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Overview

This talk is about: Analogue of Siegel modular forms to
certain exceptional algebraic groups

Siegel modular forms

Special automorphic forms for the group Sp2n

They have a “robust” Fourier expansion
Are connected to arithmetic

Modular forms on exceptional groups

Theory initiated by Gross-Wallach, studied by
Gan-Gross-Savin, Loke, Weissman, and the speaker
Special automorphic forms for the groups
G2,D4,F4,E6,4,E7,4,E8,4

Theorem 1: They have a “robust” Fourier expansion
Theorem 2: Examples of said modular forms that are
“arithmetic” in the sense that they have Q-valued Fourier
expansions
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Siegel modular forms

The symplectic group

Sp2n = {g ∈ GL(2n) : tg
(

1n
−1n

)
g =

(
1n

−1n
)
}

Sp2n ⊇ U(n) '
{(

a b
−b a

)
: a + ib ∈ U(n)

}
The symmetric space

Sn := n × n symmetric matrices

Hn = {Z = X + iY : X ,Y ∈ Sn(R),Y > 0} the Siegel upper
half-space

Hn ' Sp2n(R)/U(n) the symmetric space

Sp2n(R) acts on Sp2n(R)/U(n) = Hn via

g · Z = (aZ + b)(cZ + d)−1

if g =
(
a b
c d

)
in n × n block form.
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Siegel modular forms: continued

Siegel modular form of weight ` > 0:

Definition and basic properties

f : Hn → C holomorphic such that
f ((aZ + b)(cZ + d)−1) = det(cZ + d)`f (Z ) for all

(
a b
c d

)
∈ Γ

some congruence subgroup of Sp2n(Z)
Fourier expansion:

f (Z ) =
∑

T∈Sn(Q),T≥0

af (T )e2πi tr(TZ)

with af (T ) ∈ C and T ≥ 0 means “T is positive
semi-definite”.

If n = 1, these are classical modular forms for SL2

If f a Siegel modular form, can consider f ∈ H0(Γ\Hn,L`)
a global section of a holomorphic line bundle L` on Γ\Hn
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Siegel modular forms automorphically

ϕ : Sp2n(Q)\ Sp2n(A)→ C with

The definition

1 ϕ(gk) = z(k)−`ϕ(g) for all k ∈ U(n), z : U(n)
det→ U(1) ⊆ C×

2 DCR,`ϕ ≡ 0: ϕ annihilated by linear differential operator DCR,`

so that fϕ on Hn satisfies the Cauchy-Riemann equations

The Fourier expansion

ϕf

((
1 X

1

) (
Y 1/2

Y−1/2

))
= ϕf (n(X )m)

=
∑

T∈Sn(Q),T≥0

aϕ(T )e2πi tr(TX )e−2π tr(TY )

where iY = m · i in Hn and aϕ(T ) ∈ C.

Automorphically

π = ⊗vπv with π∞ a holomorphic discrete series
representation
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Classical modular forms

Suppose G a reductive Q-group;

K ⊆ G (R) a maximal compact subgroup.

If G (R)/K is a Hermitian tube domain

e.g. G = GSp2n,GU(n, n),SO(2, n),GE7,3

Then there is a notion of “modular forms” on G

Modular forms

Automorphic forms for G (A) that give rise to sections of
holomorphic line bundles on G (R)/K

These automorphic forms have a robust notion of Fourier
expansion

Are closely connected to arithmetic: E.g., there is a basis of
the space of modular forms, all of whose Fourier coefficients
are in Q
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Usefulness of Holomorphic modular forms

1 Classical generating functions: Theta functions whose
Fourier coefficients are representation numbers of quadratic
forms

2 Construction of cusp forms: The Ikeda lift and its
generalizations

3 L-values: Particularly useful for applications to Deligne’s
conjecture on special values of L-functions

4 p-adic L-functions: p-adic interpolation of L-values and
applications

5 Geometric generating functions (Kudla program):
Generating functions whose coefficients are certain
cohomology classes
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Most G do not have G (R)/K Hermitian

Classical groups: Fixing the Dynkin type, can change the
real form so that G/K Hermitian: E.g., GU(n, n) (type A),
SO(2, n) (type B and D), Sp2n (type C )

Exceptional groups: For G of Dynkin type G2,F4,E8, no real
form has G/K Hermitian

Question

Given an exceptional Dynkin type, can one single out a class of
special automorphic forms, similar to the holomorphic modular
forms on tube domains?

