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Overview

Flows for complete time-dependent vector fields give rise to curves
in diffeomorphism groups.

How do the diffeomorphisms depend on the vector field?

Answer will involve

∞-dim calculus and ∞-dim Lie groups

Lie groups Diff(M) and Diffω(M) of smooth and real-analytic
diffeomorphisms, respectively, for a compact manifold M

Answers also for ODEs with right-hand sides merely L1 in time
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§1 Infinite-dimensional calculus and Lie groups

E , F locally convex topological vector spaces

U ⊆ E open

Definition (Andrée Bastiani ’64)

A map f : U → F is called C 1 if it is continuous, the directional
derivative

df (x , y) := lim
t→0

f (x + ty)− f (x)

t

exists for each x ∈ U and y ∈ E , and df : U × E → F is
continuous.

If f is C 1 and df is C k , say that f is a C k+1-map.

Call f a C∞-map (or “smooth”) if f is C k for all finite k .

Then f ′(x) := df (x , ·) : E → F is continuous linear.

Chain Rule: Compositions of composable C k -maps are C k .
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Remark. In the special case of normed spaces E and F , let us
compare with k times continuously Fréchet differentiable mappings
(FC k -maps). Then

C k+1 ⇒ FC k ⇒ C k .

Notably, same smooth maps, FC∞ = C∞.

Returning to general locally convex spaces:

Chain Rule:  can define smooth manifolds and Lie groups
modeled on a locally convex space, as expected.
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Smooth manifold modeled on locally convex space E :

Hausdorff topological space M with maximal atlas of local
parametrizations (homeomorphisms from open subsets of E onto
open subsets of M) which are C∞-compatible

Lie group modeled on E :

group G with smooth manifold structure modeled on E turning
group operations

G × G → G , (x , y) 7→ xy

G → G , x 7→ x−1

into smooth maps.

Remark. The main point of a Lie group structure is to have a local
parametrization φ : V → U

from an open subset V ⊆ E onto an open e-neighbourhood
U ⊆ G . Then the translates

gφ : V → gU, x 7→ gφ(x)

provide an atlas of local parametrizations for G , for g ∈ G .
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g := L(G ) := TeG Lie algebra of G

Main classes of examples:

Linear Lie groups like A× for a Banach algebra A and its Lie
subgroups (or other topological algebras)

Mapping groups like C k(M,G ) for G a Lie group, M a
compact smooth manifold

Diffeomorphism groups like the Lie group Diff(M) of all
C∞-diffeomorphisms ψ : M → M

Direct limit groups: Ascending unions
⋃

n∈N Gn of

finite-dimensional Lie groups G1 ⊆ G2 ⊆ · · · , e.g.

GL∞(R) :=
⋃

n∈N GLn(R), A =̂
( A 0

0 1

)
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General references for §1

Infinite-dimensional calculus, manifolds and Lie groups:

Hamilton ’82, Milnor ’84, G. ’02a, Neeb ’06, G.–Neeb ’23,
Schmeding ’23; cf. also Keller ’74 (where Bastiani’s calculus is
called C k

c -theory)

Compare Kriegl-Michor ’97 for an inequivalent approach to infinite-dimensional

differential calculus, the so-called convenient differential calculus.

Lie group structure on the main classes of examples of
infinite-dimensional Lie groups:

See, for example, Michor ’80, Hamilton ’82, Milnor ’84,
Kriegl–Michor ’97, Omori ’97, G. ’02b, G. ’02c, G. ’05, Neeb ’06,
G.–Neeb ’23.
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§2 Mapping groups / path groups

If E is a locally convex space, give C k([0, 1],E ) the topology of
uniform convergence of all derivatives of order j ≤ k . It can be
defined using the seminorms

C k([0, 1],E )→ [0,∞[, f 7→ sup
t∈[0,1]

p(f (j)(t))

for j as before and continuous seminorms p : E → [0,∞[.

Path groups

Let k ∈ N0 ∪ {∞} and G be a Lie group G modelled on a locally
convex space E . Then C k([0, 1],G ) can be made a Lie group
modelled on C k([0, 1],E ).

