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Abstract. We prove perturbation results for α-times integrated semigroups
assuming relative “smallness” conditions for the perturbation B on a halfplane.
If A is a semigroup generator on a uniformly convex Banach space, then these

conditions on B already imply that A + B generates a once integrated semi-
group. As an illustration we consider Schrödinger operators and higher order
differential operators.

1. Introduction

Perturbation theory for operator semigroups is an important tool in applications
to differential equations and therefore it is a richly developed field. Most of these
perturbation theorems assume relative boundedness of the perturbation B, and
moreover a “relative smallness” condition that amounts to an estimate

‖B(λ − A)−1‖ ≤ M < 1 (1)

or

‖(λ − A)−1Bx‖ ≤ M‖x‖ (2)

on a certain subset of the complex plane. In all these results one needs further
assumptions either on the generator A or on the perturbation B (e.g., analyticity
or contractivity conditions). Such additional conditions are indeed necessary, since
in general (1) or (2) by themselves do not guarantee that A + B is a semigroup
generator (see Example 7.1). But a somewhat weaker result is true. In this paper
we show that if the relative boundedness condition (1) or (2) holds for λ in a
halfplane, then A+B generates an α-times integrated semigroup where the rate of
integration α depends on the geometry of the underlying Banach space X. E.g., if X

is uniformly convex, then A+B generates a once integrated semigroup. These results
are consequences of a more general perturbation theorem for α-times integrated
semigroups which is of some interest in itself. Aside from some special results in
[9, Section I.5] and [15] it seems to be the first genuine perturbation theorem for
α-times integrated semigroups.

Integrated semigroups where introduced by Arendt [2, 3] to study resolvent positive
operators. In [2] there is a perturbation theorem for resolvent positive operators that
is closely related to our results. Hieber [9] refined the theory by introducing α-times
integrated semigroups for positive real numbers α.

Integrated semigroups are a natural extension of semigroup theory to deal with
operators that have polynomially bounded resolvents in a halfplane and for which
the Cauchy problem is solvable for x ∈ D(Aα), α > 1. One important example

2000 Mathematics Subject Classification. Primary 47A55, 47D62. Secondary 47D06, 47E05.
Key words and phrases. α-times integrated semigroup, perturbation.
The research is supported in part by the Landesforschungsschwerpunkt Evolutionsgleichungen

des Landes Baden-Württenberg.
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is the Schrödinger operator i∆ on Lp-spaces. Hörmander [12] proved in 1960 that
i∆ generates a C0-semigroup on Lp(Rn) if and only if p = 2. But Hieber [9, 10]
showed that the Schrödinger operator generates an α-times integrated semigroup
on Lp(Rn) for α > n| 12 − 1

p |. Other examples are second order Cauchy problems

[4, 17] and delay equations [1].

We apply our perturbation theorems to the Schrödinger operator in one dimension:

If one adds a potential V ∈ Lp + L∞, the sum i d2

dx2 + V generates a β-times
integrated semigroup. Similar results hold also for higher order differential operators
(see Section 8). For an application to delay equations see [13].

2. α-times integrated semigroups

Let X be a Banach space. By L(X) we denote the space of all bounded linear
operators from X to X. We recall the definition of an α-times integrated semigroup.

Definition 2.1. Let α ≥ 0 and (A,D(A)) be a linear operator on X. A is called
generator of an α-times integrated semigroup if there are nonnegative numbers ω,M

and a mapping S : [0,∞) → L(X) such that

• (S(t))t≥0 is strongly continuous and ‖
∫ t

0
S(s) ds‖ ≤ Meωt for all

t ≥ 0,

• (ω,∞) is contained in the resolvent set ρ(A) of A, and

• R(λ,A) := (λ − A)−1 = λα
∫ ∞

0
e−λt S(t) dt for λ > ω.

In this case, the family (S(t))t≥0 is the α-times integrated semigroup generated by
A.

Remarks (1) If (A,D(A)) generates an α-times integrated semigroup (S(t))t≥0,
then the halfplane {λ ∈ C : Re λ > ω} is contained in ρ(A) and R(λ,A) =
λα

∫ ∞

0
e−λtS(t)dt for all Reλ > ω.

