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Whittaker functions

Setting
I G real reductive group
I K maximal compact, G = KAN0 Iwasawa decomposition
I χ : N0 → U(1) unitary character, regular (!)

i.e.: ∀α ∈ Σ(n0, a) simple: dχ(e)|gα 6= 0.

Whittaker functions

M(G/N0, χ) := {f : G meas−→ C | f (xn) = χ(n)−1f (x) (x ∈ G,n ∈ N0)}

L2(G/N0, χ) := {f ∈M(G/N0, χ) | |f | ∈ L2(G/N0)}

I Left regr repn: L = IndG
N0

(χ) is unitary



Whittaker Plancherel formula

Abstractly
I IndG

N0
(χ) =

∫ ⊕
Ĝ mππdµ(π).

Concrete realization
I Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307,
eds. R. Gangolli, V.S. Varadarajan, Springer 2018.
Final step not clear.

I N.R. Wallach, Independent treatment.

Real reductive groups II, Acad. Press 1992.
Erroneous estimate. Repair addressed in arXiv:1705.06787.

I Today: final step in HC through new inversion theorem.



Discrete part of decomposition

Discrete part
π ∈ Ĝ (unitary dual) is said to appear discretely in L2(G/N0, χ) if it
can be realized as a closed subrepresentation.

Theorem (HC, W)
If π ∈ Ĝ appears discretely in L2(G/N0, χ), then it appears discretely
in L2(G), i.e., it belongs to the discrete series of G.

Corollary
If π ∈ Ĝ appears discretely in L2(G/N0, χ), then its infinitesimal
character is real and regular, while rk(k) = rk(g).

This result is crucial for the separation of tempered spectra in the
Whittaker Plancherel decomposition.



Schwartz functions

Define ρ ∈ a∗ by ρ(X ) = 1
2 tr(ad(X )|N0 ). Let Z := center U(g)

Definition (Schwartz space)
C(G/N0, χ): the space of f ∈ C∞(G/N0, χ) s.t. ∀u ∈ U(g),N ∈ N,

|Luf (kan)| ≤ Cu,N (1 + | log(a)|)−Na−ρ (kan ∈ KAN0).

For (τ,Vτ ) a finite dimensional unitary representation of K ,

C(τ,G/N0, χ) := (C(G/N0, χ)⊗ Vτ )K

A2(τ,G/N0, χ) := {f ∈ C(τ,G/N0, χ) | dimZf <∞}.

Theorem (HC, W)
A2(τ,G/N0, χ) = L2

d (τ,G/N0, χ).

The space is finite dimensional.



Parabolic subgroups

I Σ = Roots(g, a), Σ+ := {α ∈ Σ | gα ⊂ n0}, ∆ ⊂ Σ+ simple roots,
I W (a) = NK (a)/ZK (a).

I P0 := ZK (A)A N0, minimal psg.

I P(A) : (finite) set of psg’s P ⊃ A.
I Pst := {P ∈ P(A) | P ⊃ P0} (standard psg’s).

I For P a psg: Langlands deco: P = MPAPNP .

Associated parabolics
For P,Q ∈ P(A) define: P ∼ Q iff aP and aQ are W (a)-conjugate. If
so,

W (aQ | aP) := {T ∈ Hom(aP , aQ) | ∃w ∈W (a) : T = w |aP}



Parabolic induction and Whittaker integrals

For P = MPAPNP ∈ Pst , put A2,P := A2(τ |KP ,MP/MP ∩ N0, χ|MP∩N0 ).

For λ ∈ a∗PC, Reλ >P 0 ,

IndG
P̄ ( · ⊗ −λ) : A2,P 3 ψ 7→Wh(P, λ, · , ψ) ∈ Atemp(τ,G/N0, χ)

Remark
The above Whittaker integral is essentially a finite sum of generalized
matrix coefficients (defined by Jacquet integrals) of IndG

P̄ (σ ⊗−λ⊗ 1),

with σ ∈ Ĝds appearing in A2,P . (Analogue of Eisenstein integral.)

Viewpoint
The Whittaker integral Wh(P, λ) is viewed as a (K -fixed) element of

Atemp(G/N0, χ)⊗ Hom(A2,P ,Vτ )

depending holomorphically on λ ∈ a∗PC in the region Reλ >P 0.



Classical Whittaker functions

Example
I G = SL(2,R), τ ∈ SO(2)∧

I Wh(P, λ, ψ) is essentially a classical Whittaker function in the
variable a−α ∈ (0,∞).

I satisfies 2nd order ODE on (0,∞) with regular singularity at 0
I this ODE has irregular singularity at∞;

For a−α →∞
I generic solution W of ODE:

∀k ≥ 0 : |W (a)| ≥ a−kα (very fast growth).

