Flows, parameter dependence, and diffeomorphism groups

Helge Glöckner (Paderborn)

September 1, 2021

Flows for complete time-dependent vector fields give rise to curves in diffeomorphism groups.

How do the diffeomorphisms depend on the vector field?

- differential calculus in locally convex spaces
- examples of flows and diffeomorphism groups
- evolution equations on Lie groups (regularity)
- differential equations on G-manifolds

$\S1$ Infinite-dimensional calculus

- *E*, *F* locally convex topological vector spaces
- $U \subseteq E$ open
- $k \in \mathbb{N}_0 \cup \{\infty\}$

Definition (Andrée Bastiani, 1964)

A map $f: U \rightarrow F$ is called C^k if it is continuous, the iterated directional derivatives

$$d^j f(x, y_1, \ldots, y_j) := (D_{y_j} \cdots D_{y_1} f)(x)$$

exists at $x \in U$ for all $j \in \mathbb{N}$ with $j \leq k$ and $y_1, \ldots, y_j \in E$, and $d^j f \colon U \times E^j \to F$ is continuous.

 C^{∞} -maps are also called **smooth**.

Chain Rule $\rightsquigarrow\, {\rm can}$ define smooth manifolds and Lie groups modeled on a locally convex space

Smooth manifold modeled on locally convex space *E*:

Hausdorff topological space M with maximal atlas of local parametrizations (homeomorphisms from open subsets of E onto open subsets of M) which are C^{∞} -compatible

Lie group modeled on E:

group G with smooth manifold structure modeled on E turning group operations into smooth maps

 $\mathfrak{g} := L(G) := T_e G$ Lie algebra of G

Every C^1 -map $f: E \supseteq U \to F$ is locally Lipschitz:

For each continuous seminorm q on F and $x_0 \in U$, there exists a continuous seminorm p on E such that

$$q(f(y) - f(x)) \le p(y - x)$$

for all x, y in some x_0 -neighbourhood U_q in U.

General references: Milnor 1984, G. 2002, Neeb 2006, G/Neeb 2021

$\S2$ The diffeomorphism group of a compact convex set

$$\begin{split} & \mathcal{K} \subseteq \mathbb{R}^n \qquad \text{compact, convex subset with dense interior} \\ & \text{e.g. } [0,1] \subseteq \mathbb{R}, \ [0,1]^2 \subseteq \mathbb{R}^2 \text{, closed disc in } \mathbb{R}^2 \text{,} \\ & \text{closed ball in } \mathbb{R}^3 \end{split}$$

 $C^{\infty}(K, \mathbb{R}^n)$ space of all $f: K \to \mathbb{R}^n$ having all partial derivatives on K° with continuous extensions to K

 $C^{\infty}_{\partial K}(K,\mathbb{R}^n)$ vector subspace of all f such that $f|_{\partial K}=0$

Locally convex spaces with seminorms $\|\partial^{|\alpha|} f/\partial x^{\alpha}\|_{\infty}$

$$\begin{split} \mathsf{Diff}_{\partial K}(K) & \text{set of all } C^\infty\text{-diffeomorphisms } f \colon K \to K \text{ such that} \\ f(x) &= x \text{ for all } x \in \partial K \end{split}$$

Theorem (G./Neeb 2017)

 $\operatorname{Diff}_{\partial K}(K)$ is a group and $\Omega := \{f - \operatorname{id}_{K} : f \in \operatorname{Diff}_{\partial K}(K)\}$ is an open subset of $C^{\infty}_{\partial K}(K, \mathbb{R}^{n})$. Make $\operatorname{Diff}_{\partial K}(K)$ a C^{∞} -manifold with

$$\Omega \to \mathsf{Diff}_{\partial K}(K), \quad f \mapsto \mathsf{id}_K + f$$

as a global parametrization. Then $\text{Diff}_{\partial K}(K)$ is a Lie group.

Consider a time-dependent smooth vector field on K which vanishes on ∂K , with C^k -dependence on time, $k \in \mathbb{N}_0 \cup \{\infty\}$.

That is, we consider a C^k -map

$$X: [0,1] \to C^{\infty}_{\partial K}(K,\mathbb{R}^n), \ t \mapsto X_t.$$

For all $t_0 \in [0,1]$ and $y_0 \in K$, the initial value problem

$$y'(t) = X_t(y(t)), \quad y(t_0) = y_0$$

on K has a unique solution γ_{t_0,y_0} : $[0,1] \rightarrow K$; flow

$$\mathsf{Fl}^X : [0,1] \times [0,1] \times \mathcal{K} \to \mathcal{K}, \ (t,t_0,y_0) \mapsto \mathsf{Fl}_{t,t_0}(y_0) := \gamma_{t_0,y_0}(t).$$

For all $t, t_0 \in [0, 1]$, consider $\mathsf{Fl}_{t, t_0} \colon \mathcal{K} \to \mathcal{K}$, $y_0 \mapsto \mathsf{Fl}_{t, t_0}(y_0)$.