Idea. Pick a local parametrization φ : V → U ⊆ G around e. Then
C k([0, 1],V ) is open in C k([0, 1],E ) and the map

C k([0, 1], φ) : C k([0, 1],V )→ C k([0, 1],U), f 7→ φ ◦ f
is a bijection which can be used as a local parametrization around
the neutral element t 7→ e (cf., e.g., Milnor ’84 or G. ’02b).
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§3 The diffeomorphism group of a compact C∞-manifold

Let M be a compact smooth manifold and Γ∞(TM) be the vector
space of smooth vector fields X : M → TM on M, with its natural
locally convex topology (see appendix).

Thus X (p) ∈ TpM for all p ∈ M.

Lie groups of smooth diffeomorphisms

The group Diff(M) of all C∞-diffeomorphisms ψ : M → M can be
made a Lie group modelled on Γ∞(TM).

Idea. Pick a Riemannian metric g on M and let expg : TM → M
be the Riemannian exponential map. For an open 0-neighbourhood
V ⊆ Γ∞(TM), the map

V → Diff(M), X 7→ expg ◦X

is a local parametrization around idM , when considered as a map
to its image (cf. Michor ’80, Hamilton ’82, Milnor ’84, Kriegl–Michor ’97).
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§4 Diffeomorphism groups of real-analytic manifolds

Let M be a compact real-analytic manifold (changes between local
parametrizations are locally given by convergent power series). Let
Γω(TM) be the locally convex space of real-analytic vector fields
X : M → TM on M (see end of talk).

Lie groups of real-analytic diffeomorphisms

The group Diffω(M) of all real-analytic diffeomorphisms
ψ : M → M can be made a Lie group modelled on Γω(TM).

Idea. Pick a real-analytic Riemannian metric g on M (which is
possible as M embeds in some Rn, see Grauert ’58). Let
expg : TM → M be the Riemannian exponential map. For an open
0-neighbourhood V ⊆ Γω(TM), the map

V → Diffω(M), X 7→ expg ◦X

is a local parametrization around idM , when considered as a map
to its image (cf. Kriegl–Michor ’97, Dahmen–Schmeding ’15, Leslie ’82–’83).

Helge Glöckner (Paderborn) Flows, diffeomorphism groups, and regularity



§5 Flows and parameter-dependence

We are interested in differential equations on an open subset
U ⊆ Rn with parameter in an open subset P ⊆ Rm. Let I := [0, 1]
and

f : I× U × P → Rn

be a C k -function with k ∈ N ∪ {∞}. For simplicity, assume
completeness: For all t0 ∈ I, y0 ∈ U, and p ∈ P, the inital value
problem

y ′(t) = f (t, y(t), p), y(t0) = y0

has a (necessarily unique) solution φt0,y0,p : I→ U. We get a
globally defined flow

Fl : I× I× U × P → U, (t, t0, y0, p) 7→ Flpt,t0
(y0) := φt0,y0,p(t) .

It is classical that Fl is C k . Since

Flpt0,t ◦Flpt,t0
= Flpt0,t0

= idU ,

the map Flpt,t0
: U → U is a C k -diffeomorphism for all t, t0 ∈ I.
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We mention that P may be replaced by an open subset of an
arbitrary locally convex space (G.-Neeb ’23).

For a compact C∞-manifold M, consider the differential equation

ẏ(t) = Xt(y(t))

on M with X ∈ C∞(I, Γ∞(TM)) as a parameter (a time-
dependent smooth vector field t 7→ Xt with smooth time
dependence). We deduce that the flow

Fl : I× I×M × C∞(I, Γ∞(M))→ M, (t, t0, y0,X ) 7→ FlXt,t0
(y0)

is smooth. Fixing t0 and using twice an exponential law like

C∞(U × V ,F ) ∼= C∞(U,C∞(V ,F )), f =̂ (x 7→ f (x , ·)),

one can reformulate smooth parameter-dependence as follows:

Theorem A. The following map is smooth:

C∞(I, Γ∞(TM))→ C∞(I,Diff(M)), X 7→ (t 7→ FlXt,t0
(·)) .

Similar formulations are possible in situations where smoothness of
Fl : I× I×M × P → M does not make sense.
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§6 Differential equations with measurable right-hand sides

If E is a Fréchet space, call f : [0, 1]→ E absolutely continuous if
there exists g ∈ L1([0, 1],E ) with

f (t) = f (0) +

∫ t

0
g(s) ds for all t ∈ [0, 1].

