Analysis 1

2. Übungsblatt

Präsenzaufgabe 2.1 Konstruieren Sie eine surjektive Abbildung $\mathbb{N} \to \mathbb{Z}$.

Präsenzaufgabe 2.2 Sei X eine Menge. Man ermittle eine Injektion $f: X \to \mathcal{P}(X)$ und eine Surjektion $g: \mathcal{P}(X) \to X$.

Präsenzaufgabe 2.3 Beweisen Sie den folgenden Satz (Satz 1.3.26 in Soergels Skript Mengen und Verknüpfungen).

Seien X und Y Mengen und $f: X \to Y$ und $g: Y \to Z$ Abbildungen.

- (i) Ist $g \circ f$ injektiv, so ist f injektiv;
- (ii) Sind g und f injektiv, so auch $g \circ f$;
- (iii) Genau dann ist g injektiv, wenn für beliebige Abbildungen $f_1, f_2: X \to Y$ aus $g \circ f_1 = g \circ f_2$ schon folgt $f_1 = f_2$.

Hinweis: Zeige erst die letzte Aussage und folgere dann die vorderen Aussagen ohne weitere Betrachtung von Elementen.

Präsenzaufgabe 2.4 Es sei X eine beliebige Menge und $Abb(X, \{0, 1\})$ die Menge aller Abbildungen von X nach $\{0, 1\}$. Bestimmen Sie eine Bijektion $\mathcal{P}(X) \to Abb(X, \{0, 1\})$.

Präsenzaufgabe 2.5 Welche der folgenden Verknüpfungen sind kommutativ/assoziativ?

- (a) $\mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}, (x,y) \mapsto x^y,$
- (b) $\mathbb{R} \times \mathbb{R} \to \mathbb{R}, (x,y) \mapsto (x+y)^2,$
- (c) $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(x, y) \mapsto 3 + xy$.

Präsenzaufgabe 2.6 (Aus Soergels Skript) Sei Z eine Menge. Das Schneiden von Teilmengen ist eine Verknüpfung

$$\cap : \mathcal{P}(Z) \times \mathcal{P}(Z) \to \mathcal{P}(Z), \quad (A, B) \mapsto A \cap B$$

auf der Potenzmenge. Dasselbe gilt für die Vereinigung und das Bilden der Differenzmenge. Welche dieser Verknüpfungen sind kommutativ oder assoziativ? Welche besitzen neutrale Elemente?

Hausaufgabe 2.1 Gegeben seien die Mengen $M = \{1, 2, 3, 4\}$ und $N = \{\alpha, a, A\}$. Bestimmen Sie

- (a) eine injektive Abbildung $f: N \to M$,
- (b) eine surjektive Abbildung $g: M \to N$,
- (c) eine bijektive Abbildung $h: N \to N$,
- (d) eine Abbildung $i: M \to M$, die weder injektiv noch surjektiv ist.

Hausaufgabe 2.2 Beweisen Sie den folgenden Satz (Satz 1.3.28 in Soergels Skript Mengen und Verknüpfungen).

Seien X und Y Mengen und $f: X \to Y$ und $g: Y \to Z$ Abbildungen.

- (i) Ist $g \circ f$ surjektiv, so ist g surjektiv;
- (ii) Sind g und f surjektiv, so auch $g \circ f$;
- (iii) Genau dann ist f surjektiv, wenn für beliebige Abbildungen $g_1, g_2 : Y \to Z$ aus $g_1 \circ f = g_2 \circ f$ schon folgt $g_1 = g_2$.

Hinweis: Zeige erst die letzte Aussage und folgere dann die vorderen Aussagen ohne weitere Betrachtung von Elementen.

Hausaufgabe 2.3 Sei X eine beliebige Menge. Zeigen Sie, dass eine Abbildung $f: X \to \mathcal{P}(X)$ niemals surjektiv ist. Hinweis: Betrachten Sie die Menge $Y := \{x \in X : x \notin f(x)\} \in \mathcal{P}(X)$.

Hausaufgabe 2.4 Sei X eine endliche Menge. Beweisen Sie, dass es genau $2^{|X|}$ Abbildungen von X nach $\{0,1\}$ gibt.

Hausaufgabe 2.5 (Aus Soergels Skript) Beweisen Sie den folgenden Satz. Seien X, Y endliche Mengen. So gibt es genau $|Y|^{|X|}$ Abbildungen von X nach Y, und unter diesen Abbildungen sind genau |Y|(|Y|-1)(|Y|-2)...(|Y|-|X|+1) Injektionen.

Hausaufgabe 2.6 Für $n \in \mathbb{N}$ sei die Menge $F_n = \{1, 2, ..., n\}$ gegeben. Ferner bezeichne Bij (F_n) die Menge aller bijektiven Abbildungen von F_n in sich selbst. Zeigen Sie:

$$|\mathrm{Bij}(F_n)| = n!$$

Abgabe der Hausaufgaben: Freitag, 25.10.2019, 10 Uhr in den roten Postfächern Nr. 115 & 116 auf D1 unter Angabe des Namens und der Übungsgruppe.