Prof. Dr. Bernhard Krötz, Jannik Michel

Analysis 4

1. Übungsblatt

Präsenzaufgabe 1.1 Sei $G := \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. In dieser Aufgabe soll gezeigt werden, dass G biholomorph zu $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ ist. Zeigen Sie hierzu:

(i) Sei $R := \{z \in \mathbb{C} : \text{Re}(z) > 0\}$. Dann ist

$$\phi: R \to G, \ z \mapsto z^2$$

biholomorph.

(ii)

$$\psi: R \to \mathbb{D}, \ z \mapsto \frac{z-1}{z+1}$$

ist biholomorph.

Präsenzaufgabe 1.2 Sei $\psi : \mathbb{R}^2 \to \mathbb{C}$, $(x,y) \mapsto x+iy$, $U \subset \mathbb{C}$ offen und $f : U \to \mathbb{C}$ stetig partiell differenzierbar in den Koordinaten x und y. Es sei zudem

$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

und

$$\frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Zeigen Sie die folgenden Äquivalenzen:

- (i) f ist holomorph $\iff \frac{\partial}{\partial \overline{z}}f=0 \iff \frac{\partial}{\partial x}f=-i\frac{\partial}{\partial y}f$
- (ii) \overline{f} ist holomorph $\iff \frac{\partial}{\partial z}f = 0 \iff \frac{\partial}{\partial x}f = i\frac{\partial}{\partial y}f$.

Sei $\Delta:=\partial_x^2+\partial_y^2, V\subset\mathbb{R}^2$ offen und $g:V\to\mathbb{R}$ zweimal stetig partiell differenzierbar. Wir nennen g harmonisch, falls $\Delta g=0$. Sei $f:U\to\mathbb{C}$ holomorph. Zeigen Sie, dass $\mathrm{Re}(f)$ und $\mathrm{Im}(f)$ harmonisch sind.

Hausaufgabe 1.1 Sei $U \subset \mathbb{R}^2$ ein Gebiet und $g:U \to \mathbb{R}^2$ stetig differenzierbar. Wir nennen g konform, falls

- (i) $dg(p) \neq 0 \ \forall p \in U$
- (ii) $\det(dg(p)) > 0 \ \forall p \in U$
- (iii) für jedes $p \in U$ und für jedes Paar von stetig differenzierbaren Kurven γ_i : $I \to U$ mit $\gamma_1(0) = \gamma_2(0) = p$, wobei $I \subset \mathbb{R}$ ein offenes Intervall mit $0 \in I$ ist, gilt

$$\frac{\langle \gamma_1'(0), \gamma_2'(0) \rangle}{\|\gamma_1'(0)\| \|\gamma_2'(0)\|} = \frac{\langle dg(p)\gamma_1'(0), dg(p)\gamma_2'(0) \rangle}{\|dg(p)\gamma_1'(0)\| \|dg(p)\gamma_2'(0)\|}.$$

Sei $\psi: \mathbb{R}^2 \to \mathbb{C}$, $(x,y) \mapsto x+iy$, U ein Gebiet und $f: U \to \mathbb{C}$ holomorph und stetig partiell differenzierbar. Zeigen Sie, dass $f_{\mathbb{R}} = \psi^{-1} \circ f \circ \psi: \psi^{-1}(U) \to \mathbb{R}^2$ konform ist

Hausaufgabe 1.2

(i) Skizzieren Sie die Menge

$$F=\{z\in\mathbb{C}: |\mathrm{Re}(z)|\leq \frac{1}{2},\ \mathrm{Im}(z)>0,\ |z|\geq 1\}\subset\mathbb{C}.$$

- (ii) Sei $\mathbb{H}:=\{z\in\mathbb{C}: \text{Im}(z)>0\}$. Zeigen Sie, dass $\phi:\mathbb{H}\to\mathbb{H}, z\mapsto -\frac{1}{z}$ biholomorph ist.
- (iii) Bestimmen und skizzieren Sie $\phi(F) \subset \mathbb{H}$.