Special automorphic forms on exceptional groups

Aaron Pollack

June 2020

Aaron Pollack Special automorphic forms on exceptional groups

1 Introduction

2 Modular forms on exceptional groups

* 3 > < 3</p>

Overview

• This talk is about: Analogue of Siegel modular forms to certain exceptional algebraic groups

Siegel modular forms

- Special automorphic forms for the group Sp_{2n}
- They have a "robust" Fourier expansion
- Are connected to arithmetic

Modular forms on exceptional groups

- Theory initiated by Gross-Wallach, studied by Gan-Gross-Savin, Loke, Weissman, and the speaker
- Special automorphic forms for the groups G_2 , D_4 , F_4 , $E_{6,4}$, $E_{7,4}$, $E_{8,4}$
- Theorem 1: They have a "robust" Fourier expansion
- **Theorem 2**: Examples of said modular forms that are "arithmetic" in the sense that they have $\overline{\mathbf{Q}}$ -valued Fourier expansions

Siegel modular forms

The symplectic group

•
$$\operatorname{Sp}_{2n} = \{g \in \operatorname{GL}(2n) : {}^{t}g\left({}_{-1_{n}} {}^{1_{n}} \right)g = \left({}_{-1_{n}} {}^{1_{n}} \right)\}$$

•
$$Sp_{2n} \supseteq U(n) \simeq \left\{ \left(\begin{smallmatrix} a & b \\ -b & a \end{smallmatrix} \right) : a + ib \in U(n) \right\}$$

The symmetric space

- $S_n := n \times n$ symmetric matrices
- $\mathcal{H}_n = \{Z = X + iY : X, Y \in S_n(\mathbf{R}), Y > 0\}$ the Siegel upper half-space
- $\mathcal{H}_n \simeq \operatorname{Sp}_{2n}(\mathbf{R})/U(n)$ the symmetric space

 $\operatorname{Sp}_{2n}(\mathbf{R})$ acts on $\operatorname{Sp}_{2n}(\mathbf{R})/U(n)=\mathcal{H}_n$ via

$$g \cdot Z = (aZ + b)(cZ + d)^{-1}$$

if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $n \times n$ block form.

Siegel modular forms: continued

Siegel modular form of weight $\ell > 0$:

Definition and basic properties

- $f: \mathcal{H}_n \to \mathbf{C}$ holomorphic such that
- f((aZ + b)(cZ + d)⁻¹) = det(cZ + d)^ℓf(Z) for all (^a_c ^b_d) ∈ Γ some congruence subgroup of Sp_{2n}(Z)
- Fourier expansion:

$$f(Z) = \sum_{T \in S_n(\mathbf{Q}), T \ge 0} a_f(T) e^{2\pi i \operatorname{tr}(TZ)}$$

with $a_f(T) \in \mathbf{C}$ and $T \ge 0$ means "*T* is positive semi-definite".

• If n = 1, these are classical modular forms for SL₂

If f a Siegel modular form, can consider $f \in H^0(\Gamma \backslash \mathcal{H}_n, \mathcal{L}^\ell)$

 \bullet a global section of a holomorphic line bundle \mathcal{L}^ℓ on $\Gamma \backslash \mathcal{H}_n$

$$arphi: \operatorname{Sp}_{2n}(\mathbf{Q})ackslash\operatorname{Sp}_{2n}(\mathbf{A})
ightarrow \mathbf{C}$$
 with

The definition

$$\ \ \, { \ \, } \ \ \, \varphi(gk)=z(k)^{-\ell}\varphi(g) \ \ \, { for all } \ k\in U(n), \ z: \ U(n) \stackrel{\rm det}{\rightarrow} U(1)\subseteq { \bf C}^{\times}$$

2 $\mathcal{D}_{CR,\ell}\varphi \equiv 0$: φ annihilated by linear differential operator $\mathcal{D}_{CR,\ell}$ so that f_{φ} on \mathcal{H}_n satisfies the Cauchy-Riemann equations

The Fourier expansion

$$\varphi_f\left(\begin{pmatrix}1 & X\\ & 1\end{pmatrix}\begin{pmatrix}Y^{1/2} \\ & Y^{-1/2}\end{pmatrix}\right) = \varphi_f(n(X)m)$$
$$= \sum_{T \in S_n(\mathbf{Q}), T \ge 0} a_{\varphi}(T) e^{2\pi i \operatorname{tr}(TX)} e^{-2\pi \operatorname{tr}(TY)}$$

where $iY = m \cdot i$ in \mathcal{H}_n and $a_{\varphi}(T) \in \mathbf{C}$.