Answer

Gross-Wallach: Look at G with
1 G (R) possessing discrete series (rank K equals rank G )
2 π = πf ⊗ π∞ with π∞ a discrete series
3 Moreover, take π∞ with smallest possible GK-dimension

among the discrete series and simplest minimal K -type
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The groups

The reductive groups

Exceptional: G split of type G2 or F4, or E6,4, E7,4, E8,4 with
real rank four
Classical: G isogenous to SO(4, n) with n ≥ 3

The maximal compact subgroups:

Suppose G is adjoint, of the above type;

K ⊆ G (R) the maximal compact subgroup

K = (SU(2)× L)/µ2 for some L

e.g. G = G2, K = (SU(2)× SU(2))/µ2; the first SU(2) is the
“long-root” SU(2)

So, always a normal SU(2)

Compare If H reductive group over R with Hermitian
symmetric space, than KH (maximal compact of H(R)) has a
normal U(1)
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The modular forms

Gross-Wallach: The groups G have quaternionic discrete series

There is a discrete series π` of the groups G above, with
minimal K = (SU(2)× L)/µ2-type Sym2`(V2) � 1 =: V`

Modular forms of weight `

Definition 1 (Gan-Gross-Savin)

Suppose ` ≥ 1 an integer and ϕ : π` → A(G ) a G (R)-equivariant
morphism. Then ϕ is a modular form of weight `.

Equivalent definition

Definition 2

Suppose ` ≥ 1 is an integer and F : G (Q)\G (A)→ V ∨` an
automorphic form satisfying F (gk) = k−1 · F (g) for all g ∈ G (A)
and k ∈ K ⊆ G (R). Then F is a modular form of weight ` if
D`F = 0 for a certain linear differential operator D`.
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Suppose F : G (R)→ V ∨` satisfies F (gk) = k−1 · F (g) for all
g ∈ G (R) and k ∈ K .

Cartan involution: g = k + p.

Let {Xi}i be a basis of p and {X ∗i }i the dual basis of p∗.

A formal operator

Define D̃F : G (R)→ V ∨` ⊗ p∗ via

D̃F (g) =
∑
i

(XiF )(g)⊗ X ∗i .

p = V2 �W as representation of SU(2)× L

V ∨` ⊗ p = Sym2`−1(V2) �W ⊕ Sym2`+1(V2) �W

The operator D`

Define pr : V ∨` ⊗ p∗ � Sym2`−1(V2) �W and

D` := pr ◦ D̃.
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The Heisenberg parabolic

Let G be a group of the quaternionic type, P = HN ⊆ G the
Heisenberg parabolic. The unipotent radical N is two-step: Z ⊆ N
is one-dimensional and N/Z = W is abelian

Examples

G = SO(4, n), P = (GL2×SO(2, n − 2))N with
N/Z = V2 ⊗ Vn, Vn quadratic space of signature (2, n − 2)

G = G2, P = GL2N with N/Z = Sym3(V2)⊗ det(V2)−1

G = F4, P = GSp6N with N/Z the third fundamental
representation of GSp6

G = E6,4, P = HN with H ≈ GU(3, 3) and N/Z the
20-dimensional (twisted) exterior cube representation

G = E7,4, P = HN with H of type D6 and N/Z the
32-dimensional half-spin representation

G = E8,4, P = GE7,3N with N/Z the 56-dimensional
representation of GE7
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The Fourier expansion of modular forms

Suppose F is a modular form of even weight ` on G .

