Special automorphic forms on exceptional groups

Aaron Pollack

June 2020

Contents

(1) Introduction
(2) Modular forms on exceptional groups
(3) The Fourier expansion

4 Examples

Overview

- This talk is about: Analogue of Siegel modular forms to certain exceptional algebraic groups

Siegel modular forms

- Special automorphic forms for the group $\mathrm{Sp}_{2 n}$
- They have a "robust" Fourier expansion
- Are connected to arithmetic

Modular forms on exceptional groups

- Theory initiated by Gross-Wallach, studied by Gan-Gross-Savin, Loke, Weissman, and the speaker
- Special automorphic forms for the groups $G_{2}, D_{4}, F_{4}, E_{6,4}, E_{7,4}, E_{8,4}$
- Theorem 1: They have a "robust" Fourier expansion
- Theorem 2: Examples of said modular forms that are "arithmetic" in the sense that they have $\overline{\mathbf{Q}}$-valued Fourier expansions

The symplectic group

- $\mathrm{Sp}_{2 n}=\left\{g \in \mathrm{GL}(2 n):{ }^{t} g\left({ }_{-1_{n}}{ }^{1_{n}}\right) g=\left({ }_{-1_{n}}{ }^{1_{n}}\right)\right\}$
- $S p_{2 n} \supseteq U(n) \simeq\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a+i b \in U(n)\right\}$

The symmetric space

- $S_{n}:=n \times n$ symmetric matrices
- $\mathcal{H}_{n}=\left\{Z=X+i Y: X, Y \in S_{n}(\mathbf{R}), Y>0\right\}$ the Siegel upper half-space
- $\mathcal{H}_{n} \simeq \operatorname{Sp}_{2 n}(\mathbf{R}) / U(n)$ the symmetric space
$S_{p_{2 n}}(\mathbf{R})$ acts on $S p_{2 n}(\mathbf{R}) / U(n)=\mathcal{H}_{n}$ via

$$
g \cdot Z=(a Z+b)(c Z+d)^{-1}
$$

if $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $n \times n$ block form.

Siegel modular form of weight $\ell>0$:

Definition and basic properties

- $f: \mathcal{H}_{n} \rightarrow \mathbf{C}$ holomorphic such that
- $f\left((a Z+b)(c Z+d)^{-1}\right)=\operatorname{det}(c Z+d)^{\ell} f(Z)$ for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ some congruence subgroup of $\mathrm{Sp}_{2 n}(\mathbf{Z})$
- Fourier expansion:

$$
f(Z)=\sum_{T \in S_{n}(\mathbf{Q}), T \geq 0} a_{f}(T) e^{2 \pi i \operatorname{tr}(T Z)}
$$

with $a_{f}(T) \in \mathbf{C}$ and $T \geq 0$ means " T is positive semi-definite".

- If $n=1$, these are classical modular forms for SL_{2}

If f a Siegel modular form, can consider $f \in H^{0}\left(\Gamma \backslash \mathcal{H}_{n}, \mathcal{L}^{\ell}\right)$

- a global section of a holomorphic line bundle \mathcal{L}^{ℓ} on $\Gamma \backslash \mathcal{H}_{n}$

Siegel modular forms automorphically

$$
\varphi: \operatorname{Sp}_{2 n}(\mathbf{Q}) \backslash \operatorname{Sp}_{2 n}(\mathbf{A}) \rightarrow \mathbf{C} \text { with }
$$

