Lineare Algebra für Informatiker

5. Hausaufgabenblatt

Hausaufgabe 5.1

- (a) Betrachten Sie $V=\mathbb{C}^3$ als Vektorraum über \mathbb{C} . Sei $U=\mathrm{span}\{(1,2,3)\}$. Bestimmen Sie einen Untervektorraum $W\subseteq V$, sodass $V=U\oplus W$.
- (b) Betrachten Sie $V := \{p(x) \in \mathbb{C}[x] : \deg(p(x)) \leq 3\}$ als Vektorraum über \mathbb{C} . Sei $U := \operatorname{span}\{x^2+1, x^2+x+1\} \subseteq V$. Bestimmen Sie einen Untervektorraum $W \subseteq V$, sodass $V = U \oplus W$.
- (c) Betrachten Sie $V:=\mathrm{span}\{\cos(t),\sin(t),\frac{1}{t},\log(t)\}\subseteq\mathrm{Abb}(\mathbb{R}_{>0},\mathbb{R})$ als Vektorraum über \mathbb{R} , wobei $\mathrm{Abb}(\mathbb{R}_{>0},\mathbb{R})$ der Vektorraum aller Funktionen $\mathbb{R}_{>0}\to\mathbb{R}$ ist. Sei

$$U := \operatorname{span}\{\cos(t) + \frac{1}{t}, \sin(t) + \log(t)\}.$$

Bestimmen Sie einen Untervektorraum $W \subseteq V$, sodass $V = U \oplus W$.

(d) Seien V und U wie in (c) und $W' := \text{span}\{\cos(t) + \sin(t) + \frac{1}{t}, -7\sin(t)\}$. Gilt $V = U \oplus W'$? (Begründen Sie ihre Antwort).

Hausaufgabe 5.2 Sei K ein Körper und V ein Vektorraum über K von Dimension $n \in \mathbb{N}$. Sind die folgenden Aussagen wahr oder falsch (Beweisen Sie Ihre Antwort)

- (a) Sind $U, W \subseteq V$ Unterräume mit $\dim(U) + \dim(W) > n$, so gilt $U \cap W \neq \{0\}$.
- (b) Sei $K = \mathbb{Z}/3\mathbb{Z}$ und $V = (\mathbb{Z}/3\mathbb{Z})^5$. Sei $U \subseteq V$ ein Unterraum von Dimension 2 und $W \subseteq V$ ein Unterraum mit $V = U \oplus W$. Dann gilt |W| = 27.
- (c) Ist $B := \{v_1, \dots, v_m\} \subseteq V \setminus \{0\}$ mit m > n, dann enthält B eine Basis von V.

Hausaufgabe 5.3 Sei $n \in \mathbb{N}_0$ und

$$\langle x, y \rangle := \sum_{j=1}^{n} x_j y_j \qquad (x, y \in \mathbb{R}^n)$$

das übliche Skalarprodukt auf \mathbb{R}^n .

(a) Zeigen Sie: Ist U ein Unterraum von \mathbb{R}^n , dann ist

$$U^{\perp} := \{ y \in \mathbb{R}^n : \langle u, y \rangle = 0 \ \forall u \in U \}$$

ein Unterraum von \mathbb{R}^n mit $U \cap U^{\perp} = \{0\}.$

(b) Seien e_1, \ldots, e_n die Standardbasisvektoren in \mathbb{R}^n und

$$U := \operatorname{span}\{e_1 + \dots + e_n\}.$$

Bestimmen Sie eine Basis von U^{\perp} . Zeigen Sie, dass $\mathbb{R}^n = U \oplus U^{\perp}$.

(c) Sei $\{0\} \neq W \subseteq \mathbb{R}^n$ ein weiterer Unterraum. Nehmen Sie an, dass eine Basis w_1,\dots,w_k von W existiert mit

$$\langle w_i, w_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

Zeigen Sie, dass dann $\mathbb{R}^n = W \oplus W^\perp$ gilt.

(Hinweis: später in der Vorlesung wird gezeigt werden, dass für jeden Unterraum $W\subseteq\mathbb{R}^n$ eine derartige Basis existiert.)

Abgabe der Hausaufgaben bis zum Sonntag den, 26.05.2024, 23.59 Uhr in Panda.