The Mackey bijection for real groups and geometrical realizations

Alexandre Afgoustidis

CEREMADE, Université Paris-Dauphine

June 29, 2020

G: real linear reductive group

($G = G(\mathbb{R})$, real points of a connected complex reductive algebraic group G)

G: real linear reductive group

($G = G(\mathbb{R})$, real points of a connected complex reductive algebraic group G)

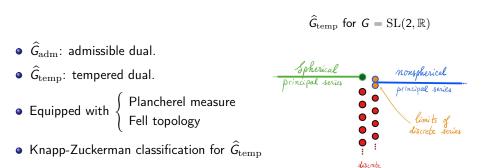
- \hat{G}_{adm} : admissible dual.
- $\widehat{G}_{\text{temp}}$: tempered dual.

• Equipped with { Plancherel measure Fell topology

• Knapp-Zuckerman classification for $\widehat{G}_{ ext{temp}}$

G: real linear reductive group

 $(G = \mathbf{G}(\mathbb{R}), \text{ real points of a connected complex reductive algebraic group } \mathbf{G})$



Series

Cartan motion group

Riemm. symm. space G/K, curvature < 0

- G : real reductive group
- K: maximal compact subgroup

Cartan motion group

Riemm. symm. space G/K, curvature < 0

- G : real reductive group
- *K*: maximal compact subgroup
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: Cartan decomposition

Tangent space $\mathfrak{p} = T_{\mathbf{1}_G \kappa}(G/\kappa)$

Cartan motion group

Riemm. symm. space G/K, curvature < 0

- G : real reductive group
- *K*: maximal compact subgroup
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: Cartan decomposition

Tangent space $\mathfrak{p} = T_{\mathbf{1}_G \kappa}(G/K)$

Cartan motion group:

$$G_0 = K \ltimes \mathfrak{p}$$

(isometry group of flat p)

Deforming G to G_0

Riemm. symm. space G/K, curvature < 0

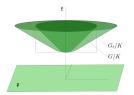
 $\begin{aligned} \varphi : \mathcal{K} \times \mathfrak{p} &\to \mathcal{G} \\ (k, v) &\mapsto \exp(v)k, \end{aligned}$

Deforming G to G_0

Riemm. symm. space G/K, curvature < 0

$$\begin{aligned} \varphi : \mathcal{K} \times \mathfrak{p} &\to \mathcal{G} \\ (k, v) &\mapsto \exp(v)k, \end{aligned}$$

The family $(G_t)_{t>0}$:



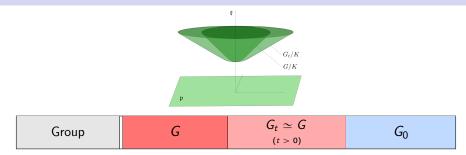
For t > 0, use

$$\begin{aligned} \varphi_t : \mathcal{K} \times \mathfrak{p} &\to \mathcal{G} \\ (k, v) &\mapsto \exp(tv)k, \end{aligned}$$

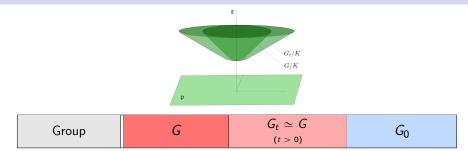
to define

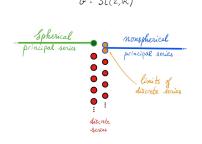
$$G_t = ext{group} egin{cases} ext{with underlying set } K imes \mathfrak{p} \ ext{product law making } arphi_t ext{ isom} \end{cases}$$

A puzzle



A puzzle





$$G \simeq SO(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$$

$$Spherical$$

$$o - dim$$

$$cryz = i$$

$$cryz = i$$

A puzzle, continued

Two problems: **Mackey**, **1971-75** : there should exist a natural bijection $\widehat{G}_{\text{temp}} \leftrightarrow \widehat{G}_0$. Connes & Higson, 1990-94 :

Group	G	$G_t \simeq G$ $(t > 0)$	G ₀
Dual	Ĝ	Ĝ	Ĝ
space	5	J _t	00

A puzzle, continued

Two problems:

Mackey, 1971-75 : there should exist a natural bijection $\widehat{G}_{\text{temp}} \leftrightarrow \widehat{G}_{0}$.

Connes & Higson, 1990-94 : the Baum-Connes-Kasparov isomorphism, between $K(C^*_{\ell}(G_0))$ and $K(C^*_{\ell}(G))$, should be a reflection of its properties.