The definition

(1) $\varphi(g k)=z(k)^{-\ell} \varphi(g)$ for all $k \in U(n), z: U(n) \xrightarrow{\text { det }} U(1) \subseteq \mathbf{C}^{\times}$
(2) $\mathcal{D}_{C R, \ell} \varphi \equiv 0: \varphi$ annihilated by linear differential operator $\mathcal{D}_{C R, \ell}$ so that f_{φ} on \mathcal{H}_{n} satisfies the Cauchy-Riemann equations
The Fourier expansion
$\varphi_{f}\left(\left(\begin{array}{cc}1 & X \\ & 1\end{array}\right)\left(\begin{array}{ll}Y^{1 / 2} & \\ Y^{-1 / 2}\end{array}\right)\right)=\varphi_{f}(n(X) m)$

$$
=\sum_{T \in S_{n}(\mathbf{Q}), T \geq 0} a_{\varphi}(T) e^{2 \pi i \operatorname{tr}(T X)} e^{-2 \pi \operatorname{tr}(T Y)}
$$

where $i Y=m \cdot i$ in \mathcal{H}_{n} and $a_{\varphi}(T) \in \mathbf{C}$.

Automorphically

- $\pi=\otimes_{v} \pi_{v}$ with π_{∞} a holomorphic discrete series representation

Classical modular forms

Suppose G a reductive \mathbf{Q}-group;

- $K \subseteq G(\mathbf{R})$ a maximal compact subgroup.
- If $G(\mathbf{R}) / K$ is a Hermitian tube domain
- e.g. $G=\operatorname{GSp}_{2 n}, \mathrm{GU}(n, n), \mathrm{SO}(2, n), G E_{7,3}$
- Then there is a notion of "modular forms" on G

Modular forms

Automorphic forms for $G(\mathbf{A})$ that give rise to sections of holomorphic line bundles on $G(\mathbf{R}) / K$

- These automorphic forms have a robust notion of Fourier expansion
- Are closely connected to arithmetic: E.g., there is a basis of the space of modular forms, all of whose Fourier coefficients are in $\overline{\mathbf{Q}}$

Usefulness of Holomorphic modular forms

(1) Classical generating functions: Theta functions whose Fourier coefficients are representation numbers of quadratic forms
(2) Construction of cusp forms: The Ikeda lift and its generalizations
(3) L-values: Particularly useful for applications to Deligne's conjecture on special values of L-functions
(1) p-adic L-functions: p-adic interpolation of L-values and applications
(5) Geometric generating functions (Kudla program): Generating functions whose coefficients are certain cohomology classes

Contents

(1) Introduction

(2) Modular forms on exceptional groups
(3) The Fourier expansion
(4) Examples

Most G do not have $G(\mathbf{R}) / K$ Hermitian

- Classical groups: Fixing the Dynkin type, can change the real form so that G / K Hermitian: E.g., $\mathrm{GU}(n, n)$ (type A), $\mathrm{SO}(2, n)$ (type B and D), $\mathrm{Sp}_{2 n}$ (type C)
- Exceptional groups: For G of Dynkin type G_{2}, F_{4}, E_{8}, no real form has G/K Hermitian

Question

Given an exceptional Dynkin type, can one single out a class of special automorphic forms, similar to the holomorphic modular forms on tube domains?

Answer

Gross-Wallach: Look at G with
(1) $G(\mathbf{R})$ possessing discrete series (rank K equals rank G)
(2) $\pi=\pi_{f} \otimes \pi_{\infty}$ with π_{∞} a discrete series
(3) Moreover, take π_{∞} with smallest possible GK-dimension among the discrete series and simplest minimal K-type

The groups

The reductive groups

- Exceptional: G split of type G_{2} or F_{4}, or $E_{6,4}, E_{7,4}, E_{8,4}$ with real rank four
- Classical: G isogenous to $\mathrm{SO}(4, n)$ with $n \geq 3$

The maximal compact subgroups:

- Suppose G is adjoint, of the above type;
- $K \subseteq G(\mathbf{R})$ the maximal compact subgroup
- $K=(\mathrm{SU}(2) \times L) / \mu_{2}$ for some L
- e.g. $G=G_{2}, K=(S U(2) \times \operatorname{SU}(2)) / \mu_{2}$; the first $\operatorname{SU}(2)$ is the "long-root" $\mathrm{SU}(2)$
- So, always a normal SU(2)
- Compare If H reductive group over \mathbf{R} with Hermitian symmetric space, than K_{H} (maximal compact of $H(\mathbf{R})$) has a normal U(1)

