Prof. Dr. Bernhard Krötz, Dr. Job Kuit

Lineare Algebra 1

12. Übungsblatt

Präsenzaufgabe 12.1 Sei $A \in M(3 \times 3, \mathbb{C})$ und sei $T_A : \mathbb{C}^3 \to \mathbb{C}^3$, $v \mapsto Av$. Bestimmen Sie das charakteristische Polynom, die Eigenwerte und Eigenräume von T_A und geben Sie wenn möglich eine Matrix $B \in M(3 \times 3, \mathbb{C})$ an, sodass BAB^{-1} eine Diagonalmatrix ist, falls

(a)
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 2 & 3 \end{pmatrix}$$

Präsenzaufgabe 12.2

- (a) Sei $D: \mathbb{C}[x] \to \mathbb{C}[x], p(x) \mapsto p'(x)$. Bestimmen Sie alle Eigenwerte und Eigenräume von D.
- (b) Sei $Q: \mathbb{C}[x] \to \mathbb{C}[x], p(x) \mapsto xp(x)$. Bestimmen Sie alle Eigenwerte und Eigenräume von Q.
- (c) Bestimmen Sie alle Eigenwerte und Eigenräume von $Q \circ D$.
- (d) Sei $V = \{ p \in \mathbb{C}[x] : \deg(p) \le 5 \}$ und sei

$$T: V \to V, \quad p \mapsto Q \circ D^2(p) - D \circ Q(p) + 3p$$

Bestimmen Sie alle Eigenwerte und Eigenvektoren von T.

Präsenzaufgabe 12.3 Sei V ein endlichdimensionaler Vektorraum über einem Körper K. Zwei lineare Abbilungen $\phi:V\to V$ und $\psi:V\to V$ kommutieren, falls $\phi\circ\psi=\psi\circ\phi$ und sind gleichzeitig diagonalisierbar, falls es eine Basis $\mathcal B$ von V gibt, sodass $_{\mathcal B}[\phi]_{\mathcal B}$ und $_{\mathcal B}[\psi]_{\mathcal B}$ beide diagonal sind. Seien jetzt $\phi:V\to V$ und $\psi:V\to V$ diagonalisierbare lineare Abbilungen. Beweisen Sie, dass ϕ und ψ genau dann kommutieren, wenn sie gleichzeitig diagonalisierbar sind. Beschreiben Sie die Eigenwerte von $\phi\circ\psi$, wenn ϕ und ψ kommutieren.

Hausaufgabe 12.1 Sei $A=\begin{pmatrix}3&1&1\\2&4&2\\-1&-1&1\end{pmatrix}$ und sei $T_A:\mathbb{C}^3\to\mathbb{C}^3,\,v\mapsto Av.$ Bestimmen Sie das

charakteristische Polynom, die Eigenwerte und Eigenräume von T_A und geben Sie wenn möglich eine Matrix $B \in M(3 \times 3, \mathbb{C})$ an, sodass BAB^{-1} eine Diagonalmatrix ist.

Hausaufgabe 12.2 Sei
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- (a) Zeigen Sie, dass A invertierbar ist.
- (b) Sei

$$C_A: M(3\times 3, \mathbb{C}) \to M(3\times 3, \mathbb{C}), \quad X \mapsto AXA^{-1}$$

Bestimmen Sie alle Eigenwerte und Eigenräume von C_A .

Hausaufgabe 12.3 Sei V ein Vektorraum über einem Körper K und sei $\phi:V\to V$ eine lineare Abbildung.

- (a) Beweisen Sie die folgenden Behauptungen. Wenn ϕ invertierbar ist, dann ist $\lambda \in K$ genau dann ein Eigenwert von ϕ , wenn λ^{-1} ein Eigenwert von ϕ^{-1} ist. Wenn $v \in V$ ein Eigenvektor von ϕ zum Eigenwert λ ist, dann ist v ein Eigenvektor von ϕ^{-1} zum Eigenwert λ^{-1} .
- (b) Beweisen Sie die folgende Behauptung. Wenn $\dim(V) < \infty$, dann ist $\lambda \in K$ genau dann ein Eigenwert von ϕ , wenn λ ein Eigenwert von $\phi^* : V^* \to V^*$ ist.
- (c) Geben Sie ein Beispiel für eine Matrix $A \in M(2 \times 2, \mathbb{C})$, sodass A und A^T nicht dieselben Eigenräume haben.

Hausaufgabe 12.4 Sei $n \in \mathbb{N}$ und sei $A \in M(n \times n, \mathbb{R})$. Beweisen Sie die folgenden Behauptungen.

- (a) Wenn $\lambda \in \mathbb{C}$ ein Eigenwert von A ist, dann ist auch $\overline{\lambda}$ ein Eigenwert von A.
- (b) Wenn $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{C}^n$ ein Eigenvektor mit Eigenwert λ ist, dann ist $\overline{v} := \begin{pmatrix} \overline{v_1} \\ \overline{v_2} \\ \vdots \\ \overline{v_n} \end{pmatrix}$ ein Eigenvektor mit Eigenwert $\overline{\lambda}$.