Automorphically

• $\pi = \bigotimes_{\nu} \pi_{\nu}$ with π_{∞} a holomorphic discrete series representation

Classical modular forms

Suppose G a reductive **Q**-group;

- $K \subseteq G(\mathbf{R})$ a maximal compact subgroup.
- If $G(\mathbf{R})/K$ is a Hermitian tube domain

• e.g.
$$G = GSp_{2n}, GU(n, n), SO(2, n), GE_{7,3}$$

• Then there is a notion of "modular forms" on G

Modular forms

Automorphic forms for $G(\mathbf{A})$ that give rise to sections of holomorphic line bundles on $G(\mathbf{R})/K$

- These automorphic forms have a robust notion of Fourier expansion
- Are closely connected to arithmetic: E.g., there is a basis of the space of modular forms, all of whose Fourier coefficients are in $\overline{\mathbf{Q}}$

Usefulness of Holomorphic modular forms

- Classical generating functions: Theta functions whose Fourier coefficients are representation numbers of quadratic forms
- Construction of cusp forms: The Ikeda lift and its generalizations
- L-values: Particularly useful for applications to Deligne's conjecture on special values of *L*-functions
- P-adic L-functions: p-adic interpolation of L-values and applications
- Geometric generating functions (Kudla program): Generating functions whose coefficients are certain cohomology classes

• • = • • = •

1 Introduction

2 Modular forms on exceptional groups

Aaron Pollack Special automorphic forms on exceptional groups

• = • •

Most G do not have $G(\mathbf{R})/K$ Hermitian

- **Classical groups**: Fixing the Dynkin type, can change the real form so that *G*/*K* Hermitian: E.g., GU(*n*, *n*) (type *A*), SO(2, *n*) (type *B* and *D*), Sp_{2n} (type *C*)
- **Exceptional groups**: For *G* of Dynkin type *G*₂, *F*₄, *E*₈, no real form has *G*/*K* Hermitian

Question

Given an exceptional Dynkin type, can one single out a class of special automorphic forms, similar to the holomorphic modular forms on tube domains?

Answer

Gross-Wallach: Look at G with

- $G(\mathbf{R})$ possessing discrete series (rank K equals rank G)
- 2) $\pi = \pi_f \otimes \pi_\infty$ with π_∞ a discrete series
- Moreover, take π_{∞} with smallest possible GK-dimension among the discrete series and simplest minimal K-type

The groups

The reductive groups

- Exceptional: G split of type G_2 or F_4 , or $E_{6,4}$, $E_{7,4}$, $E_{8,4}$ with real rank four
- Classical: G isogenous to SO(4, n) with $n \ge 3$

The maximal compact subgroups:

- Suppose G is adjoint, of the above type;
- $K \subseteq G(\mathbf{R})$ the maximal compact subgroup
- $K = (SU(2) \times L)/\mu_2$ for some L
- e.g. $G = G_2$, $K = (SU(2) \times SU(2))/\mu_2$; the first SU(2) is the "long-root" SU(2)
- So, always a normal SU(2)
- Compare If H reductive group over R with Hermitian symmetric space, than K_H (maximal compact of H(R)) has a normal U(1)

The modular forms

Gross-Wallach: The groups G have quaternionic discrete series

 There is a discrete series π_ℓ of the groups G above, with minimal K = (SU(2) × L)/μ₂-type Sym^{2ℓ}(V₂) ⊠ 1 =: V_ℓ

Modular forms of weight ℓ

Definition 1 (Gan-Gross-Savin)

Suppose $\ell \geq 1$ an integer and $\varphi : \pi_{\ell} \to \mathcal{A}(G)$ a $G(\mathbf{R})$ -equivariant morphism. Then φ is a modular form of weight ℓ .

Equivalent definition

Definition 2

Suppose $\ell \ge 1$ is an integer and $F : G(\mathbf{Q}) \setminus G(\mathbf{A}) \to V_{\ell}^{\vee}$ an automorphic form satisfying $F(gk) = k^{-1} \cdot F(g)$ for all $g \in G(\mathbf{A})$ and $k \in K \subseteq G(\mathbf{R})$. Then F is a modular form of weight ℓ if $D_{\ell}F = 0$ for a certain linear differential operator D_{ℓ} .

