Lineare Algebra für Informatiker

1. Hausaufgabenblatt - Lösungen

Hausaufgabe 1.1 Seien (S, \oplus, \star) ein Ring und X eine nichtleere Menge. Sei $R = \{f: X \to S\}$ die Menge aller Abbildungen von X nach S. Wir definieren auf R eine Addition und Multiplikation durch

$$(f+g)(x) := f(x) \oplus g(x), \quad (f \cdot g)(x) := f(x) \star g(x) \qquad (f, g \in R, x \in X).$$

Zeigen Sie, dass $(R, +, \cdot)$ ein Ring ist.

Lösung: Seien $f,g,h\in R$. Weil \oplus und \star assoziativ sind, \oplus kommutativ ist und das Distributivgesetz in S erfüllt ist, gilt für jedes $x\in X$

$$(f + (g+h))(x) = f(x) \oplus (g+h)(x) = f(x) \oplus (g(x) \oplus h(x))$$

$$= (f(x) \oplus g(x)) \oplus h(x) = (f+g)(x) \oplus h(x) = ((f+g)+h)(x)$$

$$(f \cdot (g \cdot h))(x) = f(x) \star (g \cdot h)(x) = f(x) \star (g(x) \star h(x))$$

$$= (f(x) \star g(x)) \star h(x) = (f \cdot g)(x) \star h(x) = ((f \cdot g) \cdot h)(x)$$

$$(f+g)(x) = f(x) \oplus g(x) = g(x) \oplus f(x) = (g+f)(x)$$

$$((f+g) \cdot h)(x) = (f+g)(x) \star h(x) = (f(x) \oplus g(x)) \star h(x)$$

$$= (f(x) \star h(x)) \oplus (g(x) \star h(x)) = (f \cdot h)(x) \oplus (g \cdot h)(x) = (f \cdot h) + (g \cdot h))(x).$$

Es folgt, dass + und \cdot assoziativ sind, + kommutativ ist und das Distributivgesetz in R erfüllt ist. Seien $0, 1 \in S$ die neutrale Elementen für \oplus bzw. \star . Die Abbildungen

$$\mathbf{0}: X \to S, \quad x \mapsto 0$$
$$\mathbf{1}: X \to S, \quad x \mapsto 1$$

sind neutrale Elementen für + bzw. ·. Weil $0 \neq 1$, gilt $\mathbf{0} \neq \mathbf{1}$. Wenn $f \in R$, dann ist die Abbildung

$$-f: X \to S, \quad x \mapsto -f(x)$$

eine additive Inverse für f.

Hausaufgabe 1.2 Sei $G = \bigcup_{n \in \mathbb{N}} \{z \in \mathbb{C} : z^n = 1\}$. Zeigen Sie, dass G unter Multiplikation komplexer Zahlen eine abelsche Gruppe bildet.

Lösung: Seien $z_1, z_2 \in G$. Es gibt $n_1, n_2 \in \mathbb{N}$, sodass $z_1^{n_1} = 1$ und $z_2^{n_2} = 1$. Es folgt, dass

$$(z_1 z_2)^{n_1 n_2} = z_1^{n_1 n_2} z_2^{n_1 n_2} = (z_1^{n_1})^{n_2} (z_2^{n_2})^{n_1} = 1^{n_2} 1^{n_1} = 1.$$

Darum gilt $z_1z_2 \in G$. Die Multiplikation auf G ist assoziativ und kommutativ, da die Multiplikation auf \mathbb{C} assoziativ und kommutativ ist. Das neutrale Element 1 ist enthalten in G, da $1^1 = 1$. Wenn $z \in G$ und $n \in \mathbb{N}$ erfüllt die Gleichung $z^n = 1$, dann gilt

$$\left(\frac{1}{z}\right)^n = \frac{1}{z^n} = \frac{1}{1} = 1.$$

Darum gilt $\frac{1}{z} \in G$.

Hausaufgabe 1.3 Betrachten Sie die Teilmenge $G = \{[1], [3], [7], [9]\}$ des Rings $\mathbb{Z}/20\mathbb{Z}$. Zeigen Sie, dass G unter Multiplikation in $\mathbb{Z}/20\mathbb{Z}$ eine Gruppe bildet. Lösung: Die Multiplikation auf $\mathbb{Z}/20\mathbb{Z}$ ist assoziativ und kommutativ. Das neutrale Element [1] ist enthalten in G. Weil [3][7] = [21] = [1] und [9][9] = [81] = [1], gilt $x^{-1} \in G$ für alle $x \in G$. Es bleibt zu zeigen, dass $xy \in G$ für alle $x, y \in G$ gilt. Dies ergibt sich aus den Berechnungen

$$[3][3] = [9], \quad [3][9] = [27] = [7], \quad [7][7] = [49] = [9], \quad [7][9] = [63] = [3].$$

Hausaufgabe 1.4 Schreiben Sie das Element $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 2 & 6 & 1 \end{bmatrix}$ in S_6 als Komposition von Transpositionen. Lösung: Es gilt

und

Es folgt

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 3 & 4 & 5 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 3 & 4 & 1 & 6 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 2 & 5 & 6 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 3 & 4 & 6 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 2 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 2 & 6 & 1 \end{bmatrix}.$$