Group	G	$\begin{array}{c} G_t \simeq G \\ (t > 0) \end{array}$	G ₀
Dual space	$\widehat{\mathcal{G}}_{ ext{temp}}$	$(\widehat{G}_t)_{ ext{temp}}$	\widehat{G}_0
Reduced C*-algebra	$C_r^*(G)$	$C_r^*(G_t)$	$C_r^*(G_0)$

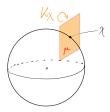
Constructing the (tempered) Mackey bijection

$$\widehat{G_0} \leftrightarrow \widehat{G}_{\text{temp}}$$

Unitary dual of G_0

Main tool: action of K on \mathfrak{p}^* .

Fix
$$\chi \in \mathfrak{p}^*$$
 and $\mu \in \widehat{K_{\chi}}$.

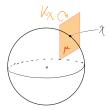


Unitary dual of G_0

Main tool: action of K on \mathfrak{p}^* .

Consider the centralizer

$$Z_{G_{\mathbf{0}}}(\chi) = K_{\chi} \ltimes \mathfrak{p}$$



- ② Out of (χ, μ), build a representation of Z_{G₀}(χ): $\mu \otimes e^{i\chi}$
- Is Form the induced representation

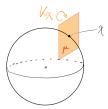
$$\mathbf{M}_{\mathbf{0}}(\chi,\mu) = \operatorname{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{G_{\mathbf{0}}}(\mu \otimes e^{i\chi}).$$

Unitary dual of G_0

Main tool: action of K on \mathfrak{p}^* .

Consider the centralizer

$$Z_{G_{\mathbf{0}}}(\chi) = K_{\chi} \ltimes \mathfrak{p}$$



- Out of (χ, μ), build a representation of Z_{G₀}(χ): $\mu \otimes e^{i\chi}$
- Is Form the induced representation

$$\mathsf{M}_{\mathsf{0}}(\chi,\mu) = \mathrm{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{G_{\mathbf{0}}}(\mu \otimes e^{i\chi}).$$

Theorem (Mackey 1949):

All unitary irreducible representations of G_0 have this form.

$$G = \mathrm{SL}(2,\mathbb{R})$$

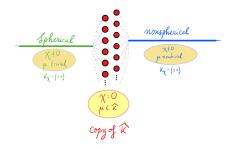
action of K on
$$\mathfrak{p} \iff \mathrm{SO}(2) \subset \mathbb{R}^2$$

• Fix
$$\chi \in \mathfrak{p}^{\star}$$
 and $\mu \in \widehat{K_{\chi}}$, form

$$Z_{G_{\mathbf{0}}}(\chi) = K_{\chi} \ltimes \mathfrak{p}$$

② Out of
$$(\chi,\mu)$$
, build a rep. of $Z_{G_0}(\chi)$: $\mu\otimes e^{i\chi}$

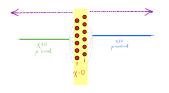
$$\mathbf{M}_{\mathbf{0}}(\chi,\mu) = \operatorname{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{G_{\mathbf{0}}}(\mu \otimes e^{i\chi}).$$



What should a Mackey bijection look like?

Rescaling maps in the duals

for
$$\alpha > 0$$
, $\mathbf{R}_{\alpha}^{\widehat{G_0}} : \widehat{G_0} \to \widehat{G_0}$



- Start with $\pi \in \widehat{G_0}$
- Write it as $\mathbf{M}_{0}(\chi,\mu)$, where $\begin{cases} \chi \in \mathfrak{p}^{\star} \\ \mu \in \widehat{K}_{\chi} \end{cases}$

• Send it to $\mathbf{M}_0(\frac{\chi}{\alpha},\mu)$

What should a Mackey bijection look like?

Rescaling maps in the duals

for
$$\alpha > 0$$
, $\mathsf{R}_{\alpha}^{\widehat{\mathsf{G}}_{\text{temp}}} : \widehat{\mathsf{G}}_{\text{temp}} \to \widehat{\mathsf{G}}_{\text{temp}}$

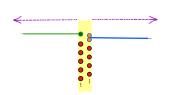
- Start with $\pi \in \widehat{\mathcal{G}}_{temp}$
- Write π as a submodule of $\operatorname{Ind}_{MAN}^{G}(\sigma \otimes e^{i\chi})$
 - LN: cuspidal parabolic subgroup
 - L = MA: Langlands decomposition of L
 - σ : discrete series representation of M

• $\chi \in \mathfrak{a}^{\star}$

 $\bullet~$ Send π to the irreducible subrepresentation of

$$\operatorname{Ind}_{MAN}^{G}(\sigma \otimes e^{i\frac{\chi}{\alpha}})$$

that has the same restriction to K as π .