< ロ > < 同 > < 回 > < 回 >

Suppose $F : G(\mathbf{R}) \to V_{\ell}^{\vee}$ satisfies $F(gk) = k^{-1} \cdot F(g)$ for all $g \in G(\mathbf{R})$ and $k \in K$.

- Cartan involution: $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$.
- Let $\{X_i\}_i$ be a basis of \mathfrak{p} and $\{X_i^*\}_i$ the dual basis of \mathfrak{p}^* .

A formal operator

Define $\widetilde{D}F: G(\mathbf{R}) \to V_{\ell}^{\vee} \otimes \mathfrak{p}^*$ via

$$\widetilde{D}F(g) = \sum_i (X_iF)(g) \otimes X_i^*.$$

• $\mathfrak{p} = V_2 \boxtimes W$ as representation of $\mathsf{SU}(2) \times L$

•
$$V_\ell^{ee}\otimes \mathfrak{p}=Sym^{2\ell-1}(V_2)\boxtimes W\oplus Sym^{2\ell+1}(V_2)\boxtimes W$$

The operator D_ℓ

Define $pr: V_{\ell}^{\vee} \otimes \mathfrak{p}^* \twoheadrightarrow Sym^{2\ell-1}(V_2) \boxtimes W$ and

$$D_{\ell} := pr \circ \widetilde{D}.$$

1 Introduction

2 Modular forms on exceptional groups

• = • •

The Heisenberg parabolic

Let G be a group of the quaternionic type, $P = HN \subseteq G$ the Heisenberg parabolic. The unipotent radical N is two-step: $Z \subseteq N$ is one-dimensional and N/Z = W is abelian

Examples

•
$$G = SO(4, n)$$
, $P = (GL_2 \times SO(2, n-2))N$ with $N/Z = V_2 \otimes V_n$, V_n quadratic space of signature $(2, n-2)$

•
$$G = G_2$$
, $P = \operatorname{GL}_2 N$ with $N/Z = Sym^3(V_2) \otimes \det(V_2)^{-1}$

•
$$G = F_4$$
, $P = GSp_6 N$ with N/Z the third fundamental representation of GSp_6

- $G = E_{6,4}$, P = HN with $H \approx GU(3,3)$ and N/Z the 20-dimensional (twisted) exterior cube representation
- $G = E_{7,4}$, P = HN with H of type D_6 and N/Z the 32-dimensional half-spin representation
- $G = E_{8,4}$, $P = GE_{7,3}N$ with N/Z the 56-dimensional representation of GE_7

The Fourier expansion of modular forms

- Suppose F is a modular form of even weight ℓ on G.
- Consider $F_Z(g) = \int_{[Z]} F(zg) dz$, the constant term of F along Z.

Denote by $n: W(\mathbf{R}) \simeq N/Z$, $\langle \, , \, \rangle$ the H-invariant symplectic form on W

Theorem 3

Suppose $\ell \ge 1$ is fixed. For $\omega \in W(\mathbf{Q})$ satisfying " $\omega \ge 0$ ", there are explicit functions $\mathcal{W}_{\omega} : H(\mathbf{R}) \to V_{\ell}^{\vee}$ with the following property: If F is a modular form on G of weight ℓ , with there are Fourier coefficients $a_F(\omega) \in \mathbf{C}$ so that for $x \in W(\mathbf{R})$ and $h \in H(\mathbf{R})$

$$F_{Z}(n(x)h) = F_{N}(h) + \sum_{\omega \ge 0} a_{F}(\omega)e^{2\pi i \langle \omega, x \rangle} \mathcal{W}_{\omega}(h)$$

where F_N is the constant term of F along N.

イロト イボト イヨト イヨト

The Fourier expansion of modular forms

Theorem 3 continued

Moreover,

$$\mathsf{F}_{\mathsf{N}}(h) = \Phi_{\mathsf{F}}(h) \mathsf{v}_{\ell} + eta_{\mathsf{F}} rac{\zeta(\ell+1)}{\zeta(\ell)} \mathsf{v}_0 + \overline{\Phi_{\mathsf{F}}(h)} \mathsf{v}_{-\ell}$$

for some holomorphic modular form Φ_F of weight ℓ on $H(\mathbf{R})$ and $\beta_F \in \mathbf{C}$. Here $\{v_{\ell}, v_{\ell-1}, \ldots, v_0, \ldots, v_{-\ell}\}$ is a certain basis of V_{ℓ}^{\vee} .

