238 (1954), 640–641.

・ 同 ト ・ ヨ ト ・ ヨ ト