Thus g : [0, 1]→ E is Borel-measurable, g([0, 1]) is separable and
‖p ◦ g‖L1 <∞ for each continuous seminorm p on E .

For λ1-almost all t ∈ [0, 1], the derivative f ′(t) exists and equals
g(t) (see, e.g., G. ’15).

It therefore makes sense to consider absolutely continuous
solutions to differential equations

y ′(t) = f (t, y(t)),

requiring equality only λ1-almost everywhere (cf. also Schechter ’97 if

E is Banach). Likewise in manifolds:
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Definition

A function f : [0, 1]→ M to a Fréchet manifold is absolutely
continuous if it is absolutely continuous piecewise in local charts.

The space AC([0, 1],E ) of absolutely continuous functions is a
Fréchet space with seminorms

f 7→ ‖p ◦ f ‖∞ + ‖p ◦ f ′‖L1 .

Given a Fréchet–Lie group G , obtain a Fréchet–Lie group

AC([0, 1],G )

as in the case of C ([0, 1],G ) (see G. ’15).

Remark. Similar concepts are available for sequentially complete
locally convex spaces (see Thomas ’74, Florencio et al. ’95 and Nikitin ’21;

cf. also Lewis ’22).
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§7 Vector fields L1 in time

Let M be a compact smooth manifold.

Theorem B (G. ’15 and G. ’20)

Each X ∈ L1(I, Γ∞(TM)), t 7→ Xt yields a globally defined flow

I× I×M → M, (t, t0, y0) 7→ FlXt,t0
(y0)

for the differential equation

ẏ(t) = Xt(y(t))

on M, and FlXt,t0
(·) ∈ Diff(M) holds for all t, t0 ∈ I. For fixed t0,

the map I→ Diff(M), t 7→ FlXt,t0
(·) is absolutely continuous. For

t0 = 0, the following map is smooth

L1(I, Γ∞(TM))→ AC(I,Diff(M)), X 7→ (t 7→ FlXt,t0
(·)) .

G.’20: If M is a compact real-analytic manifold, can replace
Γ∞(TM) with Γω(TM) and Diff(M) with Diffω(M) (Theorem C).
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Complementary approach also for non-compact M, emphasizing
germs around a point: Jafarpour and Lewis ’14.

Compare also Schuricht–von der Mosel ’00 and Klose–Schuricht ’11.
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§8 Lie-theoretic background: regularity properties

Let G be a Lie group modeled on a locally convex space E , with
neutral element e; let g := TeG ∼= E be its Lie algebra.

For g ∈ G , consider the right translation ρg : G → G , x 7→ xg .
Passing to tangent maps, we get a smooth right action

TG × G → TG , (v , g) 7→ v .g := Tρg (v)

of G on TG . Let k ∈ N0 ∪ {∞}.

The Lie group G is called C k-semiregular if, for each
γ ∈ C k([0, 1], g), there exists a (necessarily unique) C 1-function
η : [0, 1]→ G such that

η̇(t) = γ(t).η(t) and η(0) = e.

Then η is C k+1 and we call Evol(γ) := η the (right) evolution of γ.

If G is C k -semiregular and Evol : C k([0, 1], g)→ C ([0, 1],G ) is
smooth, then G is called C k-regular (⇔ C∞ as map to C k+1([0, 1],G)).
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C k -regularity implies C `-regularity for all ` ≥ k .

Thus C∞-regularity (introduced by John Milnor in 1984 and
abbreviated “regularity”) is the weakest property.

Definition (G. ’15, Nikitin ’21)

For p ∈ [1,∞], say that a Lie group G modelled on a sequentially
complete locally convex space is Lp-regular if each γ ∈ Lp([0, 1], g)
has a right evolution Evol(γ) ∈ AC([0, 1],G ) and
Evol : Lp([0, 1], g)→ C ([0, 1],G ) is smooth (equivalently, as a map
to AC([0, 1],G )).