Surprising corollary:

Corollary 4

Suppose $\ell \ge 1$ and F a modular form of weight ℓ for G. If F is bounded as a function on $G(\mathbf{A})$ then F is cuspidal.

Fourier coefficients

Suppose F is a modular form on G of even weight ℓ .

Definition 5

The Fourier coefficients of F are the numbers $a_F(\omega)$, β_F , and the Fourier coefficients of Φ_F

Definition 6

Suppose $R \subseteq \mathbf{C}$ is a ring. One says F has Fourier coefficients in R if all the Fourier coefficients are of F are in $R \subseteq \mathbf{C}$.

- Warning: Unlike the case of holomorphic modular forms on GL₂, the algebraicity of the Hecke eigenvalues does not imply the algebraicity of the Fourier coefficients.
- There is no *a priori* reason to expect any modular form to have Fourier coefficients in a small ring (e.g., **Z**, **Q**, **Q**)
- Definitions above crucially use Theorem on Fourier expansion as input

Proof of Theorem 3

Fix $\chi : \mathcal{N}(\mathbf{R}) \to \mathbf{C}^{\times}$ a unitary character.

Proof of Theorem 3

The proof of Theorem 3 proceeds by making a complete and explicit analysis of all moderate growth functions $\mathcal{W}_{\chi} : G(\mathbf{R}) \to V_{\ell}^{\vee}$ satisfying **1** $\mathcal{W}_{\chi}(gk) = k^{-1} \cdot \mathcal{W}_{\chi}(g)$ for all $k \in K$ and $g \in G(\mathbf{R})$ **2** $\mathcal{W}_{\chi}(ng) = \chi(n)\mathcal{W}_{\chi}(g)$ for all $n \in N(\mathbf{R})$ and $g \in G(\mathbf{R})$ **3** $D_{\ell}\mathcal{W}_{\chi}(g) \equiv 0$.

The analysis implies

Multiplicity one

dim $Hom_{N(\mathbf{R})}(\pi_{\ell}, \chi) \leq 1$ if χ nontrivial, and is 0 unless $\chi \geq 0$.

For generic $\chi,$ this multiplicity one result was previous proved by Wallach (via a different method)

イロト イポト イラト イラト

1 Introduction

2 Modular forms on exceptional groups

3 The Fourier expansion

* 3 > < 3</p>

Modular forms with algebraic Fourier coefficients

Theorem 7

There are examples of modular forms with Fourier coefficients in small rings:

- On E_{8,4}, the minimal and next-to-minimal modular forms (weight 4 and weight 8) have Fourier coefficients in Q. These modular forms have many Fourier coefficients equal to 0. Uses key input from work of W.T. Gan and G. Savin.
- On E_{6,4}, there is a weight 4 modular form with all Fourier coefficients in Z. This example is "distinguished" but not "singular", and is closely connected to "arithmetic invariant theory".
- On Spin(8) and G₂, there are nonzero cusp forms of arbitrarily large weight with all Fourier coefficients in Q. Examples constructed using the theta correspondence SO(4,4) ↔ Sp₄.
 - The Theorem says that some modular forms on exceptional groups possess "surprising" arithmeticity.

Construction of cusp forms

There is θ -lift:

- $Sp_4 \leftrightarrow SO(4,4)$
- Start with holomorphic Siegel modular cusp forms f on Sp(4) of weight l, get θ(f) on SO(4,4)
- Rallis: $\theta(f)$ on SO(4, 4) is a cusp form.

Theorem 8

With appropriate Schwartz-Bruhat data for Weil representation, $\theta(f)$ is a nonzero weight ℓ modular form. Moreover, the Fourier coefficients of $\theta(f)$ are neatly described in terms of the Fourier coefficients of the f. In particular, the Fourier coefficients of $\theta(f)$ can be made to be nonzero algebraic integers.

