Lineare Algebra 1

4. Übungsblatt - Ausgewählte Lösungen

Hausaufgabe 4.1 Seien X und I Mengen. Für jedes $i \in I$, sei X_i eine Teilmenge von X. Nehmen Sie an, dass

$$X_i \cap X_j = \emptyset$$
 $(i \neq j),$
 $X = \bigcup_{i \in I} X_i.$

Wir definieren eine Relation \sim auf X durch

$$x_1 \sim x_2 \quad \Leftrightarrow \quad \text{es gibt ein } i \in I, \text{ sodass } x_1, x_2 \in X_i.$$

Zeigen Sie, dass \sim eine Äquivalenzrelation ist.

Lösung:

Reflexivität: Sei $x \in X$. Weil $X = \bigcup_{i \in I} X_i$ gibt es ein $i \in I$, sodass $x \in X_i$. Es folgt, dass $x \sim x$.

Symmetrie: Seien $x, y \in X$, sodass $x \sim y$. Es gibt ein $i \in I$, sodass $x, y \in X_i$. Es folgt, dass auch $y \sim x$.

Transitivität: Seien $x, y, z \in X$ sodass $x \sim y$ und $y \sim z$. Es gibt ein $i \in I$, sodass $x, y \in X_i$ und es gibt ein $j \in I$, sodass $y, z \in X_j$. Weil $y \in X_i \cap X_j$, gilt $X_i \cap X_j \neq \emptyset$. Es folgt, dass i = j. Darum gilt $x, z \in X_i$ und damit $x \sim z$.

Hausaufgabe 4.2

(a) Bestimmen Sie alle Gruppenhomomorphismen $(\mathbb{Z}, +) \to (\mathbb{Z}, +)$. Lösung: Für $n \in \mathbb{Z}$ sei

$$\phi_n: \mathbb{Z} \to \mathbb{Z}, \quad k \mapsto kn.$$

Weil $\phi_n(k+l) = (k+l)n = kn + ln = \phi_n(k) + \phi_n(l)$, ist ϕ_n ein Gruppenhomomorphismus.

Sei jetzt $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}, +)$ ein Gruppenhomomorphismus. Sei $n = \phi(1) \in \mathbb{Z}$. Weil ϕ ein Gruppenhomomorphismus ist gilt $\phi(k) = kn$ für alle $k \in \mathbb{Z}$. Darum gilt $\phi = \phi_n$. Es folgt, dass jeder Gruppenhomomorphismus gleich ϕ_n für ein $n \in \mathbb{Z}$ ist.

(b) Bestimmen Sie alle Ringhomomorphismen $(\mathbb{Z},+,\cdot) \to (\mathbb{Z},+,\cdot)$. Lösung: Die Identität

$$\mathrm{Id}: \mathbb{Z} \to \mathbb{Z}, \quad k \mapsto k$$

ist ein Ringhomomorphismus. Wenn $\phi: \mathbb{Z} \to \mathbb{Z}$ ein Ringhomomorphismus ist, dann ist ϕ ein Gruppenhomomorphismus $(\mathbb{Z},+) \to (\mathbb{Z},+)$ und es gilt $\phi(1)=1$. Gemäß Teil (a) ist ϕ gleich ϕ_n für ein $n \in \mathbb{Z}$. Da $n = \phi_n(1) = \phi(1) = 1$, folgt, dass $\phi = \phi_1 = \operatorname{Id}$.

Hausaufgabe 4.3 Seien $m, n \in \mathbb{N}$. Bestimmen sie ob m teilbar ist durch n, wobei

(a) $m = 47^{56}$, n = 53.

Lösung: Da 53 eine Primzahl ist, gilt nach dem kleinen Satz von Fermat $[x]^{52} = [1]$ für jedes $[x] \in \mathbb{Z}/53\mathbb{Z} \setminus \{[0]\}$. Darum gilt

$$[47]^{56} = [1][47]^4 = [47]^4 = [-6]^4 = [6]^3[6] = [216][6] = [4][6] = [24].$$

Es folgt, dass 47^{56} nicht durch 53 teilbar ist.