The modular forms

Gross-Wallach: The groups G have quaternionic discrete series

- There is a discrete series π_{ℓ} of the groups G above, with minimal $K=(\mathrm{SU}(2) \times L) / \mu_{2}$-type $\operatorname{Sym}^{2 \ell}\left(V_{2}\right) \boxtimes 1=: V_{\ell}$
Modular forms of weight ℓ

Definition 1 (Gan-Gross-Savin)

Suppose $\ell \geq 1$ an integer and $\varphi: \pi_{\ell} \rightarrow \mathcal{A}(G)$ a $G(\mathbf{R})$-equivariant morphism. Then φ is a modular form of weight ℓ.

Equivalent definition

Definition 2

Suppose $\ell \geq 1$ is an integer and $F: G(\mathbf{Q}) \backslash G(\mathbf{A}) \rightarrow V_{\ell}^{\vee}$ an automorphic form satisfying $F(g k)=k^{-1} \cdot F(g)$ for all $g \in G(\mathbf{A})$ and $k \in K \subseteq G(\mathbf{R})$. Then F is a modular form of weight ℓ if $D_{\ell} F=0$ for a certain linear differential operator D_{ℓ}.

Suppose $F: G(\mathbf{R}) \rightarrow V_{\ell}^{\vee}$ satisfies $F(g k)=k^{-1} \cdot F(g)$ for all $g \in G(\mathbf{R})$ and $k \in K$.

- Cartan involution: $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$.
- Let $\left\{X_{i}\right\}_{i}$ be a basis of \mathfrak{p} and $\left\{X_{i}^{*}\right\}_{i}$ the dual basis of \mathfrak{p}^{*}.

A formal operator

Define $\widetilde{D} F: G(\mathbf{R}) \rightarrow V_{\ell}^{\vee} \otimes \mathfrak{p}^{*}$ via

$$
\widetilde{D} F(g)=\sum_{i}\left(X_{i} F\right)(g) \otimes X_{i}^{*}
$$

- $\mathfrak{p}=V_{2} \boxtimes W$ as representation of $\operatorname{SU}(2) \times L$
- $V_{\ell}^{\vee} \otimes \mathfrak{p}=\operatorname{Sym}^{2 \ell-1}\left(V_{2}\right) \boxtimes W \oplus \operatorname{Sym}^{2 \ell+1}\left(V_{2}\right) \boxtimes W$

The operator D_{ℓ}

Define $p r: V_{\ell}^{\vee} \otimes \mathfrak{p}^{*} \rightarrow \operatorname{Sym}^{2 \ell-1}\left(V_{2}\right) \boxtimes W$ and

$$
D_{\ell}:=p r \circ \widetilde{D} .
$$

Contents

(1) Introduction

2 Modular forms on exceptional groups
(3) The Fourier expansion

4 Examples

The Heisenberg parabolic

Let G be a group of the quaternionic type, $P=H N \subseteq G$ the Heisenberg parabolic. The unipotent radical N is two-step: $Z \subseteq N$ is one-dimensional and $N / Z=W$ is abelian

Examples

- $G=\mathrm{SO}(4, n), P=\left(\mathrm{GL}_{2} \times \mathrm{SO}(2, n-2)\right) N$ with $N / Z=V_{2} \otimes V_{n}, V_{n}$ quadratic space of signature (2, $n-2$)
- $G=G_{2}, P=G L_{2} N$ with $N / Z=\operatorname{Sym}^{3}\left(V_{2}\right) \otimes \operatorname{det}\left(V_{2}\right)^{-1}$
- $G=F_{4}, P=G p_{6} N$ with N / Z the third fundamental representation of GSp_{6}
- $G=E_{6,4}, P=H N$ with $H \approx \operatorname{GU}(3,3)$ and N / Z the 20-dimensional (twisted) exterior cube representation
- $G=E_{7,4}, P=H N$ with H of type D_{6} and N / Z the 32-dimensional half-spin representation
- $G=E_{8,4}, P=G E_{7,3} N$ with N / Z the 56-dimensional representation of $G E_{7}$
- Suppose F is a modular form of even weight ℓ on G.
- Consider $F_{Z}(g)=\int_{[Z]} F(z g) d z$, the constant term of F along Z.
Denote by $n: W(\mathbf{R}) \simeq N / Z,\langle$,$\rangle the H$-invariant symplectic form on W