What should a Mackey bijection look like?

Rescaling-invariant representations

• For G_0 : representations of the form $M_0(0,\mu)$, with $\mu \in \widehat{K}$.

• For G: reps that occur in some $\operatorname{Ind}_{MAN}^{G}(\sigma \otimes e^{i0}), \ \sigma \in \widehat{M}_{DS}$:

Irreducible tempered reps of G with real infinitesimal character

Any bijection that commutes with the rescaling maps must induce a bijection between \hat{K} and $\hat{G}_{\rm RIC}$.

Lowest K-types and a theorem of Vogan

- Vogan introduces a positive-valued function $\| \cdot \|_{\widehat{K}}$ on \widehat{K}
- For R > 0, there are only a finite number of $\lambda \in \widehat{K}$ such that $\|\lambda\|_{\widehat{K}} \leq R$.
- Every representation in \widehat{G}_{adm} has a finite number of lowest K-types.

Lowest K-types and a theorem of Vogan

- Vogan introduces a positive-valued function $\|\cdot\|_{\widehat{K}}$ on \widehat{K}
- For R > 0, there are only a finite number of $\lambda \in \widehat{K}$ such that $\|\lambda\|_{\widehat{K}} \leq R$.
- Every representation in \widehat{G}_{adm} has a finite number of lowest K-types.

Theorem (Vogan 1981):

If π has real infinitesimal character, then π has a unique lowest K-type.
 Inequivalent π in Ĝ_{RIC} have different lowest K-types.

③ Every K-type occurs as the lowest K-type of a representation in \widehat{G}_{RIC} .

So there exists a unique bijection

$$\widehat{\mathcal{K}} \to \widehat{\mathcal{G}}_{\mathrm{RIC}} \mu \mapsto \mathbf{V}_{\mathcal{G}}(\mu)$$

that is compatible with lowest K-types.

What should a Mackey bijection $\widehat{G}_0 \rightarrow \widehat{G}_{temp}$ look like?

If it is compatible with rescaling maps and preserves lowest K-types, then it must coincide with $\mu \mapsto \mathbf{V}_{\mathcal{G}}(\mu)$ on $\widehat{\mathcal{K}}$.

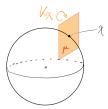
Every representation in \widehat{G}_0 reads $\mathbf{M}_0(\chi, \mu)$ for some (χ, μ) .

Can we build a representation of G out of a pair (χ, μ) when $\chi \neq 0$?

Main tool: action of K on \mathfrak{p}^* .

Consider the centralizer

$$Z_{G_{\mathbf{0}}}(\chi) = K_{\chi} \ltimes \mathfrak{p}$$



- ② Out of (χ, μ) , build a representation of $Z_{G_0}(\chi)$: $\mu \otimes e^{i\chi}$
- Is Form the induced representation

$$\mathsf{M}_{\mathsf{0}}(\chi,\mu) = \mathrm{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{G_{\mathbf{0}}}(\mu \otimes e^{i\chi}).$$

Theorem (Mackey 1949):

All unitary irreducible representations of G_0 have this form.

• Start with χ in \mathfrak{p}^* and μ in $\widehat{K_{\chi}}$.

• Start with χ in \mathfrak{p}^* and μ in $\widehat{K_{\chi}}$.

Set

$$L_{\chi} = \{g \in G , \operatorname{Ad}^{\star}(g)\chi = \chi\}$$

= centralizer of χ in G .

Then $K_{\chi} \subset L_{\chi}$, and is a maximal compact subgroup there.

• Start with
$$\chi$$
 in \mathfrak{p}^* and μ in $\widehat{K_{\chi}}$.

• Set $L_{\chi} = \{g \in G , \operatorname{Ad}^{\star}(g)\chi = \chi\}$ $= \text{ centralizer of } \chi \text{ in } G.$

Then $K_{\chi} \subset L_{\chi}$, and is a maximal compact subgroup there.

Define

$$\sigma = \mathbf{V}_{L_{\chi}}(\mu) \otimes e^{i\chi},$$

a tempered irreducible representation of L_{χ} .