Theorem (G/Neeb 2017)

For each $X \in C^k([0,1], C^{\infty}_{\partial K}(K, \mathbb{R}^n))$, we have $\mathsf{Fl}^X_{t,t_0} \in \mathsf{Diff}_{\partial K}(K)$ for all $t, t_0 \in [0,1]$. The map

$$\mathsf{Evol}(X)\colon [0,1] o \mathsf{Diff}_{\partial K}(K), \ t\mapsto \mathsf{Fl}^X_{t,t_0}$$

is C^{k+1} and the following map is smooth:

 $\mathsf{Evol}\colon \mathit{C}^k([0,1],\mathit{C}^\infty_{\partial \mathit{K}}(\mathit{K},\mathbb{R}^n))\to \mathit{C}^{k+1}([0,1],\mathit{C}^\infty(\mathit{K},\mathbb{R}^n)).$

In particular,

$$\mathsf{Evol}\colon C([0,1], C^{\infty}_{\partial K}(K, \mathbb{R}^n)) \to C^1([0,1], C^{\infty}(K, \mathbb{R}^n))$$

is smooth.

Now consider a time-dependent vector field $X : [0,1] \to C^{\infty}_{\partial K}(K, \mathbb{R}^n)$ which is **piecewise continuous** in time.

Thus, there exists a subdivision $0 = t_0 < \cdots < t_m = 1$ such that $X|_{]t_i, t_{i+1}[}$ has a continuous extension

$$X_j: [t_j, t_{j+1}] \to C^{\infty}_{\partial K}(K, \mathbb{R}^n).$$

For example, X may be **piecewise constant** (an $C^{\infty}_{\partial K}(K, \mathbb{R}^n)$ -valued staircase function).

Flow for $t_0 := 0$: $Fl_{t,0}^X = Fl_{t,t_j}^{X_j} \circ Fl_{t_j,t_{j-1}}^{X_{j-1}} \circ \cdots \circ Fl_{t_1,t_0}^{X_0} \in \text{Diff}_{\partial K}(K) \quad \text{if } t \in [t_j, t_{j+1}].$ Then the following map is piecewise C^1 : $Evol(X): [0,1] \to \text{Diff}_{\partial K}(K), \ t \mapsto Fl_{t_0}^X.$

Helge Glöckner (Paderborn)

Flows, parameter dependence, and diffeomorphism groups

Identify piecewise continuous X and Y if X(t) = Y(t) for all but finitely many $t \in [0, 1]$; get locally convex space

$$C_{\mathsf{pw}}([0,1], C^{\infty}_{\partial K}(K, \mathbb{R}^n))$$

with seminorms $||q \circ X||_{L^1}$, for q in set of continuous seminorms on $C^{\infty}_{\partial K}(K, \mathbb{R}^n)$. Lie theoretic facts imply:

Evol: $C_{pw}([0,1], C^{\infty}_{\partial K}(K, \mathbb{R}^n)) \to AC([0,1], C^{\infty}(K, \mathbb{R}^n))$ is a smooth map to the Fréchet space of absolutely continuous $C^{\infty}(K, \mathbb{R}^n)$ -valued functions.

Notably Evol is continuous (and locally Lipschitz). Thus:

If $X \in C([0,1], C^{\infty}_{\partial K}(K, \mathbb{R}^n))$ and $(X_n)_{n \in \mathbb{N}}$ is a sequence of piecewise constant vector fields $X_n \colon [0,1] \to C^{\infty}_{\partial K}(K, \mathbb{R}^n)$ such that $X_n \to X$ in the L^1 -topology, then $\text{Evol}(X_n) \to \text{Evol}(X)$ uniformly

and even in AC([0, 1], $C^{\infty}(K, \mathbb{R}^n)$).

< ロ > < 同 > < 三 > < 三 >

If *E* is a Fréchet space, call $f : [0,1] \to E$ absolutely continuous if there exists $g \in L^1([0,1], E)$ (a Bochner-integrable function) with

$$f(t)=f(0)+\int_0^t g(s)\,ds$$
 for all $t\in[0,1].$

For λ_1 -almost all $t \in [0, 1]$, the derivative f'(t) exists and equals g(t).

The absolutely continuous *E*-valued functions form a vector space AC([0, 1], E). It is a Fréchet space with respect to the seminorms

$$\|f\|_{\mathsf{AC},q} := \max\{\|q \circ f\|_{\infty}, \|q \circ f'\|_{L^1}\},\$$

for q in the set of continuous seminorms on E.