Consider FZ (g) =
∫
[Z ] F (zg) dz , the constant term of F along

Z .

Denote by n : W (R) ' N/Z , 〈 , 〉 the H-invariant symplectic form
on W

Theorem 3

Suppose ` ≥ 1 is fixed. For ω ∈W (Q) satisfying “ω ≥ 0”, there
are explicit functions Wω : H(R)→ V ∨` with the following
property: If F is a modular form on G of weight `, with there are
Fourier coefficients aF (ω) ∈ C so that for x ∈W (R) and h ∈ H(R)

FZ (n(x)h) = FN(h) +
∑
ω≥0

aF (ω)e2πi〈ω,x〉Wω(h)

where FN is the constant term of F along N.
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The Fourier expansion of modular forms

Theorem 3 continued

Moreover,

FN(h) = ΦF (h)v` + βF
ζ(`+ 1)

ζ(`)
v0 + ΦF (h)v−`

for some holomorphic modular form ΦF of weight ` on H(R) and
βF ∈ C. Here {v`, v`−1, . . . , v0, . . . , v−`} is a certain basis of V ∨` .

Surprising corollary:

Corollary 4

Suppose ` ≥ 1 and F a modular form of weight ` for G . If F is
bounded as a function on G (A) then F is cuspidal.
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Fourier coefficients

Suppose F is a modular form on G of even weight `.

Definition 5

The Fourier coefficients of F are the numbers aF (ω), βF , and the
Fourier coefficients of ΦF

Definition 6

Suppose R ⊆ C is a ring. One says F has Fourier coefficients in R
if all the Fourier coefficients are of F are in R ⊆ C.

Warning: Unlike the case of holomorphic modular forms on
GL2, the algebraicity of the Hecke eigenvalues does not imply
the algebraicity of the Fourier coefficients.

There is no a priori reason to expect any modular form to
have Fourier coefficients in a small ring (e.g., Z,Q,Q)

Definitions above crucially use Theorem on Fourier expansion
as input
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Proof of Theorem 3

Fix χ : N(R)→ C× a unitary character.

Proof of Theorem 3

The proof of Theorem 3 proceeds by making a complete and
explicit analysis of all moderate growth functions
Wχ : G (R)→ V ∨` satisfying

1 Wχ(gk) = k−1 · Wχ(g) for all k ∈ K and g ∈ G (R)
2 Wχ(ng) = χ(n)Wχ(g) for all n ∈ N(R) and g ∈ G (R)
3 D`Wχ(g) ≡ 0.

The analysis implies

Multiplicity one

dimHomN(R)(π`, χ) ≤ 1 if χ nontrivial, and is 0 unless χ ≥ 0.

For generic χ, this multiplicity one result was previous proved by
Wallach (via a different method)
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Modular forms with algebraic Fourier coefficients

Theorem 7

There are examples of modular forms with Fourier coefficients in
small rings:

1 On E8,4, the minimal and next-to-minimal modular forms
(weight 4 and weight 8) have Fourier coefficients in Q. These
modular forms have many Fourier coefficients equal to 0.
Uses key input from work of W.T. Gan and G. Savin.

2 On E6,4, there is a weight 4 modular form with all Fourier
coefficients in Z. This example is “distinguished” but not
“singular”, and is closely connected to “arithmetic invariant
theory”.

3 On Spin(8) and G2, there are nonzero cusp forms of arbitrarily
large weight with all Fourier coefficients in Q. Examples
constructed using the theta correspondence SO(4, 4)↔ Sp4.

The Theorem says that some modular forms on exceptional
groups possess “surprising” arithmeticity.
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Construction of cusp forms

There is θ-lift:

Sp4 ↔ SO(4, 4)

Start with holomorphic Siegel modular cusp forms f on Sp(4)
of weight `, get θ(f ) on SO(4, 4)

Rallis: θ(f ) on SO(4, 4) is a cusp form.