• Analogue of special θ -lift $\widetilde{SL_2} \leftrightarrow SO(2, n)$: Doi-Naganuma, Niwa, Shintani, Kudla, Oda, Rallis-Schiffmann

Fourier coefficients of $\theta(f)$

W = V₂ ⊗ V₄ = e ⊗ V₄ ⊕ f ⊗ V₄, V₄ quadratic space of signature (2,2), e, f basis of V₂

• If
$$\omega = e \otimes v_e + f \otimes v_f$$
, set

$$S(\omega) = \frac{1}{2} \begin{pmatrix} (v_e, v_e) & (v_e, v_f) \\ (v_e, v_f) & (v_f, v_f) \end{pmatrix}.$$

Fourier coefficient formula

If ω is primitive, then $a_{\theta(f)}(\omega) = a_f(S(\omega))$.

- If ω is not primitive, then there is a slightly more complicated formula for a_{θ(f)}(ω)
- Formula implies that a_{θ(f)}(ω) are nonzero algebraic integers if the a_f's are

伺 ト イヨト イヨト

Corollary 9

Suppose $\ell \ge 16$ is even. Then there are nonzero cuspidal modular forms of weight ℓ on G_2 with all Fourier coefficients in $\overline{\mathbf{Q}}$.

Proof of Corollary.

- Embed $\iota : G_2 \hookrightarrow SO(4, 4)$
- 2 Set $F = \iota(\theta(f))$
- **③** One can show that F is still cuspidal modular form of weight ℓ
- Using crucially the positive semi-definiteness condition for the nonvanishing of Fourier coefficients of modular forms, can check that the Fourier coefficients of *F* are finite sums of Fourier coefficients of θ(f), thus still algebraic integers

Remark: Rallis-Schiffmann, Li-Schwermer constructed different cohomological cusp forms on G_2 via $G_2 \subseteq SO(3,4) \leftrightarrow \widetilde{SL_2}$.

周 ト イ ヨ ト イ ヨ ト

Necessary digression

Recall:

- *H*: The Levi subgroup of the Heisenberg parabolic subgroup of *G*
- *W*: The abelianized unipotent radical of the Heisenberg parabolic subgroup of *G*

Rank of Fourier coefficients

- The action of H(C) on W(C) = N/Z(C) has four nonzero orbits
- If $\omega \neq {\rm 0},\,\omega \in W,$ one say ω has rank 1,2,3 or 4 depending on the orbit
- The open orbit of H on W consists of those ω of rank four
- The elements of rank one in *W* form the most degenerate nonzero orbit

Fact If *F* a modular form on *G* then *F* is a cusp form if and only if $F_N = 0$ and $a_F(\omega) = 0$ for all ω of rank 1, 2 and 3.

Heisenberg Eisenstein series

Suppose $G = E_{8,4}$, P Heisenberg parabolic.

 $\nu: P \to \mathsf{GL}_1$

generating the character group of P. On $G = E_{8,4}$,

$$|\nu(p)|^{29} = \delta_P(p)$$

for $p \in P$. Suppose

- $\ell \geq 1$ even
- $f(g, \ell; s) \in Ind_{P(\mathbf{A})}^{G(\mathbf{A})}(|\nu|^{s})$, certain $Sym^{2\ell}(V_{2})$ -valued section.
- $E(g, \ell; s) = \sum_{\gamma \in P(\mathbf{Q}) \setminus G(\mathbf{Q})} f(\gamma g, \ell; s)$ absolutely convergent for Re(s) > 29.
- If s = ℓ + 1 in range of absolute convergence, E(g, s = ℓ + 1)
 a modular form of weight ℓ for G

Question

Does $E(g, s = \ell + 1)$ have rational Fourier coefficients?

Next to minimal

Motivated by work of Gross-Wallach on continuation of quaternionic discrete series, take $\ell = 8$ and $G = E_{8,4}$.

Proposition

The Eisenstein series $E(g, \ell = 8; s)$ is regular at s = 9 (even though outside the range of absolute convergence), and defines square integrable weight 8 modular form at this point.

Set

$$\theta_{ntm}(g) = E(g, \ell = 8; s = 9)$$

Theorem 10 (Savin)

The spherical constituent of the degenerate principal series $Ind_{P(\mathbf{Q}_{p})}^{G(\mathbf{Q}_{p})}(|\nu|^{9})$ is "small", i.e., many twisted Jacquet modules are 0. Consequently, the rank three and rank four Fourier coefficients of θ_{ntm} are 0.

