Prof. Dr. Bernhard Krötz, Dr. Job Kuit

Lineare Algebra 1

10. Übungsblatt

Präsenzaufgabe 10.1 Seien V, W, X Vektorräume und $f: V \to W$ und $g: W \to X$ lineare Abbildungen.

- (a) Zeigen Sie, dass $(g \circ f)^* = f^* \circ g^*$.
- (b) Nehmen Sie an, dass V und W endlichdimensional sind. Seien \mathcal{B} eine Basis von V und \mathcal{C} eine Basis von W und seien \mathcal{B}^* und \mathcal{C}^* die entsprechenden Dualbasen von V^* bzw. W^* . Dann gilt

$$_{\mathcal{B}^*}[f^*]_{\mathcal{C}^*} = \left(_{\mathcal{C}}[f]_{\mathcal{B}}\right)^T.$$

(c) Nehmen Sie an, dass V endlichdimensional ist. Seien \mathcal{B}_1 und \mathcal{B}_2 Basen von V und seien \mathcal{B}_1^* und \mathcal{B}_2^* die entsprechenden Dualbasen von V^* . Dann gilt

$$\mathcal{B}_1^*[\mathrm{id}_{V^*}]_{\mathcal{B}_2^*} = (\mathcal{B}_2[\mathrm{id}_V]_{\mathcal{B}_1})^T.$$

Präsenzaufgabe 10.2 Sei K ein Körper und $V = K^4$. Sei

$$\langle \cdot, \cdot \rangle : V \times V \to K, \quad (x, y) \mapsto \langle x, y \rangle := \sum_{k=1}^{4} x_k y_k.$$

Für $y \in V$ definieren wir

$$\ell_y: V \to K, \quad x \mapsto \langle x, y \rangle$$

und bemerken, dass $V^* = \{\ell_y : y \in V\}$. Bestimmen Sie Vektoren $y_1, y_2, y_3, y_4 \in V$, sodass $\mathcal{B}^* = \{\ell_{y_i} : i = 1, 2, 3, 4\}$ die Dualbasis der Basis

$$\mathcal{B} = \left\{ x_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, x_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

von V ist.

Präsenzaufgabe 10.3 Sei V ein Vektorraum. Betrachten Sie die Abbildung

$$\iota: V \to V^{**}, \quad x \mapsto (V^* \ni \ell \mapsto \ell(x)).$$

- (a) Zeigen Sie, dass die Abbildung ι injektiv ist. Zeigen Sie weiter, dass ι nicht surjektiv ist, falls $\dim(V) = \infty$.
- (b) Sei U ein Unterraum von V. Zeigen Sie, dass

$$(U^{\perp})^{\perp} = \iota(U),$$

falls $\dim(V) < \infty$.