Theorem 8

With appropriate Schwartz-Bruhat data for Weil representation,
θ(f ) is a nonzero weight ` modular form. Moreover, the Fourier
coefficients of θ(f ) are neatly described in terms of the Fourier
coefficients of the f . In particular, the Fourier coefficients of θ(f )
can be made to be nonzero algebraic integers.

Analogue of special θ-lift S̃L2 ↔ SO(2, n): Doi-Naganuma,
Niwa, Shintani, Kudla, Oda, Rallis-Schiffmann
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Fourier coefficients of θ(f )

W = V2 ⊗ V4 = e ⊗ V4 ⊕ f ⊗ V4, V4 quadratic space of
signature (2, 2), e, f basis of V2

If ω = e ⊗ ve + f ⊗ vf , set

S(ω) =
1

2

(
(ve , ve) (ve , vf )
(ve , vf ) (vf , vf )

)
.

Fourier coefficient formula

If ω is primitive, then aθ(f )(ω) = af (S(ω)).

If ω is not primitive, then there is a slightly more complicated
formula for aθ(f )(ω)

Formula implies that aθ(f )(ω) are nonzero algebraic integers if
the af ’s are
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Corollary 9

Suppose ` ≥ 16 is even. Then there are nonzero cuspidal modular
forms of weight ` on G2 with all Fourier coefficients in Q.

Proof of Corollary.

1 Embed ι : G2 ↪→ SO(4, 4)
2 Set F = ι(θ(f ))
3 One can show that F is still cuspidal modular form of weight `
4 Using crucially the positive semi-definiteness condition for

the nonvanishing of Fourier coefficients of modular forms, can
check that the Fourier coefficients of F are finite sums of
Fourier coefficients of θ(f ), thus still algebraic integers

Remark: Rallis-Schiffmann, Li-Schwermer constructed different
cohomological cusp forms on G2 via G2 ⊆ SO(3, 4)↔ S̃L2.
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Necessary digression

Recall:

H: The Levi subgroup of the Heisenberg parabolic subgroup
of G

W : The abelianized unipotent radical of the Heisenberg
parabolic subgroup of G

Rank of Fourier coefficients

The action of H(C) on W (C) = N/Z (C) has four nonzero
orbits

If ω 6= 0, ω ∈W , one say ω has rank 1, 2, 3 or 4 depending on
the orbit

The open orbit of H on W consists of those ω of rank four

The elements of rank one in W form the most degenerate
nonzero orbit

Fact If F a modular form on G then F is a cusp form if and only if
FN = 0 and aF (ω) = 0 for all ω of rank 1, 2 and 3.
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Heisenberg Eisenstein series

Suppose G = E8,4, P Heisenberg parabolic.

ν : P → GL1

generating the character group of P. On G = E8,4,

|ν(p)|29 = δP(p)

for p ∈ P. Suppose

` ≥ 1 even

f (g , `; s) ∈ Ind
G(A)
P(A) (|ν|s), certain Sym2`(V2)-valued section.

E (g , `; s) =
∑

γ∈P(Q)\G(Q) f (γg , `; s) absolutely convergent
for Re(s) > 29.

If s = `+ 1 in range of absolute convergence, E (g , s = `+ 1)
a modular form of weight ` for G

Question

Does E (g , s = `+ 1) have rational Fourier coefficients?

Aaron Pollack Special automorphic forms on exceptional groups



Next to minimal

Motivated by work of Gross-Wallach on continuation of
quaternionic discrete series, take ` = 8 and G = E8,4.

Proposition

The Eisenstein series E (g , ` = 8; s) is regular at s = 9 (even
though outside the range of absolute convergence), and defines
square integrable weight 8 modular form at this point.