More on next-to-minimal modular form

On split E_8

- Analogous "next-to-minimal" automorphic form is spherical
- Studied by Michael B. Green-Stephen D. Miller-Pierre Vanhove
- Also by Dmitry Gourevitch-Henrik P. A. Gustafsson-Axel Kleinschmidt-Daniel Persson-Siddhartha Sahi

Theorem 11

The weight 8 modular form θ_{ntm} has rational Fourier coefficients.

Proof.

- Savin's result gives vanishing of rank three and four Fourier coefficients
- Explicit computation (outside range of abs. convergence) gives rationality of rank 1 and rank 2 Fourier coefficients
- Solution Constant term analyzed using work of H. Kim on weight 8 singular modular form on $GE_{7,3}$

Explicit computation of θ_{ntm}

- Define special $Sym^{2\ell}(V_2)$ -valued Eisenstein series $E_{\ell}(g)$ on SO(3, 4k + 3)
- Prove that the constant term θ_{ntm} from E_{8,4} down to SO(3,11) is E₈(g)
- Theorem: the E_l(g) have rational Fourier coefficients (in a precise sense)
- The Fourier coefficients of $E_8(g)$ can be identified with rank 1 and rank 2 Fourier coefficients of θ_{ntm} .

To prove the $E_{\ell}(g)$ have rational Fourier coefficients:

Jacquet integral

Explicit computation of certain Archimedean Jacquet integral

$$\int_{V_{2,4k+2}(\mathbf{R})} e^{2\pi i(v,x)} f_{\ell}(wn(x)) \, dx.$$

イロト イポト イラト イラト

The minimal modular form on $E_{8,4}$

• Defined by Gan as special value

$$\theta_{min}(g) = E(g, \ell = 4; s = 5)$$

(outside the range of absolute convergence). Gan proves that it is square integrable automorphic form

• Analogue on split E_8 studied by Ginzburg-Rallis-Soudry

Theorem 12

 θ_{min} is a modular form of weight 4 with Fourier coefficients in Z.

- Local results (Savin) imply rank 2,3,4 Fourier coefficients are 0
- Sazhdan-Polischuk: up to constant multiple, the rank 1 FCs are divisor sums σ₄(n)
- Solution Theorem: when θ_{min} is normalized to have integer rank one Fourier coefficients, the constant term also has integer coefficients.

A distinguished modular form

Globally, there is an arithmetic invariant on the orbits of $H(\mathbf{Q})$ on $W(\mathbf{Q})$:

 $q: W(\mathbf{Q})^{rk=4} \to \mathbf{Q}^{\times}/(\mathbf{Q}^{\times})^2 = \{ \text{ quadratic etale extensions of } \mathbf{Q} \}.$

Fact: If *F* a modular form on *G*, $\omega \in W(\mathbf{Q})$ and $q(\omega) > 0$ then $a_F(\omega) = 0$. In other words, only ω corresponding to imaginary quadratic fields can have associated nonzero Fourier coefficients Fix an imaginary quadratic extension E/\mathbf{Q} . Associated to *E*, there is a group G_E over \mathbf{Q} of type $E_{6,4}$.

Theorem 13

There is a weight 4 modular form θ_E on G_E with Fourier coefficients in **Z** such that θ_E has nonzero Fourier coefficients of all ranks and

If ω ∈ W(Q)^{rk=4} and q(ω) ∈ Q[×]/(Q[×])² does not represent E, then the Fourier coefficient a_{θE}(ω) = 0

Proof of Theorem 13:

- **1** Define G_E , which is simply-connected of type $E_{6,4}$
- 2 Carefully embed G_E in $E_{8,4}$ via $\iota_E: G_E \to E_{8,4}$
- Solution Define $\theta_E = \iota_E^*(\theta_{min})$, the pull-back of the modular form generating the minimal representation on $E_{8,4}$
- The Fourier coefficients of θ_E can then be computed from those of θ_{min}
- θ_{min} only has nonzero Fourier coefficients for the most degenerate ω, those ω of rank 1
- This vanishing of $a_{\theta_{min}}(\omega)$ imposes a strong arithmetic condition on the Fourier coefficients of θ_E .

• • = • • = •

Thank you for your attention!

э