• Mackey datum
$$(\chi, \mu) \longleftrightarrow \begin{cases} L_{\chi} = \text{centralizer of } \chi \text{ in } G, \\ \sigma = \mathbf{V}_{L_{\chi}}(\mu) \otimes e^{i\chi}. \end{cases}$$

• Mackey datum
$$(\chi, \mu) \longleftrightarrow \begin{cases} L_{\chi} = \text{centralizer of } \chi \text{ in } G, \\ \sigma = \mathbf{V}_{L_{\chi}}(\mu) \otimes e^{i\chi}. \end{cases}$$

Build

$$P_{\chi}=L_{\chi}N_{\chi},$$

a parabolic subgroup with Levi factor L_{χ} (it contracts on $K_{\chi} \ltimes \mathfrak{p}$).

• Mackey datum
$$(\chi, \mu) \rightsquigarrow \begin{cases} L_{\chi} = \text{centralizer of } \chi \text{ in } G, \\ \sigma = \mathbf{V}_{L_{\chi}}(\mu) \otimes e^{i\chi}. \end{cases}$$

Build

$$P_{\chi}=L_{\chi}N_{\chi},$$

a parabolic subgroup with Levi factor L_{χ} (it contracts on $K_{\chi} \ltimes \mathfrak{p}$).

• Inflate σ to a representation of P_{χ} , and define $\mathbf{M}(\chi,\mu) = \operatorname{Ind}_{P_{\chi}}^{\mathcal{G}}(\sigma).$

• Mackey datum
$$(\chi, \mu) \longleftrightarrow \begin{cases} L_{\chi} = \text{centralizer of } \chi \text{ in } G, \\ \sigma = \mathbf{V}_{L_{\chi}}(\mu) \otimes e^{i\chi}. \end{cases}$$

Build

$$P_{\chi}=L_{\chi}N_{\chi},$$

a parabolic subgroup with Levi factor L_{χ} (it contracts on $K_{\chi} \ltimes \mathfrak{p}$).

• Inflate σ to a representation of $P_{\chi},$ and define

$$\mathbf{M}(\chi,\mu) = \operatorname{Ind}_{P_{\chi}}^{G}(\sigma).$$

Theorem (\sim 2016):

- $\mathbf{M}(\chi,\mu)$ is always irreducible ;
- The correspond^{ce} $(\chi, \mu) \mapsto \mathbf{M}(\chi, \mu)$ induces a map $\widehat{G}_0 \to \widehat{G}_{temp}$;
- The correspondence is a bijection.

The Mackey-Higson bijection: a few reasons to like it

$$\operatorname{Ind}_{K_{\chi}\ltimes\mathfrak{p}}^{G_{0}}\left(\mu\otimes e^{i\chi}\right)\quad\longleftrightarrow\quad\operatorname{Ind}_{L_{\chi}N_{\chi}}^{G}\left(\mathsf{V}_{L_{\chi}}(\mu)\otimes e^{i\chi}\right)$$

- preserves lowest K-types and commutes with the rescaling maps
- is a piecewise homeomorphism
 - \rightarrow leads to a new proof of the Baum-Connes-Kasparov 'conjecture'
- is continuous from \widehat{G}_{temp} to \widehat{G}_0 (joint work with A. M. Aubert)
 - \rightarrow see recent work of Higson & Romàn on C*-algebra embeddings
- extends (easily) to a bijection between the admissible duals
 - \rightarrow related to several results of Higson & Subag
 - \rightarrow related to work of Bernstein, Higson & Subag on algebraic families

Deformations of tempered representations

One representation at a time

Starting with (χ,μ) ,

- View it as a Mackey datum for $G \rightsquigarrow$ construction of $\pi \curvearrowright \mathbf{V}$
- For t > 0, view it as a Mackey datum for $G_t \rightsquigarrow$ construction of $\pi_t \subset \mathbf{V}_t$

Starting with (χ, μ) ,

- View it as a Mackey datum for $G \rightsquigarrow$ construction of $\pi \curvearrowright \mathbf{V}$
- For t > 0, view it as a Mackey datum for $G_t \rightsquigarrow$ construction of $\pi_t \subset \mathbf{V}_t$

• As $t \to 0$, is there a kind of convergence of V_t to V_0 and π_t to π_0 ?

Starting with (χ, μ) ,

- View it as a Mackey datum for ${\mathcal G} \leadsto$ construction of $\pi \curvearrowright {\mathbf V}$
- For t > 0, view it as a Mackey datum for $G_t \rightsquigarrow$ construction of $\pi_t \subset \mathbf{V}_t$

- As $t \to 0$, is there a kind of **convergence of V**_t **to V**₀ and π_t to π_0 ?
- A way to give this a meaning:
 - Embed all V_t s in a common space **E**.
 - This will determine evolution operators $V \rightarrow V_t$.