Theorem 3

Suppose $\ell \geq 1$ is fixed. For $\omega \in W(\mathbf{Q})$ satisfying " $\omega \geq 0$ ", there are explicit functions $\mathcal{W}_{\omega}: H(\mathbf{R}) \rightarrow V_{\ell}^{\vee}$ with the following property: If F is a modular form on G of weight ℓ, with there are Fourier coefficients $a_{F}(\omega) \in \mathbf{C}$ so that for $x \in W(\mathbf{R})$ and $h \in H(\mathbf{R})$

$$
F_{Z}(n(x) h)=F_{N}(h)+\sum_{\omega \geq 0} a_{F}(\omega) e^{2 \pi i\langle\omega, x\rangle} \mathcal{W}_{\omega}(h)
$$

where F_{N} is the constant term of F along N.

Theorem 3 continued

Moreover,

$$
F_{N}(h)=\Phi_{F}(h) v_{\ell}+\beta_{F} \frac{\zeta(\ell+1)}{\zeta(\ell)} v_{0}+\overline{\Phi_{F}(h)} v_{-\ell}
$$

for some holomorphic modular form Φ_{F} of weight ℓ on $H(\mathbf{R})$ and $\beta_{F} \in \mathbf{C}$. Here $\left\{v_{\ell}, v_{\ell-1}, \ldots, v_{0}, \ldots, v_{-\ell}\right\}$ is a certain basis of V_{ℓ}^{\vee}.

Surprising corollary:

Corollary 4
Suppose $\ell \geq 1$ and F a modular form of weight ℓ for G. If F is bounded as a function on $G(\mathbf{A})$ then F is cuspidal.

Fourier coefficients

Suppose F is a modular form on G of even weight ℓ.

Definition 5

The Fourier coefficients of F are the numbers $a_{F}(\omega), \beta_{F}$, and the Fourier coefficients of Φ_{F}

Definition 6

Suppose $R \subseteq \mathbf{C}$ is a ring. One says F has Fourier coefficients in R if all the Fourier coefficients are of F are in $R \subseteq \mathbf{C}$.

- Warning: Unlike the case of holomorphic modular forms on GL_{2}, the algebraicity of the Hecke eigenvalues does not imply the algebraicity of the Fourier coefficients.
- There is no a priori reason to expect any modular form to have Fourier coefficients in a small ring (e.g., $\mathbf{Z}, \mathbf{Q}, \overline{\mathbf{Q}}$)
- Definitions above crucially use Theorem on Fourier expansion as input

Proof of Theorem 3

Fix $\chi: N(\mathbf{R}) \rightarrow \mathbf{C}^{\times}$a unitary character.

Proof of Theorem 3

The proof of Theorem 3 proceeds by making a complete and explicit analysis of all moderate growth functions
$\mathcal{W}_{\chi}: G(\mathbf{R}) \rightarrow V_{\ell}^{\vee}$ satisfying
(1) $\mathcal{W}_{\chi}(g k)=k^{-1} \cdot \mathcal{W}_{\chi}(g)$ for all $k \in K$ and $g \in G(\mathbf{R})$
(2) $\mathcal{W}_{\chi}(n g)=\chi(n) \mathcal{W}_{\chi}(g)$ for all $n \in N(\mathbf{R})$ and $g \in G(\mathbf{R})$
(3) $D_{\ell} \mathcal{W}_{\chi}(g) \equiv 0$.