I representation theory selects the special solution

∀k ≥ 0 : Wh(P, λ, ψ)(a) = O(akα) (very fast decay).



Holomorphic extension

Theorem (W)
Wh(P, λ), initially defined for Reλ >P 0, extends to entire holomc

function of λ ∈ a∗PC with values in C∞(G/N0, χ)⊗ Hom(A2,P ,Vτ ).

Remark: HC: there exists a meromc extension, regular on ia∗P .

Theorem (∼): Uniformly tempered estimates
Let ε > 0 be suff tly small. If u ∈ U(g) then ∃C,N, r > 0 s.t.

|Wh(P, λ,u; ka)| ≤ C(1 + |λ|)N(1 + | log a|)Ner |Reλ|| log a|a−ρ,

for all k ∈ K , a ∈ A, λ ∈ a∗PC with |Reλ| < ε.

I Bernstein-Sato type functional equation for Jacquet integrals.
I Uniformly moderate estimates.
I Wallach’s method of improving estimates along max psg’s, with

parameters.



C-function, Normalized Whittaker function

I W (P, λ) is Z-finite,
I top order asymptotic behavior of expl type

along cl(A+),

I rapid decay outside cl(A+).

 

At

decay

Lemma
Let P ∈ Pst . For ψ ∈ A2,P , Reλ ∈ a∗+P , m ∈ MP , a→∞ in A+

P ,

Wh(P, λ)(ma)ψ ∼ aλ−ρP [CP(λ)ψ](m),

with CP(λ) ∈ End(A2,P), meromc in λ ∈ a∗PC (regr for Reλ ∈ a∗+P ).

Definition (HC) Wh◦(P, λ) := Wh(P, λ) ◦ CP(λ)−1.



Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC)
Let P,Q ∈ Pst , P ∼ Q. Then for all s ∈W (aQ |aP),

Wh◦(Q, sλ) ◦ C◦Q|P(s, λ) = Wh◦(P, λ), (λ ∈ a∗PC),

with C◦Q|P(s, λ) ∈ Hom(A2,P ,A2,Q) a uniquely determined meromc

function of λ ∈ a∗PC.

Thm (Maass-Selberg relations, HC)
For all s ∈W (aQ |aP), λ ∈ a∗PC,

C◦Q|P(s,−λ̄)∗ ◦ C◦Q|P(s, λ) = IA2,P

In particular, for λ ∈ ia∗P , the map C◦Q|P(s, λ) is unitary.

Theorem (HC) λ 7→Wh◦(P, λ) is regular on ia∗P .



Fourier transform

Dualized Whittaker function (∼)

Wh∗(P, λ, x) := Wh◦(P,−λ̄, x)∗ ∈ Hom(Vτ ,A2,P).

Fourier transform
For f ∈ C(τ,G/N0, χ), P ∈ Pst , λ ∈ ia∗P ,

FP f (λ) :=

∫
G/N0

Wh∗(P, λ, x)f (x) dx ∈ A2,P .

Theorem (∼)
FP : C(τ,G/N0, χ)→ S(ia∗P)⊗A2,P ,

continuous linearly.

Remark: HC proves this for FP restricted to C∞c (τ,G/N0, χ).

Proof this follows from the uniformly tempered estimates.



Wave packets

Definition
For P ∈ Pst , ψ ∈ S(ia∗P)⊗A2,P , x ∈ G,

WPψ(x) :=

∫
ia∗

P

Wh◦(P, λ, x)ψ(λ) dλ.

Theorem (∼)
WP : S(ia∗P)⊗A2,P → C(τ,G/N0, χ)

is continuous linear.
Remark: HC proves this forWP restricted to C∞c (ia∗P)⊗A2,P .

Proof requires
I the uniformly tempered estimates
I theory of constant term with parameter
I families of type IIhol(Λ) (as in previous joint work with Carmona

and Delorme for reductive symmetric space G/H).



Plancherel formula

If P,Q ∈ Pst , P ∼ Q then from the MS rels: ‖FP f (λ)‖ = ‖FQ f (λ)‖.

Plancherel identity (HC)
With suitable normalization of the Lebesgue measures on ia∗P ,

‖f‖2
L2(τ,G/N0,χ) =

∑
P∈Pst/∼

‖FP f‖2
L2(ia∗

P )⊗A2,P
,

for f in the linear spanW ⊂ C(τ,G/N0, χ) of the wavepacketsWQ(ψ),
for Q ∈ Pst , and ψ ∈ C∞c (ia∗Q)⊗A2,Q .

