Analysis 2

3. Übungsblatt

Präsenzaufgabe 3.1 Seien X und Y topologische Räume und $f: X \to Y$. Beweisen Sie, dass f genau dann stetig ist, wenn für alle abgeschlossene Teilmengen A von Y das Urbild $f^{-1}(A)$ abgeschlossen ist.

Präsenzaufgabe 3.2 Sei X ein kompakter topologischer Raum und sei $Y \subseteq X$ eine abgeschlossene Teilmenge. Beweisen Sie, dass Y kompakt ist.

Präsenzaufgabe 3.3 Sei X eine Menge und $d: X \times X \to \mathbb{R}_{\geq 0}$ eine Metrik auf X. Wir nennen d eine Ultrametrik wenn die verschärfte Form der Dreiecksungleichung

$$d(x,z) \le \max \left\{ d(x,y), d(y,z) \right\} \qquad (x,y,z \in X)$$

gilt.

(a) Sei d eine Ultrametrik auf X. Für $x \in X$ und r > 0, sei

$$B(x,r) := \{ y \in X : d(x,y) < r \}$$

der offene Ball mit Mittelpunkt x und Radius r. Beweisen Sie, dass

$$\overline{B(x,r)} = B(x,r)$$

und

$$B(x,r) = B(y,r)$$

für alle $y \in B(x,r)$.

(b) Betrachten Sie das Beispiel $X=\mathbb{Q}$. Für eine Primzahl p definieren wir den p-adischen Betrag $|\cdot|_p:\mathbb{Q}\to\mathbb{R}_{>0}$ geben durch

$$|x|_p = \left\{ \begin{array}{ll} 0, & \text{wenn } x = 0, \\ p^{-n}, & \text{wenn } x = p^n \frac{a}{b} \text{ mit } a, b, p \text{ paarweise teilerfremd sind und } n \in \mathbb{Z}. \end{array} \right.$$

Beweisen Sie, dass

$$d_p: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}_{\geq 0}; \qquad (x, y) \mapsto |x - y|_p$$

eine Ultrametrik auf \mathbb{Q} ist.

(c) Beweisen Sie, dass $(p^n)_{n\in\mathbb{N}}$ eine Nullfolge in dem metrischen Raum (\mathbb{Q},d_p) ist.

Präsenzaufgabe 3.4 Sei X ein topologischer Raum und sei $C_b(X)$ der Vektorraum der beschränkten stetigen Funktionen $X \to \mathbb{R}$. Zeigen Sie, dass $C_b(X)$ eine abgeschlossene Teilmenge des Vektorraums B(X) aller beschränkten Funktion $X \to \mathbb{R}$ ist. Warum ist $C_b(X)$ ein Banachraum?

Präsenzaufgabe 3.5 Sei I ein kompaktes Interval und sei $C^k(I)$ der Vektorraum der k-mal stetig differenzierbaren Funktionen auf I. Beweisen Sie, dass

$$\|\cdot\|:C^k(I)\to\mathbb{R}_{\geq 0}; \qquad \phi\mapsto \|\phi\|:=\sum_{n=0}^k\sup_{x\in I}\left|\frac{d^n}{dx^n}f(x)\right|$$

eine Norm auf $C^k(I)$ ist und, dass $C^k(I)$ versehen mit $\|\cdot\|$ ein Banachraum ist.

Präsenzaufgabe 3.6 Seien $(V, \|\cdot\|_V)$ und $(W, \|\cdot\|_W)$ normierte Räume und sei $A: V \to W$ eine lineare Abbildung. Beweisen Sie, dass die folgenden Aussagen äquivalent sind.

- (a) A ist stetig.
- (b) A ist stetig in 0.
- $\text{(c) } \sup_{v \in V \backslash \{0\}} \frac{\|A(v)\|_W}{\|v\|_V} < \infty.$

Hausaufgabe 3.1

(a) Sei $f:[0,2\pi)\to S^1:=\{x\in\mathbb{R}^2:x_1^2+x_2^2=1\}$ gegeben durch

$$f(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}.$$

Warum ist f kein Homöomorphismus?

(b) Warum ist ein nicht-kompakter topologischer Raum niemals homöomorph zu einem kompakten topologischen Raum?

Hausaufgabe 3.2 Sei X eine Menge und

$$d: X \times X \to \mathbb{R}_{\geq 0}, \quad (x, y) \mapsto \left\{ \begin{array}{ll} 1, & \text{falls } x = y \\ 0, & \text{falls } x \neq y \end{array} \right.$$

Beweisen Sie, dass d eine Ultrametrik auf X ist. Beweisen Sie weiter, dass die von d induzierte metrische Topologie auf X die diskrete Topologie ist.

Hausaufgabe 3.3 Beweisen Sie die folgenden Aussagen.

- (a) Jede stetige Abbildung von einem kompakten Raum auf einen Hausdorff-Raum ist abgeschlossen, d.h. bildet abgeschlossene Mengen auf abgeschlossene Mengen ab.
- (b) Jede stetige bijektive Abbildung von einem kompakten Raum auf einen Hausdorff-Raum ist ein Homöomorphismus.

Hausaufgabe 3.4 Seien $(V, \|\cdot\|_V)$ und $(W, \|\cdot\|_W)$ normierte Räume und sei

$$L(V, W) := \{A : V \to W : A \text{ ist linear und stetig}\}.$$

Beweisen Sie, dass

$$\|\cdot\|_{V,W}: L(V,W) \to \mathbb{R}_{\geq 0}; \qquad A \mapsto \sup_{v \in V \setminus \{0\}} \frac{\|A(v)\|_W}{\|v\|_V}$$

eine Norm auf L(V,W) ist. Beweisen Sie weiter, dass L(V,W) versehen mit $\|\cdot\|_{V,W}$ ein Banauchraum ist, wenn W ein Banachraum ist. Die Norm $\|\cdot\|_{V,W}$ heißt die Operatornorm auf L(V,W).

Hausaufgabe 3.5 Sei I ein kompaktes Interval und sei V der Vektorraum der Regelfunktionen auf I versehen mit der Supremumsnorm. Beweisen Sie, dass die Abbildung

$$\int : V \to \mathbb{R}, \qquad \phi \mapsto \int_I \phi(x) \, dx$$

stetig ist. Bestimmen Sie die Operatornorm von \int .