Dr. Job Kuit

Lineare Algebra für Informatiker

5. Übung - Lösungen

Präsenzaufgabe 5.1 Sei $V = \mathbb{C}^3$ und sei $U = \text{span}(\{(1, i, 0), (2i, 1, 0)\}) \subseteq V$. Bestimmen Sie Unterräume W, sodass

(a) $V = U \oplus W$.

Lösung: Sei $W = \text{span}(\{(0,0,1)\})$. Wenn $x,y,z \in \mathbb{C}$, dann gilt

$$\frac{x-2iy}{3}(1,i,0) + \frac{-ix+y}{3}(2i,1,0) + z(0,0,1) = (x,y,z).$$

Es folgt, dass V=U+W. Wenn $\lambda,\mu,\nu\in\mathbb{C}$ und $\lambda(1,i,0)+\mu(2i,1,0)=\nu(0,0,1),$ dann folgt

$$\lambda + 2i\mu = 1$$
, $\lambda i + \mu = 0$ und $\nu = 0$

und damit $\lambda = \mu = \nu$. Es folgt, dass $U \cap W = \{O\}$. Darum gilt $V = U \oplus W$.

- (b) V=U+W, aber V nicht die direkte Summe von U und W ist. Lösung: Sei W=V. Dann gilt U+W=U+V=V und $U\cap V=U\neq\{O\}$. Darum ist V nicht die direkte Summe von U und W.
- (c) $U + W \neq V$. $L\ddot{o}sung$: Sei $W = \{O\}$. Dann gilt $U + W = U \neq V$.

Präsenzaufgabe 5.2 Sei $V = \mathbb{C}[x]$ betrachtet als Vektorraum über $K = \mathbb{C}$. Seien V_+ und V_- gegeben durch

$$V_{\pm} := \{ p(x) \in \mathbb{C}[x] : p(-x) = \pm p(x) \}.$$

Zeigen Sie, dass $V=V_+\oplus V_-$. Geben Sie eine Basis von V_+ und eine Basis von V_- an.

Lösung: Seien $B_+:=\{x^{2k}:k\in\mathbb{N}_0\}\subseteq V_+$ und $B_-=\{x^{2k+1}:k\in\mathbb{N}_0\}\subseteq V_-$. Sei $p(x)=\sum_{k=0}^nc_kx^k\in\mathbb{C}[x].$ Wenn $p(x)\in V_+$, dann

$$p(x) = \frac{1}{2}p(x) + \frac{1}{2}p(x) = \frac{1}{2}p(-x) + \frac{1}{2}p(x) = \frac{1}{2}\sum_{k=0}^{n}(-1)^{k}c_{k}x^{k} + \frac{1}{2}\sum_{k=1}^{n}c_{k}x^{k}$$
$$= \frac{1}{2}\sum_{k=0}^{n}\left((-1)^{k} + 1\right)c_{k}x^{k} = \sum_{\substack{0 \le k \le n \\ k \text{ gerade}}}c_{k}x^{k} \in \operatorname{span}(B_{+}).$$

Wenn $p(x) \in V_{-}$, dann

$$p(x) = \frac{1}{2}p(x) + \frac{1}{2}p(x) = -\frac{1}{2}p(-x) + \frac{1}{2}p(x) = -\frac{1}{2}\sum_{k=0}^{n}(-1)^{k}c_{k}x^{k} + \frac{1}{2}\sum_{k=1}^{n}c_{k}x^{k}$$
$$= \frac{1}{2}\sum_{k=0}^{n}\left(-(-1)^{k}+1\right)c_{k}x^{k} = \sum_{\substack{0 \le k \le n \\ k \text{ ungerade}}}c_{k}x^{k} \in \operatorname{span}(B_{-}).$$

Es folgt, dass $V_{\pm} = \operatorname{span}(B_{\pm})$. Wenn $n \in \mathbb{N}$ und $c_0 = c_1, \ldots, c_n \in \mathbb{C}$, sodass $p(x) = \sum_{k=0}^n c_k x^k$ das Nullpolynom ist, dann gilt $\operatorname{deg}\left(p(x)\right) = \operatorname{deg}\left(0\right) = -\infty$. Darum gilt $c_0 = c_1 = \cdots = c_n = 0$. Es folgt, dass $B_+ \cup B_-$ eine Menge von linear unabhängige Elemente ist. Darum ist auch B_{\pm} eine Menge von linear unabhängige Elemente und deshalbe eine Basis von V_{\pm} .

Präsenzaufgabe 5.3 Sei $V := \{p(x) \in \mathbb{C}[x] : \deg(p(x)) \le 2\}$ und seien $p_1(x) = x^2 + x + 1$, $p_2(x) = x^2 + 2x + 1$, $p_3(x) = 3x + 1$.

(a) Zeigen Sei, dass $\{p_1(x), p_2(x), p_3(x)\}$ eine Basis von V ist. $L\ddot{o}sung$: Seien $c_1, c_2, c_3 \in \mathbb{C}$. Wenn $c_1p_1(x) + c_2p_2(x) + c_3p_3(x)$ das Nullpolynom ist, dann gilt

$$(c_1 + c_2)x^2 + (c_1 + 2c_2 + 3c_3)x + (c_1 + c_2 + c_3)$$

$$= c_1(x^2 + x + 1) + c_2(x^2 + 2x + 1) + c_3(3x + 1)$$

$$= c_1p_1(x) + c_2p_2(x) + c_3p_3(x) = 0.$$

Es folgt, dass

$$c_1 + c_2 = 0$$
, $c_1 + 2c_2 + 3c_3 = 0$ and $c_1 + c_2 + c_3 = 0$

und darum

$$c_3 = (c_1 + c_2 + c_3) - (c_1 + c_2) = 0,$$

$$c_2 = (c_1 + 2c_2 + 3c_3) - (c_1 + c_2) - 3c_3 = 0,$$

$$c_1 = (c_1 + c_2) - c_2 = 0.$$

Dies zeigt, dass $p_1(x), p_2(x)$ und $p_3(x)$ linear unabhängig sind. Wenn $d_0, d_1, d_2 \in \mathbb{C}$, dann gilt

$$(-d_2 - d_1 + 3d_0)p_1(x) + (2d_2 + d_1 - 3d_0)p_2(x) + (d_0 - d_2)p_3(x)$$

$$= ((-d_2 - d_1 + 3d_0) + (2d_2 + d_1 - 3d_0))x^2$$

$$+ ((-d_2 - d_1 + 3d_0) + 2(2d_2 + d_1 - 3d_0) + 3(d_0 - d_2))x$$

$$+ \left((-d_2 - d_1 + 3d_0) + (2d_2 + d_1 - 3d_0) + (d_0 - d_2) \right)$$

= $d_2 x^2 + d_1 x + d_0$

Es folgt, dass span $(\{p_1(x), p_2(x), p_3(x)\}) = V$.

(b) Schreiben Sie $1, x, x^2$ als Linearkombinationen von $p_1(x), p_2(x)$ und $p_3(x)$. Lösung:

$$3p_1(x) - 3p_2(x) + p_3(x) = 1,$$

$$-p_1(x) + p_2(x) = x,$$

$$-p_1(x) + 2p_2(x) - p_3(x) = x^2.$$

(c) Schreiben Sie das Polynom $q(x)=5x^2-10x-97$ als Linearkombination von $p_1(x),\,p_2(x)$ und $p_3(x).$ Lösung:

$$-286p_1(x) + 291p_2(x) - 102p_3(x) = 5x^2 - 10x - 97 = q(x).$$