The analysis implies

Multiplicity one

 $\operatorname{dim} \operatorname{Hom}_{N(\mathrm{R})}\left(\pi_{\ell}, \chi\right) \leq 1$ if χ nontrivial, and is 0 unless $\chi \geq 0$.For generic χ, this multiplicity one result was previous proved by Wallach (via a different method)

Contents

(1) Introduction

(2) Modular forms on exceptional groups

(3) The Fourier expansion
(4) Examples

Modular forms with algebraic Fourier coefficients

Theorem 7

There are examples of modular forms with Fourier coefficients in small rings:
(1) On $E_{8,4}$, the minimal and next-to-minimal modular forms (weight 4 and weight 8) have Fourier coefficients in \mathbf{Q}. These modular forms have many Fourier coefficients equal to 0. Uses key input from work of W.T. Gan and G. Savin.
(2) On $E_{6,4}$, there is a weight 4 modular form with all Fourier coefficients in Z. This example is "distinguished" but not "singular", and is closely connected to "arithmetic invariant theory".
(3) On $\operatorname{Spin}(8)$ and G_{2}, there are nonzero cusp forms of arbitrarily large weight with all Fourier coefficients in $\overline{\mathbf{Q}}$. Examples constructed using the theta correspondence $\mathrm{SO}(4,4) \leftrightarrow \mathrm{Sp}_{4}$.

- The Theorem says that some modular forms on exceptional groups possess "surprising" arithmeticity.

Construction of cusp forms

There is θ-lift:

- $\mathrm{Sp}_{4} \leftrightarrow \mathrm{SO}(4,4)$
- Start with holomorphic Siegel modular cusp forms f on $\operatorname{Sp}(4)$ of weight ℓ, get $\theta(f)$ on $\operatorname{SO}(4,4)$
- Rallis: $\theta(f)$ on $\mathrm{SO}(4,4)$ is a cusp form.

Theorem 8

With appropriate Schwartz-Bruhat data for Weil representation, $\theta(f)$ is a nonzero weight ℓ modular form. Moreover, the Fourier coefficients of $\theta(f)$ are neatly described in terms of the Fourier coefficients of the f. In particular, the Fourier coefficients of $\theta(f)$ can be made to be nonzero algebraic integers.

- Analogue of special θ-lift $\widetilde{S L_{2}} \leftrightarrow S O(2, n)$: Doi-Naganuma, Niwa, Shintani, Kudla, Oda, Rallis-Schiffmann

Fourier coefficients of $\theta(f)$

- $W=V_{2} \otimes V_{4}=e \otimes V_{4} \oplus f \otimes V_{4}, V_{4}$ quadratic space of signature (2, 2), e, f basis of V_{2}
- If $\omega=e \otimes v_{e}+f \otimes v_{f}$, set

$$
S(\omega)=\frac{1}{2}\left(\begin{array}{ll}
\left(v_{e}, v_{e}\right) & \left(v_{e}, v_{f}\right) \\
\left(v_{e}, v_{f}\right) & \left(v_{f}, v_{f}\right)
\end{array}\right) .
$$

Fourier coefficient formula

If ω is primitive, then $a_{\theta(f)}(\omega)=a_{f}(S(\omega))$.

- If ω is not primitive, then there is a slightly more complicated formula for $a_{\theta(f)}(\omega)$
- Formula implies that $a_{\theta(f)}(\omega)$ are nonzero algebraic integers if the a_{f} 's are

Corollary 9

Suppose $\ell \geq 16$ is even. Then there are nonzero cuspidal modular forms of weight ℓ on G_{2} with all Fourier coefficients in $\overline{\mathbf{Q}}$.

Proof of Corollary.