Starting with (χ, μ) ,

- View it as a Mackey datum for ${\mathcal G} \leadsto$ construction of $\pi \curvearrowright {\mathbf V}$
- For t > 0, view it as a Mackey datum for $G_t \rightsquigarrow$ construction of $\pi_t \subset \mathbf{V}_t$

- As $t \to 0$, is there a kind of **convergence of V**_t **to V**₀ and π_t to π_0 ?
- A way to give this a meaning:
 - Embed all V_t s in a common space **E**.
 - This will determine evolution operators $V \rightarrow V_t$.
 - Could there be a topology on E for which "everything" converges?

- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of L^2 sol^{ns} of a **Dirac equation** on G/K.

- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of L² sol^{ns} of a **Dirac equation** on G/K.

For a special finite-dim. K-module $U = V^{\mu^{\flat}} \otimes S$ that contains μ exactly once,

- the equivariant bundle $\mathfrak{E} = G \times_{K} U$ over G/K
- and the *G*-invariant Dirac operator *D* (acting on smooth sections of \mathfrak{E}) satisfy:

Theorem (Atiyah-Schmid - 1977) :

1. The L^2 kernel of D carries an irreducible repⁿ of G with class π .

- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of L² sol^{ns} of a **Dirac equation** on G/K.

For a special finite-dim. K-module $U = V^{\mu^{\flat}} \otimes S$ that contains μ exactly once,

- the equivariant bundle $\mathfrak{E} = G \times_{K} U$ over G/K
- and the *G*-invariant Dirac operator *D* (acting on smooth sections of \mathfrak{E}) satisfy:

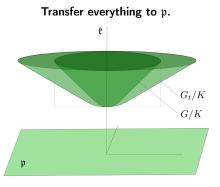
Theorem (Atiyah-Schmid - 1977) :

1. The L^2 kernel of *D* carries an irreducible rep^{*n*} of *G* with class π .

2. In fact, sections in the L^2 kernel of D explore the sub-bundle $G \times_K W^{\mu}$.

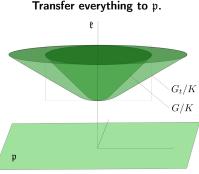
- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of L² sol^{ns} of a **Dirac equation** on G/K.



- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of $L^2 \operatorname{sol}^{ns}$ of a Dirac equation on G/K.



 \longrightarrow action of G_t and G_t -inv. metric on p. $\longrightarrow G_t$ -invariant Dirac operator

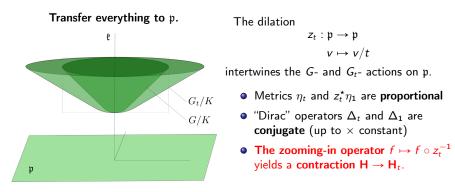
$$D_t \subset \Gamma(\mathfrak{p}, V^{\mu^{\flat}} \otimes S).$$

K Trivialize and project
$$\rightsquigarrow$$
 diff' operator
 $\Delta_t \subset \mathcal{C}^{\infty}(\mathfrak{p}, W^{\mu})$

$$L^2$$
 kernel H_t carries irred. rep. $\simeq V_{G_t}(\mu)$.

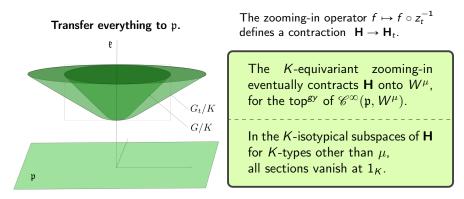
- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of L^2 sol^{ns} of a **Dirac equation** on G/K.

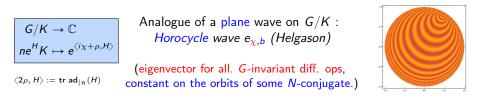


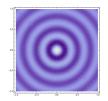
- G: connected semisimple with rank(G) = rank(K). Fix π in $\hat{G}_{discrete \ series}$.
 - We want to see how π "contracts" onto its lowest K-type μ .
 - Parthasarathy-Atiyah-Schmid :

 $\pi \simeq$ space of L^2 sol^{ns} of a **Dirac equation** on G/K.



