Analysis für Informatiker

5. Hausaufgabenblatt

Hausaufgabe 5.1 Seien X,Y,Z Mengen und $f:X\to Y,\,g:Y\to Z$ Abbildungen. Beweisen oder widerlegen Sie:

- 1. $g \circ f$ injektiv und f surjektiv $\Rightarrow g$ injektiv
- 2. g, f surjektiv $\Rightarrow g \circ f$ surjektiv
- 3. Sei f surjektiv und $\emptyset \neq A \subseteq X$ eine Teilmenge, sodass die Einschränkung $f|_A: A \to Y, a \mapsto f(a)$ injektiv ist und sodass für alle $x \in X \setminus A$ bereits $f(x) \in f(A)$ gilt. Dann ist $f|_A$ bijektiv.
- 4. Seien $A, B \subset X$. Dann gilt $f(A \cap B) = f(A) \cap f(B)$

Hausaufgabe 5.2 Sei

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} \frac{2x+1}{x-3} & \text{falls } x \neq 3\\ 2 & \text{falls } x = 3. \end{cases}$$

Entscheiden Sie ob f bijektiv ist und bestimmen Sie gegebenenfalls die Umkehrfunktion.

Hausaufgabe 5.3 Beweisen Sie den folgenden Satz. Seien X, Y endliche Mengen. So gibt es genau $|Y|^{|X|}$ Abbildungen von X nach Y, und unter diesen Abbildungen sind genau |Y|(|Y|-1)(|Y|-2)...(|Y|-|X|+1) Injektionen.

Hausaufgabe 5.4 Sei $X \neq \emptyset$ eine Menge und Abb $(X, \{0, 1\})$ die Menge der Abbildungen zwischen X und der Menge $\{0, 1\}$ $(0 \neq 1)$. Zeigen Sie, dass eine Bijektion $f: P(X) \to \text{Abb}(X, \{0, 1\})$ existiert und geben Sie die Umkehrfunktion an.

Hausaufgabe 5.5 Entscheiden Sie, welche der Folgen $(a_n)_{n\in\mathbb{N}}$ konvergieren und bestimmen Sie gegebenenfalls den Grenzwert.

- 1. $a_n := \frac{-n^3+1}{3n^5-2} + 3$
- 2. $a_n := (-1)^n \sqrt{n^2 + 1}$
- 3. $a_n:=\sqrt{n+1}-\sqrt{n}$ (Hinweis: Für alle $x,y\in\mathbb{C}$ mit $x\neq -y$ gilt $x-y=\frac{x^2-y^2}{x+y}$.)
- 4. $a_n := n!/(n^n + 2n^2 + 5)$

Abgabe der Hausaufgaben bis zum Sonntag den 26.11.2023, 23.59 Uhr in Panda.