Analysis 1

5. Übungsblatt

Präsenzaufgabe 5.1 (*Partialbruchzerlegung*) Seien $p,q:\mathbb{C}\to\mathbb{C}$ Polynomfunktionen, sodass $q\neq 0$. Betrachte die rationale Funktion

$$f: \mathbb{C} \setminus q^{-1}(\{0\}) \to \mathbb{C}; \quad z \mapsto \frac{p(z)}{q(z)}.$$

- (a) Beweisen Sie, dass es Polynomfunktionen h und r gibt mit $\operatorname{Grad}(r) < \operatorname{Grad}(q)$, sodass f geschrieben werden kann als $f = h + \frac{r}{q}$.
- (b) Was sind h und r wenn

$$p: z \mapsto z^5 + 2z^4 - 2z^2 - 1$$
 and $q: z \mapsto z^3 + 2z^2 + z + 1$?

(c) Seien $\phi, \psi : \mathbb{C} \to \mathbb{C}$ Polynomfunktionen und sei $a \in \mathbb{C}$, sodass $\psi(a) \neq 0$. Sei $n \in \mathbb{N}$. Beweisen Sie, dass es eine Polynomfunktion $\chi : \mathbb{C} \to \mathbb{C}$ gibt, sodass $\operatorname{Grad}(\chi) < \max\left(\operatorname{Grad}(\phi), \operatorname{Grad}(\psi)\right)$ und

$$\frac{\phi(z)}{(z-a)^n\psi(z)} = \frac{\phi(a)}{(z-a)^n\psi(a)} + \frac{\chi(z)}{(z-a)^{n-1}\psi(z)} \qquad \left(z\in\mathbb{C}\setminus(\psi^{-1}(\{0\})\cup\{a\})\right).$$

(d) Seien $n_1, \ldots, n_k \in \mathbb{N}$ und $c, a_1, \ldots, a_s \in \mathbb{C}$, mit $a_i \neq a_j$ für $i \neq j$, sodass

$$q(z) = c(z - a_1)^{n_1} \dots (z - a_s)^{n_s}.$$

Beweisen Sie, dass eindeutige $A_{1,1}, \ldots, A_{s,n} \in \mathbb{C}$, sowie eine eindeutige Polynomfunktion h existieren, sodass

$$f(z) = h(z) + \sum_{k=1}^{s} \sum_{l=1}^{n_k} \frac{A_{k,l}}{(z - a_k)^l} \qquad (z \in \mathbb{C} \setminus q^{-1}\{0\}).$$

Wir nennen dies die Partialbruchzerlegung von f.

(e) Bestimmen Sie die Partialbruchzerlegung von

$$f: \mathbb{C} \setminus \{-2,1\} \to \mathbb{C}; \quad z \mapsto \frac{z^2+3}{(z+2)(z-1)^2}.$$

Präsenzaufgabe 5.2 Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{C} und $p\in\mathbb{N}$. Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ genau dann eine konvergente Nullfolge ist, wenn $(a_n^p)_{n\in\mathbb{N}}$ eine konvergente Nullfolge ist.

Präsenzaufgabe 5.3 Sind die folgenden Aussagen richtig oder falsch? Begründen Sie jeweils Ihre Antwort.

- (a) Die Summe zweier beschränkter Folgen in C ist konvergent.
- (b) Ist die Summe zweier Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ in \mathbb{C} konvergent, dann konvergieren auch $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ selbst.
- (c) Konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{C} , dann ist die Folge $((-1)^n a_n)_{n\in\mathbb{N}}$ divergent.
- (d) Konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$ in \mathbb{C} gegen a, so ist $(a_n-a)_{n\in\mathbb{N}}$ eine Nullfolge.

Hausaufgabe 5.1 Für jedes $n \in \mathbb{N}$ sei M_n eine abzählbare Menge. Beweisen Sie, dass die Menge

$$M := \bigcup_{n \in \mathbb{N}} M_n = \{x : \text{ es gibt ein } n \in \mathbb{N}, \text{ sodass } x \in M_n\}$$

abzählbar ist.

Hinweis: Für jedes $n \in \mathbb{N}$ gibt es eine Injektion $f_n: M_n \to \mathbb{N}$. Bilden Sie mit Hilfe dieser Abbildungen eine Injektion $M \to \mathbb{N}$. Eine Komplikation besteht darin, dass es a priori für ein Element $x \in M$ kein eindeutiges $n \in \mathbb{N}$ gibt, mit $x \in M_n$. Betrachten Sie darum die Mengen

$$N_n := M_n \setminus \left(\bigcup_{k \in \mathbb{N}, k < n} M_k\right) \quad (n \in \mathbb{N}).$$

Hausaufgabe 5.2 Bestimmen Sie die Partialbruchzerlegung von

$$f: \mathbb{C} \setminus \{-2, 3, i, -i\} \to \mathbb{C}; \quad z \mapsto \frac{z^5 + 3z^4 + 8z^3 + 15z^2 + 7z}{(z+1)^2(z^2+1)}.$$

Hausaufgabe 5.3 Seien $k, l \in \mathbb{N}$ und seien $a_0, \ldots, a_k, b_0, \ldots, b_l \in \mathbb{R}$, sodass $a_k \neq 0$ und $b_l \neq 0$. Betrachten Sie die Polynomfunktionen

$$P: \mathbb{R} \to \mathbb{R}; \quad x \mapsto \sum_{j=0}^{k} a_j x^j,$$

$$Q: \mathbb{R} \to \mathbb{R}; \quad x \mapsto \sum_{i=0}^{l} b_i x^i.$$

Zeigen Sie:

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} \infty, & k > l, \frac{a_k}{b_l} > 0; \\ -\infty, & k > l, \frac{a_k}{b_l} < 0; \\ \frac{a_k}{b_l}, & k = l; \\ 0, & k < l. \end{cases}$$

Hausaufgabe 5.4 Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n = \frac{1}{n^2} \left(8n^2 + 1 - \frac{5n^3 + 3n^2 + n + 1}{n(2n - 1)} \right)$$

auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.