Fix an Iwasawa decomposition G = KAN. For each χ in \mathfrak{a}^* ,





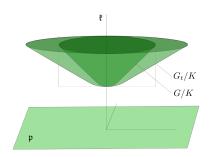
Sum of all $e_{\chi,bs}$ as b varies: spherical function φ_{χ} (Harish-Chandra)

(*K*-invariant function, eigenvector for all *G*-invariant diff.ops.)

$$\varphi_{\mathbf{\chi}} : G/K \to \mathbb{C}$$
$$x \mapsto \int_{K} e_{\mathbf{\chi},b}(x) db$$

Start with regular χ in \mathfrak{a}^* . Both $M_0(\chi, 1)$ and $M(\chi, 1)$ can be realized either

- on $\mathbf{H} = \mathbf{L}^2(K$ -orbit of χ in \mathfrak{p}^{\star}), or
- on a space of functions on p.

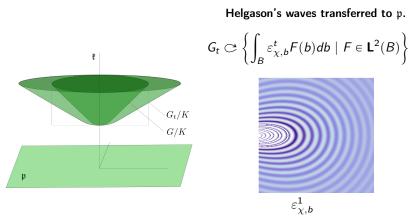


Helgason's waves transferred to $\ensuremath{\mathfrak{p}}.$

$$G_t \subset \left\{ \int_B \varepsilon^t_{\chi,b} F(b) db \mid F \in \mathbf{L}^2(B) \right\}$$

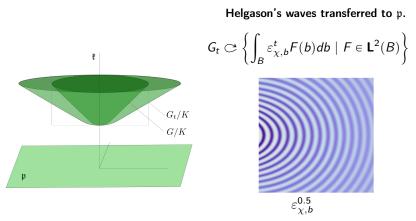
Start with regular χ in \mathfrak{a}^* . Both $\mathbf{M}_0(\chi, 1)$ and $\mathbf{M}(\chi, 1)$ can be realized either

• on
$$\mathbf{H} = \mathbf{L}^2(K$$
-orbit of χ in \mathfrak{p}^*), or



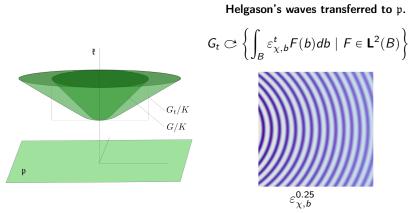
Start with regular χ in \mathfrak{a}^* . Both $\mathbf{M}_0(\chi, 1)$ and $\mathbf{M}(\chi, 1)$ can be realized either

• on
$$\mathbf{H} = \mathbf{L}^2(K$$
-orbit of χ in \mathfrak{p}^*), or



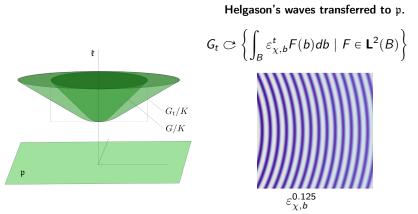
Start with regular χ in \mathfrak{a}^* . Both $M_0(\chi, 1)$ and $M(\chi, 1)$ can be realized either

• on $\mathbf{H} = \mathbf{L}^2(K$ -orbit of χ in \mathfrak{p}^*), or



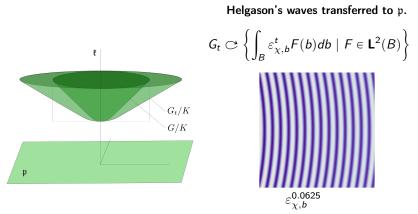
Start with regular χ in \mathfrak{a}^* . Both $M_0(\chi, 1)$ and $M(\chi, 1)$ can be realized either

• on
$$\mathbf{H} = \mathbf{L}^2(K$$
-orbit of χ in \mathfrak{p}^{\star}), or



Start with regular χ in \mathfrak{a}^* . Both $M_0(\chi, 1)$ and $M(\chi, 1)$ can be realized either

• on $\mathbf{H} = \mathbf{L}^2(K$ -orbit of χ in \mathfrak{p}^*), or



Start with $\pi \in \widehat{G}_{temp}$.

- Look for a Fréchet space **E**, and for each t > 0,
 - a subspace $V_t \subset E$
 - a map $\pi_t : K \times \mathfrak{p} \to \operatorname{End}(\mathbf{V}_t)$ defining a repⁿ of G_t on \mathbf{V}_t ,

Start with $\pi \in \widehat{G}_{temp}$.