(b) $m = 2^{131} + 3^{238} + 5^{42}$, n = 79. *Lösung:* Da 79 prim ist, gilt $[x]^{78} = [1]$ für alle $[x] \in \mathbb{Z}/79\mathbb{Z} \setminus \{[0]\}$. Es folgt, dass

$$[m] = [2]^{131} + [3]^{238} + [5]^{42} = [2]^{53} + [3]^4 + [5]^{42}.$$

Weiter gilt

$$[2]^{10} = [2]^{6}[2]^{4} = [64][16] = [-15][16] = [-240] = [-3]$$

und darum

$$[2]^{53} = ([2]^{10})^4 [2]^{10} [2]^3 = [-3]^4 [-3][2]^3 = [81][-3][8] = [2][-24] = [-48] = [31].$$

Wir berechnen

$$[5]^3 = [125] = [46], \quad [5]^4 = [230] = [-7], \quad [5]^8 = [-7]^2 = [49] = [-30]$$

 $[5]^{16} = [-30]^2 = [900] = [31], \quad [5]^{32} = [31]^2 = [961] = [13]$
 $[5]^{40} = [5]^{32}[5]^8 = [-30][13] = [-390] = [-74] = [5].$

Es folgt, dass $[5]^{42} = [5]^{40}[5]^2 = [5]^3 = [46]$. Wir schließen daraus, dass

$$[m] = [2]^{53} + [3]^4 + [5]^{42} = [31] + [81] + [46] = [31] + [2] + [-33] = [0]$$

und damit, dass m teilbar durch 79 ist.

Hausaufgabe 4.4 Sei $(R, +, \cdot)$ ein Ring. Sei

$$R^{\times} := \{ x \in R : \text{ es gibt ein } y \in R, \text{ sodass } x \cdot y = y \cdot x = 1 \}.$$

(Die Elemente in R^\times heißen Einheiten.)

- (a) Beweisen Sie, dass (R^{\times}, \cdot) eine Gruppe ist. *Lösung:*
 - 0. Seien $x_1, x_2 \in \mathbb{R}^{\times}$. Es gibt $y_1, y_2 \in \mathbb{R}$, sodass

$$x_1 \cdot y_1 = y_1 \cdot x_1 = 1$$
 und $x_2 \cdot y_2 = y_2 \cdot x_2 = 1$.

Es gilt

$$(x_1 \cdot x_2) \cdot (y_2 \cdot y_1) = x_1 \cdot (x_2 \cdot y_2) \cdot y_1 = x_1 \cdot 1 \cdot y_1 = x_1 \cdot y_1 = 1$$

und

$$(y_2 \cdot y_1) \cdot (x_1 \cdot x_2) = y_2 \cdot (y_1 \cdot x_1) \cdot x_2 = y_2 \cdot 1 \cdot x_2 = y_2 \cdot x_2 = 1.$$

Es folgt, dass $x_1 \cdot x_2 \in R^{\times}$.

1. Multiplikation in R ist assoziativ.

- 2. Das neutrale Element für Multiplikation $1 \in R$ ist enthalten in R^{\times} , denn $1 \times 1 = 1$.
- 3. Sei $x \in R^{\times}$. Nach Definition gibt es ein $y \in R$ mit $x \cdot y = y \cdot x = 1$, d.h. y ist eine multiplikative Inverse von x. Es gilt $y \in R^{\times}$, denn $y \cdot x = x \cdot y = 1$.
- (b) Bestimmen Sie R^{\times} , falls $R = \mathbb{Z}/20\mathbb{Z}$.

Lösung: Wenn $x \in R^{\times}$, dann gibt es ein $y \in R$, sodass $x \cdot y = y \cdot x = 1$. Für alle $z \in R \setminus \{0\}$ gilt

$$(z \cdot x) \cdot y = z \cdot (x \cdot y) = z \cdot 1 = z \neq 0$$

Wenn $z \cdot x$ gleich 0 wäre, dann $(z \cdot x) \cdot y = 0$. Es folgt, dass $x \cdot z \neq 0$ für alle $z \in R \setminus \{0\}$.

Sei $n \in \mathbb{Z}$. Wenn n teilbar durch 2 ist, dann ist 10n teilbar durch 20 und darum [10][n] = [0]. Ebenso, wenn n teilbar durch 5 ist, dann ist 4n teilbar durch 20 und darum [4][n] = [0]. Darum gilt

 $R^{\times} \subseteq \{[n] \in \mathbb{R} : n \text{ ist nicht teilbar durch 2 oder 5}\} = \{[1], [3], [7], [9], [11], [13], [17], [19]\}.$

Es gilt

$$\begin{aligned} &[1][1] = [1], \\ &[3][7] = [7][3] = [21] = [1], \\ &[9][9] = [81] = [1], \\ &[11][11] = [121] = [1], \\ &[13][17] = [17][13] = [221] = [1], \\ &[19][19] = [361] = [1] \end{aligned}$$

und darum

$$R^{\times} = \{[1], [3], [7], [9], [11], [13], [17], [19]\}.$$

Hausaufgabe 4.5 Beweisen Sie den Satz von Schröder und Bernstein:

Seien X und Y Mengen. Wenn es injektive Abbildungen $f: X \to Y$ und $g: Y \to X$ gibt, dann gibt es eine bijektive Abbildung $h: X \to Y$.

