Analysis für Informatiker

1. Präsenzübungsblatt - Lösungen

Präsenzaufgabe 1.1 Sei $n \in \mathbb{N}_0$ und $k \in \mathbb{N}_0$ mit $k \leq n$. Dann ist der Binomial-koeffizient $\binom{n}{k}$ gegeben durch

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

und entspricht der Anzahl der k-elementigen Teilmengen einer n-elementigen Menge. Für k > n definieren wir $\binom{n}{k} = 0$.

Zeigen Sie

- (i) mit einer direkten Rechnung
- (ii) mit einem kombinatorischen/mengentheoretischen Beweis,

dass für alle $n \in \mathbb{N}_0$ und alle $k \in \mathbb{N}_0$ mit $k \le n$ die sogenannte **Pascalsche Formel**

$$\binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}$$

gilt.

Beweis: (i) Für $n \in \mathbb{N}_0$ und k = n gilt

$$\binom{n}{k+1} + \binom{n}{k} = \binom{n}{n+1} + \binom{n}{n} = 0 + 1 = 1 \binom{n+1}{n+1} = \binom{n+1}{k+1}.$$

Sei nun $n \in \mathbb{N}$ und $k \in \mathbb{N}_0$ mit k < n. Dann folgt

$$\binom{n}{k+1} + \binom{n}{k} = \frac{n!}{(k+1)!(n-(k+1))!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k+1)!(n-k-1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{(n+1)!}{(k+1)!(n-k)!} \frac{n-k}{n+1} + \frac{(n+1)!}{(k+1)!(n-k)!} \frac{k+1}{n+1}$$

$$= \frac{(n+1)!}{(k+1)!(n-k)!} \left(\frac{n-k}{n+1} + \frac{k+1}{n+1}\right)$$

$$= \frac{(n+1)!}{(k+1)!(n+1-(k+1))!} \left(\frac{n-k+k+1}{n+1}\right)$$

$$= \binom{n+1}{k+1} \frac{n+1}{n+1}$$

$$= \binom{n+1}{k+1}.$$

(ii) Sei $n \in \mathbb{N}_0$, Y eine Menge mit n Elementen und P(Y) die Potenzmenge von Y. Wir definieren $P(Y)_d := \{S \in P(Y) : |S| = d\}$ für $d \in \mathbb{N}_0$. Dann gilt $|P(Y)_d| = \binom{n}{d}$

für alle $d \in \mathbb{N}_0$.

Sei nun $n \in \mathbb{N}_0$, X eine (n+1)-elementige Menge und $x \in X$. Dann gilt für $k \in \{0, \dots, n\}$

Präsenzaufgabe 1.2 Zeigen Sie, dass auf einer Menge mit zwei bzw. drei Elementen eine Körperstruktur existiert.

Beweis: Sei $\{a,b\}=X$ und definiere die Addition + und Multiplikation · auf X durch

+	a	b
a	a	b
b	b	a

und

•	a	b
a	a	a
b	a	b

Das neutrale Element der Addition ist das Element a. Das neutrale Element der Multiplikation ist das Element b.

Für $X = \{a, b, c\}$ definieren wir Addition und Multiplikation durch

+	a	b	c
a	a	b	$^{\mathrm{c}}$
b	b	c	a
c	c	a	b

und

•	a	b	С
a	a	a	a
b	a	b	c
c	a	c	b

Neutrales Element der Addition/Multiplikation ist gegeben durch a bzw. b.

Das Nachrechnen der restlichen Axiome eines Körpers ist dem Leser überlassen.

Präsenzaufgabe 1.3 Sei \mathbb{K} ein Körper und $x,y\in\mathbb{K}$. Zeigen Sie folgende Aussagen:

1.
$$-(-x) = x$$

2.
$$-(x+y) = -x - y$$

3.
$$xy = 0 \iff x = 0 \lor y = 0$$

4.
$$(-x)y = -xy = x(-y)$$

5.
$$(-x)(-y) = xy$$
.

Beweis:

1. Es gilt (-x) + x = 0, da -x das additive Inverse von x ist. Das additive Inverse von -x, geschrieben -(-x) ist eindeutig (siehe Vorlesung), also folgt -(-x) = x.

2. Es gilt x+y+(-x-y)=x+y+(-x)+(-y)=x+(-x)+y+(-y)=0+0=0, aufgrund der Kommutativität der Addition. Wegen Eindeutigkeit von additiven Inversen folgt -(x+y)=-x-y.