Then

L1-reg. ⇒ Lp-reg. ⇒ L∞-reg. ⇒ C 0-reg. ⇒ C k -reg. ⇒ regular

Theorem (Milnor ’84)

Let G and H be Lie groups and ψ : g→ h be a continuous Lie
algebra homomorphism. If G is 1-connected and H is regular, then
ψ = Teφ for a smooth group homomorphism φ : G → H.
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Every regular Lie group has a smooth exponential function,

expG : g→ G , v 7→ Evol(t 7→ v)(1);

i.e., expG ((t + s)v) = expG (tv) expG (sv) for all s, t ∈ R and
d
dt

∣∣∣
t=0

expG (tv) = v .

Theorem (cf. G. ’15)

If G is L∞-regular, then the Trotter product formula holds,
expG (x + y) = limn→∞(expG (x/n) expG (y/n))n.

Hanusch ’20: C 0-regularity suffices. Background: Hanusch ’22

Useful for representation theory (see, e.g., Neeb-Salmasian ’13)
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Examples. (a) All Banach–Lie groups are L1-regular (G. ’15).

(b) A× is L1-regular for each locally m-convex Fréchet algebra with
open unit group (G. ’15).

(c) For k ∈ N0, the Banach–Lie group C k(M,G ) is L1-regular for
each compact smooth manifold M and Banach–Lie group G , and
also the Fréchet–Lie group C∞(M,G ) = lim

←
C k(M,G ) (G. ’15).

(d) lim
→

Gn is L1-regular for all fin-dim Lie groups G1 ⊆ G2 ⊆ · · ·
(G. ’15; C 0-regularity G. ’05).

(e) Diff(M) is L1-regular for each compact smooth manifold M,
with Evol the map X 7→ (t 7→ FlXt,0(·)) from Theorem B. Likewise
for Diffc(M) if M is a paracompact, fin-dim C∞-mfd (G. ’15; C 0-reg.

Schmeding ’15; regularity for compact M Milnor ’84, Kriegl–Michor ’97).

(f) Diffω(M) is L1-regular for each compact real-analytic
manifold M (G. ’20; C 1-regularity Dahmen–Schmeding ’15).

Diffc(M) Lie group of C∞-diffeos f : M → M s.t. f (x) = x off a compact set;

modelled on the locally convex space Γ∞
c (TM) = lim

→
Γ∞
K (TM) of compactly

supported smooth vector fields (cf. Michor ’80).
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Helpful theoretical results available, for example:

Theorem (G. ’15 + G. ’20)

If Evol exists on a 0-neighbourhood in L1([0, 1], g) and is
continuous at 0, then G is L1-regular.

Theorem (Hanusch ’19)

If a Fréchet–Lie group G is C k -semiregular, then G is C k -regular.

Thus: If Evol exists, its smoothness is automatic!

General references: Milnor ’84, Kriegl–Michor ’97, Neeb ’06, G. ’15, G. ’16,

G. ’20, Nikitin ’21, Hanusch ’22, G.–Hilgert ’23
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§9 The topology on the space of real-analytic vector fields

Let M be a compact real-analytic manifold. Then the vector space
Γω(TM) of real-analytic vector fields can be made a locally convex
space and is a so-called Silva space (cf. Floret ’71 for this notion):

A locally convex space is called a Silva space if it is a locally
convex direct limit

E =
⋃
n∈N

En = lim
→

En

for an ascending sequence E1 ⊆ E2 ⊆ · · · of Banach spaces, such
that all inclusion maps En → En+1 are compact operators.

Use seminorms p : E → [0,∞[ with all p|En continuous to topologize E

Analysis on Silva spaces works well: A map f : E → F is C k if and
only if f |En is C k for each n ∈ N (see, e.g., G.-Neeb ’23).

To prove L1-regularity, one has to prove smoothness of a map on

L1([0, 1],E ) = lim
→

L1([0, 1],En) (see Florencio et al. ’95)

which is not a Silva space; much harder!
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Example: The unit circle S1 ⊆ C

We describe Banach spaces En with Γω(TS1) = lim
→

En.

As a real submanifold of C× with T (C×) = C× × C, we have

Tz(S1) = R iz for all z ∈ S1.

Pick r1 > r2 > · · · with limn→∞ rn = 1 and consider

Un :=
{
z ∈ C : 1

rn
< |z | < rn

}
.