Beweis: Wir definieren $X_0 := X$ und $Y_0 := Y$. Wir definieren weiter X_n und Y_n für $n \in \mathbb{N}$ rekursiv durch

$$Y_n := f(X_{n-1}), \quad \text{und} \quad X_n := X \setminus g(Y \setminus Y_n).$$

Wir definieren

$$X_{\infty} := \bigcap_{n \in \mathbb{N}} X_n$$
 und $Y_{\infty} := \bigcap_{n \in \mathbb{N}} Y_n$.

Wenn $x \in X_{\infty}$, dann $x \in X_n$ für alle $n \in \mathbb{N}_0$. Es folgt, dass $f(x) \in f(X_n) = Y_{n+1}$ für alle $n \in \mathbb{N}_0$. Darum $f(x) \in \bigcap_{n \in \mathbb{N}_0} Y_{n+1} = \bigcap_{n \in \mathbb{N}} Y_n = Y_{\infty}$. Dies zeigt, dass $f(X_{\infty}) \subseteq Y_{\infty}$.

Wenn $y \in Y_{\infty}$, dann $y \in Y_n = f(X_{n-1})$ für alle $n \in \mathbb{N}$. Für alle $n \in \mathbb{N}$ gibt es darum ein $x_{n-1} \in X_{n-1}$, sodass $f(x_{n-1}) = y$. Da f injektiv ist, gilt $x_n = x_m$ für alle $n, m \in \mathbb{N}_0$. Darum $x_0 \in X_n$ für alle $n \in \mathbb{N}_0$ und damit $x_0 \in X_{\infty}$. Dies zeigt, dass die Abbildung

$$\phi: X_{\infty} \to Y_{\infty}, \quad x \mapsto f(x)$$
 (1)

surjektiv ist. Da f injektiv ist, folgt, dass (1) eine Bijektion ist.

Sei $y \in Y \setminus Y_{\infty}$. Da

$$Y \setminus Y_{\infty} = Y \setminus \left(\bigcap_{n \in \mathbb{N}} Y_n\right) = \bigcup_{n \in \mathbb{N}} (Y \setminus Y_n).$$

gibt es ein $n \in \mathbb{N}$, sodass $y \in Y \setminus Y_n$. Es folgt, dass $g(y) \in g(Y \setminus Y_n)$ und damit $g(y) \notin X \setminus g(Y \setminus Y_n) = X_n$. Weil es ein $n \in \mathbb{N}$ gibt, sodass $g(y) \notin X_n$, gilt $g(y) \in X \setminus X_{\infty}$. Dies zeigt, dass $g(Y \setminus Y_{\infty}) \subseteq X \setminus X_{\infty}$.

Wenn $x \in X \setminus X_{\infty}$, dann $x \notin X_{\infty}$. Es gibt darum ein $n \in \mathbb{N}$, sodass $x \notin X_n = X \setminus g(Y \setminus Y_n)$. Es gilt $x \in g(Y \setminus Y_n)$. Darum gibt es ein $y \in Y \setminus Y_n$, sodass g(y) = x. Weil $Y_{\infty} \subseteq Y_n$, ist y enthalten in $Y \setminus Y_{\infty}$. Dies zeigt, dass

$$Y \setminus Y_{\infty} \to X \setminus X_{\infty}, \quad y \mapsto g(y)$$
 (2)

surjektiv ist. Da g injektiv ist, folgt, dass die Abbildung (2) eine Bijektion ist. Sei $\gamma: X \setminus X_{\infty} \to Y \setminus Y_{\infty}$ die Umkehrabbildung von (2). Wir definieren jetzt die Abbildung

$$h: X \to Y, \quad x \mapsto \left\{ \begin{array}{ll} f(x) & (x \in X_{\infty}) \\ \gamma(x) & (x \in X \setminus X_{\infty}) \end{array} \right.$$

Weil (1) und (2) (und damit auch γ) bijektiv sind, ist h bijektiv.