- Look for a Fréchet space **E**, and for each t > 0,
 - a subspace $V_t \subset E$
 - a map $\pi_t : K \times \mathfrak{p} \to \operatorname{End}(\mathbf{V}_t)$ defining a repⁿ of G_t on \mathbf{V}_t ,
 - a map $C_t : V_1 \to V_t$ intertwining $\mathsf{R}_{\frac{1}{2}}^{\widehat{\mathsf{G}}_{\text{temp}}}(\pi_1)$ and $\pi_t \circ \varphi_t^{-1}$.

Start with $\pi \in \widehat{G}_{temp}$.

- Look for a Fréchet space **E**, and for each t > 0,
 - a subspace $V_t \subset E$
 - a map $\pi_t : K \times \mathfrak{p} \to \operatorname{End}(\mathbf{V}_t)$ defining a repⁿ of G_t on \mathbf{V}_t ,
 - a map $\mathbf{C}_t : \mathbf{V}_1 \to \mathbf{V}_t$ intertwining $\mathbf{R}_{\underline{1}}^{\mathbf{G}_{\text{temp}}}(\pi_1)$ and $\pi_t \circ \varphi_t^{-1}$.

• Try to arrange the choice of $(\mathbf{E}, (\mathbf{V}_t)_{t>0}, (\pi_t)_{t>0})$ so that as $t \to 0$,

- $\forall f \in \mathbf{V}_1$, the vector $f_t := \mathbf{C}_t f$ goes to some limit f_0 ,
- $\forall (k, v) \in K \times \mathfrak{p}, \ \pi_t(k, v) [f_t] \text{ goes to some limit } \pi_0(k, v) f_0.$

Then one obtains a representation (\mathbf{V}_0, π_0) of G_0 .

Start with $\pi \in \widehat{G}_{temp}$.

- Look for a Fréchet space **E**, and for each t > 0,
 - a subspace $V_t \subset E$
 - a map $\pi_t : K \times \mathfrak{p} \to \operatorname{End}(\mathbf{V}_t)$ defining a repⁿ of G_t on \mathbf{V}_t ,
 - a map $\mathbf{C}_t: \mathbf{V}_1 \to \mathbf{V}_t$ intertwining $\mathbf{R}^{\mathbf{G}_{\text{temp}}}_{\frac{1}{2}}(\pi_1)$ and $\pi_t \circ \varphi_t^{-1}$.
- Try to arrange the choice of $(\mathbf{E}, (\mathbf{V}_t)_{t>0}, (\pi_t)_{t>0})$ so that as $t \to 0$,
 - $\forall f \in \mathbf{V}_1$, the vector $f_t := \mathbf{C}_t f$ goes to some limit f_0 ,
 - $\forall (k, v) \in K \times \mathfrak{p}, \ \pi_t(k, v) [f_t] \text{ goes to some limit } \pi_0(k, v) f_0.$

Then one obtains a representation (\mathbf{V}_0, π_0) of G_0 .

Theorem (2018-2020)

For every $\pi \in \widehat{G}_{temp}$, a choice $(\mathbf{E}, (\mathbf{V}_t)_{t>0}, (\pi_t)_{t>0})$ can be made so that the representation (\mathbf{V}_0, π_0) of G_0 is irreducible and corresponds to π in the Mackey bijection.

Reduction to real infinitesimal character

• We saw how to contract representations of the form

 $\mathrm{Ind}_{MAN}^G(e^{i\chi})$

where L = MA is **minimal** and $\chi \in \mathfrak{a}^*$ is regular.

• Every irreducible representation $\pi \in \widehat{G}_{temp}$ reads

$$\operatorname{Ind}_{MAN}^{G}(\tau \otimes e^{i\chi})$$

where L = MA parabolic and $\tau \in \widehat{M}_{temp}$ has real infinitesimal character.

• To contract arbitrary tempered representations, we can proceed in two steps:

Ind a contraction for real-infinitesimal-character representations;

2 use the previous ideas to reduce the general case to that one.

The second step is full of technicalities... I will now focus on the first.