Problem of the final step: IsW dense in L2(τ,G/N0, χ)?

Theorem (∼)
Yes! More precisely, for f ∈ C(τ,G/N0, χ) we have

f =
∑

P∈Pst/∼

WP ◦ FP(f ).



Series expansion

Strategy for the final step: use Paley-Wiener shift argument and
residue calculus as known from the theory of symmetric spaces
(previous joint work with Schlichtkrull).

Let P = P0 be minimal. Then Wh(P, λ) ∈ C∞(τ,G, χ)⊗A∗2,P is
holomorphic in λ ∈ a∗C. The function is Z-finite, hence satisfies a
cofinite system of differential equations, which has regular
singularities at infinity in the direction of A+.

Expansion at infinity

Wh(P, λ) =
∑

s∈W (a)

Wh+(P, sλ)CP|P(s, λ)

where Wh+(P, λ) ∈ C∞(τ,G, χ)⊗A∗2,P is meromc in λ ∈ a∗C, and

Wh+(P, λ)(a) = aλ−ρ
∑
µ∈N∆

a−µΓµ(λ), (a ∈ A),

with Γµ(λ) ∈ Hom(A2,P ,Vτ ) meromorphic, Γ0(λ)(ψ) = ψ(e).



Fourier inversion

Key theorem (∼)

f (x) = Tη(f )(x) := |W (a)|
∫

ia∗+η

Wh+(P, λ, x)FP f (λ) dλ,

∀f ∈ C∞c (τ,G/N0, χ), ∀x ∈ G, provided η ∈ a∗, η >>P̄ 0.

NB: For generic λ ∈ a∗C, the function Wh+(P, λ) is globally defd on X ,
but may exhibit super expl growth in directions difft from cl(A+).

Ideas of proof
I Tη : C∞c (τ,G/N0, χ)→ C∞(τ,G/N0, χ).

I ∃D ∈ Z : DTη = DT0 = D ◦WP ◦ FP .

I By PW shift η →∞ in P̄-dominant direction: suppDTηf ⊂ K suppf .

=⇒ rad(DTη) is a differential operator on A



Proof of Fourier inversion

Ideas of proof:
I rad(DTη) differential operator commuting with rad(Z)

I By asymptotic analysis along A+
P : DTη = D on C∞c (τ,G/N0, χ).

I By Holmgren’s uniqueness theorem for analytic PDO:

DTηf = Df =⇒ D(Tηf − f ) = 0 =⇒ Tηf − f = 0.



Residual kernels

By Fourier inversion, if f ∈ C∞c (τ,G/N0, χ), x ∈ G,

f (x) = |W (a)|
∫

ia∗+η

Wh+(P, λ, x)FP f (λ) dλ.

Shifting η towards zero and organizing residues, one gets

f (x) =
∑

Q∈Pst

[W : NW (aQ)] t(Q)T t
Q f (x),

where

T t
Q f (x) =

∫
ia∗

Q+εQ

∫
G/N0

K t
Q(λ, x , y)f (y) dy dλQ .

I εQ ∈ a∗+Q sufficiently close to 0.
I t : Pst → [0,1] is a weight function describing a certain

organization of residue shifts.



Conclusion

Theorem (∼)

K t
Q(λ, x , y) = Wh◦(Q, λ)(x) ◦Wh∗(Q, λ)(y) = KWQ◦FQ .

This identification relies on the Maass-Selberg relations. These also
imply that the functions λ 7→ K t

Q(λ, x , y) are regular on ia∗Q , hence we
may let εQ → 0 and then:

Plancherel formula

f (x) =
∑

Q∈Pst

[W : NW (aQ)]t(Q)WQFQ f (x).

I [W : NW (aQ)]t(Q) gives the weight by which Q contributes to its
class in Pst/ ∼ .



Bonus: Paley-Wiener theorem

Definition
A function f ∈ C(τ,G/N0, χ) is said to be cone supported (notation
Ccs) if ∃H0 ∈ a s.t.

 

Ho

tHo or

suppf ⊂ K exp(H0 − a++)N0.

Lemma
If f ∈ Ccs(τ,G/N0, χ), then ∀u ∈ U(g) ∀m > 0 ∃C > 0:

‖Luf (ka)‖ < C e−m| log a| (∀k ∈ K ,a ∈ A).

Paley-Wiener theorem
Let P = P0 (minimal). Then uFP (unnormalized) is injective on
Ccs(τ,G/N0, χ). The image of this space under uFP equals the space
PW(χ, τ) of holomorphic functions ϕ : a∗C → A2,P satisfying

I certain estimates of Paley–Wiener type;
I relations of Arthur–Campoli type.



Thank you