§3 Lie-theoretic background

Let G be a Lie group modeled on a locally convex space E, with neutral element e; let $\mathfrak{g} := T_e G \cong E$ be its Lie algebra. For $g \in G$, consider the right translation $\rho_g \colon G \to G$, $x \mapsto xg$. Passing to tangent maps, we get a smooth right action

$$TG \times G \rightarrow TG$$
, $(v,g) \mapsto v.g := T\rho_g(v)$

of G on TG. Let $k \in \mathbb{N}_0 \cup \{\infty\}$.

The Lie group G is called C^k -semiregular if, for each $\gamma \in C^k([0,1],\mathfrak{g})$, there exists a (necessarily unique) C^1 -function $\eta \colon [0,1] \to G$ such that

$$\dot{\eta}(t) = \gamma(t).\eta(t)$$
 and $\eta(0) = e$.

Then η is C^{k+1} and we call $Evol(\gamma) := \eta$ the (right) evolution of γ .

If G is C^k -semiregular and Evol: $C^k([0,1],\mathfrak{g}) \to C^{k+1}([0,1],G)$ is smooth, then G is called **C^k-regular**.

 C^k -regularity implies C^{ℓ} -regularity for all $\ell \geq k$.

Thus C^{∞} -regularity (introduced by John Milnor in 1984 and abbreviated "regularity") is the weakest property. We used:

For each $k \in \mathbb{N}_0 \cup \{\infty\}$ and Lie group *G* modeled on *E*, the group $C^k([0,1], G)$ can be made a Lie group modeled on $C^k([0,1], E)$.

Let $\phi \colon E \subseteq V \to U \subseteq G$ be a local parametrization with $e \in U$; then $C^k([0,1], V)$ is open in $C^k([0,1], E)$ and the bijection

 $\phi_*\colon C^k([0,1],V)\to C^k([0,1],U)\subseteq C^k([0,1],G),\ f\mapsto \phi\circ f,$

together with it right translates $f \mapsto \phi_*(f)g$ with $g \in C^k([0,1], G)$, can be used as a C^{∞} -atlas of local parametrizations for $C^k([0,1], G)$.

Likewise, AC([0, 1], G) is a Lie group modeled on AC([0, 1], E) if G is modeled on a sequentially complete locally convex space E

Say that G is L^1 -regular if each $\gamma \in L^1([0,1],\mathfrak{g})$ has a right evolution $\operatorname{Evol}(\gamma) \in \operatorname{AC}([0,1],G)$ and $\operatorname{Evol}: L^1([0,1],\mathfrak{g}) \to \operatorname{AC}([0,1],G)$ is smooth.

 L^1 -regularity implies C^0 -regularity.

Theorem (Milnor 1984)

Let G and H be Lie groups and $\psi: \mathfrak{g} \to \mathfrak{h}$ be a continuous Lie algebra homomorphism. If G is 1-connected and H is regular, then $\psi = T_e \phi$ for a smooth group homomorphism $\phi: G \to H$.

Every regular Lie group has an exponential function,

$$\exp_G : \mathfrak{g} \to G, \quad v \mapsto \mathsf{Evol}(t \mapsto v)(1).$$

Theorem (G. 2015)

If G is L^1 -regular, then the Trotter product formula holds, $\exp_G(x+y) = \lim_{n\to\infty} (\exp_G(x/n) \exp_G(y/n))^n$.

Hanusch 2020: C⁰-regularity suffices. Background: Hanusch 2017

Compare Theorem 7.6 in G/Hilgert 2020 and Theorem 1.6 in G.2020 for the following fact; cf. also earlier work by Hanusch.

Theorem

If G is C^0 -regular, then Evol: $C_{pw}([0,1],\mathfrak{g}) \to AC([0,1],G)$ is smooth with respect to the L^1 -topology.

Examples

(a) $\text{Diff}_{\partial K}(K)$ is C^0 -regular (G/Neeb 2017) with Evol as in §2

(b) $\text{Diff}_{c}(M)$ (as in Michor 1980) is L^{1} -regular for each paracompact, finite-dimensional smooth manifold M (G. 2015) (C^{0} -regularity Schmeding 2015)

(c) $\text{Diff}_{\omega}(M)$ (as in Kriegl-Michor '97 or Dahmen-Schmeding '15) is L^1 -regular for each compact real-analytic manifold M (G. 2020)

 $\operatorname{Diff}_{c}(M)$ Lie group of C^{∞} -diffeos $f: M \to M$ s.t. f(x) = x off a compact set $\operatorname{Diff}_{\omega}(M)$ Lie group of all real-analytic diffeomorphisms of M