(1) Embed $\iota: G_{2} \hookrightarrow \mathrm{SO}(4,4)$
(2) Set $F=\iota(\theta(f))$
(3) One can show that F is still cuspidal modular form of weight ℓ (1) Using crucially the positive semi-definiteness condition for the nonvanishing of Fourier coefficients of modular forms, can check that the Fourier coefficients of F are finite sums of Fourier coefficients of $\theta(f)$, thus still algebraic integers

Remark: Rallis-Schiffmann, Li-Schwermer constructed different cohomological cusp forms on G_{2} via $G_{2} \subseteq \mathrm{SO}(3,4) \leftrightarrow \widetilde{S L}_{2}$.

Necessary digression

Recall:

- H: The Levi subgroup of the Heisenberg parabolic subgroup of G
- W: The abelianized unipotent radical of the Heisenberg parabolic subgroup of G

Rank of Fourier coefficients

- The action of $H(\mathbf{C})$ on $W(\mathbf{C})=N / Z(\mathbf{C})$ has four nonzero orbits
- If $\omega \neq 0, \omega \in W$, one say ω has rank $1,2,3$ or 4 depending on the orbit
- The open orbit of H on W consists of those ω of rank four
- The elements of rank one in W form the most degenerate nonzero orbit

Fact If F a modular form on G then F is a cusp form if and only if $F_{N}=0$ and $a_{F}(\omega)=0$ for all ω of rank 1,2 and 3 .

Heisenberg Eisenstein series

Suppose $G=E_{8,4}, P$ Heisenberg parabolic.

$$
\nu: P \rightarrow \mathrm{GL}_{1}
$$

generating the character group of P. On $G=E_{8,4}$,

$$
|\nu(p)|^{29}=\delta_{P}(p)
$$

for $p \in P$. Suppose

- $\ell \geq 1$ even
- $f(g, \ell ; s) \in \operatorname{Ind} d_{P(\mathbf{A})}^{G(\mathbf{A})}\left(|\nu|^{s}\right)$, certain $\operatorname{Sym}^{2 \ell}\left(V_{2}\right)$-valued section.
- $E(g, \ell ; s)=\sum_{\gamma \in P(\mathbf{Q}) \backslash G(\mathbf{Q})} f(\gamma g, \ell ; s)$ absolutely convergent for $\operatorname{Re}(s)>29$.
- If $s=\ell+1$ in range of absolute convergence, $E(g, s=\ell+1)$ a modular form of weight ℓ for G

Question

Does $E(g, s=\ell+1)$ have rational Fourier coefficients?

Next to minimal

Motivated by work of Gross-Wallach on continuation of quaternionic discrete series, take $\ell=8$ and $G=E_{8,4}$.

Proposition

The Eisenstein series $E(g, \ell=8 ; s)$ is regular at $s=9$ (even though outside the range of absolute convergence), and defines square integrable weight 8 modular form at this point.

Set

$$
\theta_{n t m}(g)=E(g, \ell=8 ; s=9)
$$

Theorem 10 (Savin)

The spherical constituent of the degenerate principal series $\operatorname{Ind}{ }_{P\left(\mathbf{Q}_{p}\right)}^{G\left(\mathbf{Q}_{p}\right)}\left(|\nu|^{9}\right)$ is "small", i.e., many twisted Jacquet modules are 0 . Consequently, the rank three and rank four Fourier coefficients of $\theta_{n t m}$ are 0 .

More on next-to-minimal modular form

On split E_{8}

- Analogous "next-to-minimal" automorphic form is spherical
- Studied by Michael B. Green-Stephen D. Miller-Pierre Vanhove
- Also by Dmitry Gourevitch-Henrik P. A. Gustafsson-Axel Kleinschmidt-Daniel Persson-Siddhartha Sahi

Theorem 11

The weight 8 modular form $\theta_{\text {ntm }}$ has rational Fourier coefficients.

Proof.