Real infinitesimal character: a strategy

Fix $\pi \in \widehat{G}_{RIC}$. Work of Vogan-Zuckerman, Knapp-Vogan, Wong:

Realizing π in a Dolbeault cohomology space for an elliptic coadjoint orbit G/L

Real infinitesimal character: a strategy

Fix $\pi \in \widehat{G}_{RIC}$. Work of Vogan-Zuckerman, Knapp-Vogan, Wong:

Realizing π in a Dolbeault cohomology space for an elliptic coadjoint orbit G/L

There exists

- a *quasi-split* Levi subgroup $L \subset G$
- an irreducible representation (V, σ) with real infinitesimal character,
- and an infinite-rank bundle

$$\mathcal{V}^{\sharp} \xrightarrow{V^{\sharp}} G/L \qquad V^{\sharp} : V$$
 twisted by a character of L

such that

$$\pi \simeq H^{(0,s)}(G/L,\mathcal{V}^{\sharp}) \qquad ext{where } s = \dim_{\mathbb{C}}(K/(K \cap L)).$$

Real infinitesimal character: a strategy, continued

Realizing π in a Dolbeault cohomology space:

$$\pi \simeq H^{(0,s)}(G/L, \mathcal{V}^{\sharp}),$$

- L: a quasi-split Levi subgroup
- $s = \dim_{\mathbb{C}}(K/(K \cap L))$
- V: an irreducible tempered representation of L with real infinitesimal character
- V^{\sharp} : a twist of V by a character of L

A theorem of Mostow (1955) on the structure of G/L:

There exists a subspace $\mathfrak{s} \subset \mathfrak{g}$, stable under $\operatorname{Ad}(\mathcal{K} \cap \mathcal{L})$, s.t. the Cartan map

$$K \times \mathfrak{s} \to G$$

factors through the quotient $(K \times \mathfrak{s}) \rightarrow (K \times \mathfrak{s})/(K \cap L)$, and

 $G/L \simeq (K \times \mathfrak{s})/(K \cap L).$

Contracting real-infinitesimal-character representations

Start with a real-infinitesimal-character representation π , realize it on

$$\mathcal{H}_{\mathsf{start}} = H^{(0,s)}(G/L, \mathcal{V}^{\sharp}) \qquad s = \dim_{\mathbb{C}}(K/(K \cap L)),$$

Contracting real-infinitesimal-character representations

Start with a real-infinitesimal-character representation π , realize it on

$$\mathcal{H}_{\mathsf{start}} = H^{(0,s)}(G/L, \mathcal{V}^{\sharp}) \qquad s = \dim_{\mathbb{C}}(K/(K \cap L)),$$

1. Assume given a contraction of (V, σ) to its lowest $(K \cap L)$ -type W

2. Use the Mostow map to "zoom-in on $K/(K \cap L)$ ", while contracting in V

Contracting real-infinitesimal-character representations

Start with a real-infinitesimal-character representation π , realize it on

$$\mathcal{H}_{\mathsf{start}} = H^{(0,s)}(G/L, \mathcal{V}^{\sharp}) \qquad s = \dim_{\mathbb{C}}(K/(K \cap L)),$$

1. Assume given a contraction of (V, σ) to its lowest $(K \cap L)$ -type W

2. Use the Mostow map to "zoom-in on $K/(K \cap L)$ ", while contracting in V

We can then associate to every element of \mathcal{H}_{start} an element of

$$\mathcal{H}_{\text{contracted}} = H^{(0,s)}(K/(K \cap L), \mathcal{W}^{\sharp})$$
 où $s = \dim_{\mathbb{C}}(K/(K \cap L))$

Theorem (2019) :

The *K*-module $\mathcal{H}_{contracted}$ yields a realization for the lowest *K*-type of π .

Quasi-split groups and fine K-types

Last case that remains to be settled:

- G: quasi-split group
- π : real-infinitesimal-character irr. representation with a 'fine' K-type.

In that case

 $\pi \hookrightarrow \operatorname{Ind}_{MAN}(\zeta)$

where L = MA is minimal, M is abelian and ζ is a character of M.

Quasi-split groups and fine K-types

Last case that remains to be settled:

- G: quasi-split group
- π : real-infinitesimal-character irr. representation with a 'fine' K-type.

In that case

 $\pi \hookrightarrow \operatorname{Ind}_{MAN}(\zeta)$

where L = MA is minimal, M is abelian and ζ is a character of M.

"Theorem" (2018-2020):

Can realize π on a space of sections of the bundle $G \times_{K} V^{\mu}$ over G/K

The construction mimics Helgason "waves", in a rather unusual setting.

I will spare you the details...

- There is a simple and natural bijection between the irreducible representations of G and those of $G_0 = K \ltimes \mathfrak{p}$.
- Realizing it as a deformation is possible, but (at the moment) uses the fine details of available constructions.
- Understanding it more conceptually seems to remain challenging.