General references: Milnor 1984, Kriegl-Michor 1997, Neeb 2006, G. 2015, G. 2016, G. 2020, Nikitin 2021

Helge Glöckner (Paderborn)

Flows, parameter dependence, and diffeomorphism groups

3

$\S4$ Differential equations on *G*-manifolds

If G is a Lie group, M a smooth manifold (both modeled on locally convex spaces) and $G \times M \to M$, $(g, p) \mapsto g.p$ a smooth left action, then each $v \in \mathfrak{g}$ yields a **fundamental vector field**

$$v_{\sharp} \colon M \to TM, \quad v_{\sharp}(p) := (d/dt) \big|_{t=0} \exp_G(tv).p$$

Theorem (G/Hilgert 2020)

If $\gamma : [0,1] \to \mathfrak{g}$ admits a right evolution $\operatorname{Evol}(\gamma) : [0,1] \to G$, then the ODE $\dot{y}(t) = (\gamma(t))_{\sharp}(y(t))$

on *M* satisfies local existence and uniqueness of solutions with flow $[0,1] \times [0,1] \times M \to M$, $(t, t_0, y_0) \mapsto \text{Evol}(\gamma)(t) \text{Evol}(\gamma)(t_0)^{-1}.y_0$.

Let $y_0 \in M$, $p \in M$ and $U \subseteq M$ be a *p*-neighborhood. Fix T > 0. Call *U* reachable for controls in a subset $S \subseteq L^1([0, T], \mathfrak{g})$ if, for some $\gamma \in S$, we have $\eta(T) \in U$ for the solution $\eta: [0, T] \to M$ to

$$\dot{\eta}(t) = \gamma(t)_{\sharp}(\eta(t)), \quad \eta(t_0) = y_0.$$

Theorem (G/Hilgert 2020)

- If G is C^0 -regular, then the following are equivalent:
- (a) U can be reached using continuous controls;
- (b) U can be reached using piecewise continuous controls;
- (c) U can be reached using piecewise constant controls.
- If G is L^1 -regular, then also the following condition is equivalent:
- (d) U can be reached using L^1 -controls.
- If $K \subseteq \mathfrak{g}$ is a compact convex set, then (a)–(c) (resp. (a)–(d)) remain valid for functions with values in K, and equivalenty
- (e) U can be reached using a piecewise constant control function with values in the set ex(K) of extreme points of K ("bang-bang-principle").

・ 同 ト ・ ヨ ト ・ ヨ ト

Bibliography

- Bastiani, A., Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math. **13** (1964), 1–114.
- Dahmen, R. and A. Schmeding, The Lie group of real analytic diffeomorphisms is not real analytic, Stud. Math. 229 (2015), 141–172.
- Glöckner, H., *Infinite-dimensional Lie groups without completeness restrictions*, pp. 43–59 in: Strasburger, A. et al. (eds.), "Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups," Banach Center Publications **55**, Warsaw, 2002.
- Glöckner, H., *Measurable regularity properties of infinite-dimensional Lie groups*, preprint, 2015 (see arXiv:1601.02568)
- Glöckner, H., Regularity properties of infinite-dimensional Lie groups and semiregularity, preprint, 2016 (see arXiv:1208.0715)
- Glöckner, H., *Diffeomorphism groups of real analytic manifolds are* L^1 -regular, preprint, 2020 (see arXiv:2007.15611)
- Glöckner, H. and J. Hilgert, Aspects of control theory on infinite-dimensional Lie groups and G-manifolds, preprint, 2020 (see arXiv:2007.11277)
- Glöckner, H. and K.-H. Neeb, "Infinite-Dimensional Lie Groups," book in preparation, 2021.

- Hanusch, M., The strong Trotter property for locally μ-convex Lie groups, J. Lie Theory 30 (2020), 25–32.
- Hanusch, M., *Regularity of Lie groups*, to appear (cf. arXiv:1711.03508, 2017)
- Kriegl, A. and P.W. Michor, "The Convenient Setting of Global Analysis," AMS, Providence, 1997.
- Michor, P. W., "Manifolds of Differentiable Mappings", Shiva Publ., Orpington, 1980.
- Milnor, J., *Remarks on infinite-dimensional Lie groups*, pp. 1007–1057 in: B. S. DeWitt and R. Stora (eds.), "Relativité, groupes et topologie II," North-Holland, Amsterdam, 1984.
- Neeb, K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291–468.
- Nikitin, N., "Regularity Properties of Infinite-Dimensional Lie Groups and Exponential Eaws," Doctoral Thesis, Paderborn, 2021 (see nbn-resolving.de/urn:nbn:de:hbz:466:2-39133).
- Schmeding, A., *The diffeomorphism group of a non-compact orbifold*, Diss. Math. **507** (2015), 179 pp.