(1) Savin's result gives vanishing of rank three and four Fourier coefficients
(2) Explicit computation (outside range of abs. convergence) gives rationality of rank 1 and rank 2 Fourier coefficients
(3) Constant term analyzed using work of H . Kim on weight 8 singular modular form on $G E_{7,3}$
(1) Define special $\operatorname{Sym}^{2 \ell}\left(V_{2}\right)$-valued Eisenstein series $E_{\ell}(g)$ on $\mathrm{SO}(3,4 k+3)$
(2) Prove that the constant term $\theta_{\text {ntm }}$ from $E_{8,4}$ down to $\mathrm{SO}(3,11)$ is $E_{8}(g)$
(3) Theorem: the $E_{\ell}(g)$ have rational Fourier coefficients (in a precise sense)
(1) The Fourier coefficients of $E_{8}(g)$ can be identified with rank 1 and rank 2 Fourier coefficients of $\theta_{n t m}$.
To prove the $E_{\ell}(g)$ have rational Fourier coefficients:

Jacquet integral

Explicit computation of certain Archimedean Jacquet integral

$$
\int_{V_{2,4 k+2}(\mathbf{R})} e^{2 \pi i(v, x)} f_{\ell}(w n(x)) d x
$$

The minimal modular form on $E_{8,4}$

- Defined by Gan as special value

$$
\theta_{\min }(g)=E(g, \ell=4 ; s=5)
$$

(outside the range of absolute convergence). Gan proves that it is square integrable automorphic form

- Analogue on split E_{8} studied by Ginzburg-Rallis-Soudry

Theorem 12

$\theta_{\min }$ is a modular form of weight 4 with Fourier coefficients in \mathbf{Z}.
(1) Local results (Savin) imply rank 2,3,4 Fourier coefficients are 0
(2) Kazhdan-Polischuk: up to constant multiple, the rank 1 FCs are divisor sums $\sigma_{4}(n)$
(3) Theorem: when $\theta_{\text {min }}$ is normalized to have integer rank one Fourier coefficients, the constant term also has integer coefficients.

A distinguished modular form

Globally, there is an arithmetic invariant on the orbits of $H(\mathbf{Q})$ on $W(\mathbf{Q})$:
$q: W(\mathbf{Q})^{r k=4} \rightarrow \mathbf{Q}^{\times} /\left(\mathbf{Q}^{\times}\right)^{2}=\{$ quadratic etale extensions of $\mathbf{Q}\}$.
Fact: If F a modular form on $G, \omega \in W(\mathbf{Q})$ and $q(\omega)>0$ then $a_{F}(\omega)=0$. In other words, only ω corresponding to imaginary quadratic fields can have associated nonzero Fourier coefficients Fix an imaginary quadratic extension E / \mathbf{Q}. Associated to E, there is a group G_{E} over \mathbf{Q} of type $E_{6,4}$.

Theorem 13

There is a weight 4 modular form θ_{E} on G_{E} with Fourier coefficients in \mathbf{Z} such that θ_{E} has nonzero Fourier coefficients of all ranks and
(1) If $\omega \in W(\mathbf{Q})^{r k=4}$ and $q(\omega) \in \mathbf{Q}^{\times} /\left(\mathbf{Q}^{\times}\right)^{2}$ does not represent E, then the Fourier coefficient $a_{\theta_{E}}(\omega)=0$

Proof of Theorem 13:

(1) Define G_{E}, which is simply-connected of type $E_{6,4}$
(2) Carefully embed G_{E} in $E_{8,4}$ via $\iota_{E}: G_{E} \rightarrow E_{8,4}$
(3) Define $\theta_{E}=\iota_{E}^{*}\left(\theta_{\min }\right)$, the pull-back of the modular form generating the minimal representation on $E_{8,4}$
(9) The Fourier coefficients of θ_{E} can then be computed from those of $\theta_{\text {min }}$
(3) $\theta_{\min }$ only has nonzero Fourier coefficients for the most degenerate ω, those ω of rank 1
(0) This vanishing of $a_{\theta_{\text {min }}}(\omega)$ imposes a strong arithmetic condition on the Fourier coefficients of θ_{E}.

Thank you for your attention!