Let (Holb(Un), ‖ · ‖∞) be the Banach space of bounded
holomorphic functions on Un and

En := {f ∈ Holb(Un) : (∀z ∈ S1) f (z) ∈ Riz}
be the closed real vector subspace of those functions which restrict
to a vector field on S1. The identity theorem implies that the real
linear restriction maps

En → Γω(TS1), f 7→ f |S1

are injective; identifying En with its image, get
Γω(TS1) =

⋃
n∈N En with E1 ⊆ E2 ⊆ · · · and we give it the locally

convex direct limit topology.
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Pick r ′n ∈ ]rn+1, rn[ and define

U ′n := {z ∈ C : 1/r ′n < |z | < r ′n};

endow the closed vector subspace

E ′n := {f ∈ Hol(U ′n) : (∀z ∈ S1) f (z) ∈ Riz}

of Hol(U ′n)c.o. ⊆ C (U ′n,C)c.o. with the compact-open topology.
The restriction map En → En+1 is the composition of the
continuous linear restriction maps

En → E ′n → En+1

the first of which takes the unit ball to a relatively compact set by
Ascoli’s Theorem. As a consequence, the composition is a compact
operator.
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Appendix A: Details concerning real-analytic vector fields*

Let M be an m-dimensional compact real-analytic manifold. We
want to turn the space Γω(TM) of real-analytic vector fields into a
locally convex space.

There exists a complex m-dimensional complex manifold M̃ such
that M ⊆ M̃ and TpM̃ = TpM ⊕ iTpM for each p ∈ M. This

complexification M̃ can be chosen such that

M = {z ∈ M̃ : τ(z) = z}

for an antiholomorphic involution τ : M̃ → M̃ (Bruhat–Whitney ’59).

Example. For the complex unit circle M = S1, the punctured
plane M̃ = C \ {0} is a complexification and

z 7→ 1/z

an antiholomorphic involution.
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We pick a basis U1 ⊇ U2 ⊇ · · · of open neighbourhoods of M in
M̃ such that Uj = τ(Uj).

We endow the space
ΓO(TUj) ⊆ C (Uj ,TUj)

of holomorphic vector fields with the compact-open topology and
its real vector subspace

ΓO(TUj)R := {X ∈ ΓO(TUj) : T τ ◦ X ◦ τ = X}
with the induced topology. Then

ΓO(TUj) = ΓO(TUj)R ⊕ iΓO(TUj)R.

The maps
ΓO(TUj)→ Γω(TM), X 7→ X |M

being injective (if each component of Uj meets M), get vector
subspaces

ΓO(TU1)R ⊆ ΓO(TU2)R ⊆ · · ·
of Γω(TM). Give Γω(TM) the topology of the locally convex direct
limit lim

→
ΓO(TUj)R.
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Appendix B: Topology on the space of C∞ vector fields*

If M and N are C k -manifolds modelled on locally convex spaces,
give C k(M,N) the initial topology with respect to the maps

C k(M,N)→ C (T jM,T jN)c.o., f 7→ T j f for j ∈ N0 with j ≤ k,

where T jM := T (T j−1M) are the iterated tangent bundles and
T j f := T (T j−1f ) “compact-open C k -topology”

Facts (see, e.g., Neeb ’06 or G.–Neeb ’23)

(a) If E is a locally convex space, then also C k(M,E ).

(b) Let k =∞ and πTM : TM → M, TxM 3 v 7→ x be the bundle
projection. The induced topology turns the vector space

Γ∞(TM) = {X ∈ C∞(M,TM) : πTM ◦ X = idM}

of smooth vector fields into a locally convex space.

If M is σ-compact and finite-dimensional, then Γ∞(TM) is a
Fréchet space.
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Glöckner, H. and J. Hilgert, Aspects of control theory on
infinite-dimensional Lie groups and G -manifolds, J. Differ. Equations 343
(2023), 186-232.
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Helge Glöckner (Paderborn) Flows, diffeomorphism groups, and regularity



Milnor, J., Remarks on infinite-dimensional Lie groups, pp. 1007–1057 in:
B. S. DeWitt and R. Stora (eds.), “Relativité, groupes et topologie II,”
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