Set
θntm(g) = E (g , ` = 8; s = 9)

Theorem 10 (Savin)

The spherical constituent of the degenerate principal series

Ind
G(Qp)
P(Qp)

(|ν|9) is “small”, i.e., many twisted Jacquet modules are

0. Consequently, the rank three and rank four Fourier coefficients
of θntm are 0.
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More on next-to-minimal modular form

On split E8

Analogous “next-to-minimal” automorphic form is spherical

Studied by Michael B. Green-Stephen D. Miller-Pierre
Vanhove

Also by Dmitry Gourevitch-Henrik P. A. Gustafsson-Axel
Kleinschmidt-Daniel Persson-Siddhartha Sahi

Theorem 11

The weight 8 modular form θntm has rational Fourier coefficients.

Proof.

1 Savin’s result gives vanishing of rank three and four Fourier
coefficients

2 Explicit computation (outside range of abs. convergence)
gives rationality of rank 1 and rank 2 Fourier coefficients

3 Constant term analyzed using work of H. Kim on weight 8
singular modular form on GE7,3
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Explicit computation of θntm

1 Define special Sym2`(V2)-valued Eisenstein series E`(g) on
SO(3, 4k + 3)

2 Prove that the constant term θntm from E8,4 down to
SO(3, 11) is E8(g)

3 Theorem: the E`(g) have rational Fourier coefficients (in a
precise sense)

4 The Fourier coefficients of E8(g) can be identified with rank 1
and rank 2 Fourier coefficients of θntm.

To prove the E`(g) have rational Fourier coefficients:

Jacquet integral

Explicit computation of certain Archimedean Jacquet integral∫
V2,4k+2(R)

e2πi(v ,x)f`(wn(x)) dx .
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The minimal modular form on E8,4

Defined by Gan as special value

θmin(g) = E (g , ` = 4; s = 5)

(outside the range of absolute convergence). Gan proves that
it is square integrable automorphic form

Analogue on split E8 studied by Ginzburg-Rallis-Soudry

Theorem 12

θmin is a modular form of weight 4 with Fourier coefficients in Z.

1 Local results (Savin) imply rank 2,3,4 Fourier coefficients are 0

2 Kazhdan-Polischuk: up to constant multiple, the rank 1 FCs
are divisor sums σ4(n)

3 Theorem: when θmin is normalized to have integer rank one
Fourier coefficients, the constant term also has integer
coefficients.
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A distinguished modular form

Globally, there is an arithmetic invariant on the orbits of H(Q) on
W (Q):

q : W (Q)rk=4 → Q×/(Q×)2 = { quadratic etale extensions of Q}.

Fact: If F a modular form on G , ω ∈W (Q) and q(ω) > 0 then
aF (ω) = 0. In other words, only ω corresponding to imaginary
quadratic fields can have associated nonzero Fourier coefficients

Fix an imaginary quadratic extension E/Q. Associated to E , there
is a group GE over Q of type E6,4.

Theorem 13

There is a weight 4 modular form θE on GE with Fourier
coefficients in Z such that θE has nonzero Fourier coefficients of
all ranks and

1 If ω ∈W (Q)rk=4 and q(ω) ∈ Q×/(Q×)2 does not represent
E , then the Fourier coefficient aθE (ω) = 0
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Proof of Theorem 13

Proof of Theorem 13:

1 Define GE , which is simply-connected of type E6,4

2 Carefully embed GE in E8,4 via ιE : GE → E8,4

3 Define θE = ι∗E (θmin), the pull-back of the modular form
generating the minimal representation on E8,4

4 The Fourier coefficients of θE can then be computed from
those of θmin

5 θmin only has nonzero Fourier coefficients for the most
degenerate ω, those ω of rank 1

6 This vanishing of aθmin
(ω) imposes a strong arithmetic

condition on the Fourier coefficients of θE .

Aaron Pollack Special automorphic forms on exceptional groups



Thank you

Thank you for your attention!
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