3. Für jedes $z \in \mathbb{K}$ gilt 0z = (0+0)z = 0z + 0z was äquivalent zu 0 = 0z ist. Damit folgt sofort \leftarrow von 3. Sei nun xy = 0. Angenommen $x \neq 0$ und $y \neq 0$. Dann ist xy invertiertbar mit $(xy)^{-1} = x^{-1}y^{-1}$. Also folgt aus xy = 0 auch $1 = (xy)^{-1}xy = (xy)^{-1}0 = 0$, aber $0 \neq 1$. Demnach ist unsere Annahme, dass $x \neq 0 \land y \neq 0$ falsch, also muss $x = 0 \lor y = 0$ gelten.

4. Es gilt xy + (-x)y = (x - x)y = 0y = 0, nach der Eindeutigkeit von additiven Inversen folgt -xy = (-x)y. Da die eben gezeigte Aussage für alle $x, y \in \mathbb{K}$ gilt folgt auch x(-y) = (-y)x = yx = xy.

5. Es gilt (-x)(-y) = -(x(-y)) = -(-xy) = xy wobei das erste und zweite Gleichheitszeichen aus 4. folgt und das dritte aus 1..

Präsenzaufgabe 1.4 In Präsenzaufgabe 0.6 wurde der Betrag |x| einer beliebigen rationalen Zahl $x \in \mathbb{Q}$ definiert. Zeigen Sie, dass für $x, y \in \mathbb{Q}$ folgende Ungleichungen gelten:

$$|x+y| \le |x| + |y|.$$

und

$$||x| - |y|| \le |x - y|.$$

(Hinweis: die erste Ungleichung wird "Dreiecksungleichung" genannt, die zweite ümgekehrte Dreiecksungleichung")

Gilt auch $||x| - |y|| \le |x + y|$?

Beweis:

Für $x \in \mathbb{Q}$ gilt $|x| = \max\{x, -x\}$, denn ist $x \geq 0$ so gilt $|x| = x = \max\{x, -x\}$. Ist x < 0 so gilt per Definition $|x| = -x = \max\{x, -x\}$. (Mit dieser Darstellung des Betrags ist es sehr leicht zu zeigen, dass $|x| < (\leq) y \iff -y < (\leq) x < (\leq) y$ für alle $y \in \mathbb{Q}$, was in der Lösung von Präsenzaufgabe 0.6 verwendet wurde) Damit folgt $\pm x \leq \max\{x, -x\} = |x|$.

Wir merken an, dass für $a, b, c \in \mathbb{Q}$ mit $c \ge b$ die Ungleichung $a + b \le a + c$ folgt, da sie äquivalent zu $0 \le (a + c) - (a + b) = c - b$, also zu $c \ge b$ ist.

Nun zur Dreiecksungleichung:

Für alle $x, y \in \mathbb{Q}$ ergibt sich

$$x + y \le |x| + y \le |x| + |y|$$

und

$$-(x+y) = -x - y \le |x| - y \le |x| + |y|$$

und somit

$$|x+y| = \max\{x+y, -(x+y)\} \le |x| + |y|.$$

Für den Beweis der **umgekehrten Dreiecksungleichung** seien wieder $x, y \in \mathbb{Q}$. Dann gilt nach der eben gezeigten Dreiecksungleichung

$$|x| = |x - y + y| \le |x - y| + |y|$$

was äquivalent zu

$$|x| - |y| \le |x - y|$$

ist und

$$|y| = |y - x + x| \le |y - x| + |x|.$$

was äquivalent zu

$$-(|x| - |y|) = |y| - |x| \le |y - x| = |x - y|$$

ist. (Die letzte Gleichheit folgt, da $|-z|=\max\{-z,(-(-z))\}=\max\{z,-z\}=|z|$ für alle $z\in\mathbb{Q}$ gilt.)

Damit gilt aber

$$||x| - |y|| = \max\{|x| - |y|, -(|x| - |y|)\} \le |x - y|.$$

Die Ungleichung $\big||x|-|y|\big| \leq |x+y|$ gilt auch für alle $x,y \in \mathbb{Q},$ denn

$$||x| - |y|| = ||x| - |-y|| \le |x - (-y)| = |x + y|$$

nach der umgekehrten Dreiecksungleichung.