(2) By uniqueness of the Laplace transform, (S(t))t≥0 is uniquely determined.
(3) If α = 0, the definition above is consistent with the definition of a C0-semigroup
(see [4, Theorem 3.1.7]). In this case the generator A is densely defined and (S(t))t≥0

is exponentially bounded. For α > 0 this may not be true in general.
(4) If A generates an α-times integrated semigroup (Sα(t))t≥0, then A also gener-
ates a β-times integrated semigroup (Sβ(t))t≥0 for each β > α.
(5) If A generates an α-times integrated semigroup (S(t))t≥0, then the abstract
Cauchy problem

{

u′(t) = Au(t), t ∈ [0, τ ],

u(0) = x,
(3)

has a unique classical solution for each x ∈ D(An+1) where n ∈ N0 such that n−1 <

α ≤ n ([9]). By a classical solution of (3) we mean a function u ∈ C1([0,∞),X)
such that u(t) ∈ D(A) for all t ≥ 0 and (3) is satisfied.

3. Main Results

Let (A,D(A)) be the generator of an α-times integrated semigroup (S(t))t≥0 on X

and let

ω(S) := inf{ω ∈ R : ∃K ≥ 0 such that ‖S(t)‖ ≤ Keωt}

be the growth bound of S if (S(t))t≥0 is exponentially bounded. If not let

ω(S) := inf
{

ω ∈ R : ∃K ≥ 0 such that
∥

∥

∫ t

0
S(s)ds

∥

∥ ≤ Keωt
}

.
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We consider a linear operator (B,D(B)) in X that satisfies one of the following
conditions:

(C1) D(B) ⊇ D(A) and there are constants λ0 > max{0, ω(S)} and M < 1 such
that

‖BR(λ,A)‖ ≤ M

for all λ ∈ C with Reλ = λ0.

(C2) B is densely defined and there are constants λ0 > max{0, ω(S)} and M < 1
such that

‖R(λ,A)Bx‖ ≤ M‖x‖

for all x ∈ D(B) and all λ ∈ C with Re λ = λ0.

Our first result is the following perturbation theorem for α-times integrated semi-
groups.

Theorem 3.1. Let (A,D(A)) be the generator of an α-times integrated semigroup
(S(t))t≥0 on X and let (B,D(B)) be a linear operator in X. Choose β > α + 1 if
(S(t))t≥0 is exponentially bounded and β > α + 2 in the general case.

(a) If (C1) holds, then (A+B,D(A)) generates a β-times integrated semigroup.
(b) If we assume (C2), then a closed extension (C,D(C)) of (A + B,D(A) ∩

D(B)) generates a β-times integrated semigroup. If A and its adjoint A∗

are densely defined, then C is the part of (A∗ + B∗)∗ in X, i.e., Cx =
(A∗ + B∗)∗x for x ∈ D(C) = {x ∈ D((A∗ + B∗)∗) ∩ X : (A∗ + B∗)∗ ∈ X}.

Under certain assumptions on the geometry of the Banach space X one can improve
the bound for β. For this we need the following definition:

Definition 3.2. A Banach space X has Fourier type p ∈ [1, 2] if the Fourier

transform extends to a bounded linear operator from Lp(R,X) to Lp′

(R,X) where
1
p + 1

p′
= 1.

Each Banach space has Fourier type 1. A Banach space has Fourier type 2 if and
only if it is isomorphic to a Hilbert space ([16]). If X has Fourier type p, then it
has Fourier type r for each r ∈ [1, p]. Each closed subspace, each quotient space
and the dual space X∗ of a Banach space X has the same Fourier type as X. The
space Lr(Ω, µ) has Fourier type min{r, r

r−1} ([19]). Each B-convex Banach space

has Fourier type p > 1 ([5, 6]).

If we take the Fourier type of X into consideration, we obtain the following refined
version of our perturbation result with optimal lower bound for β (cf. Section 7).

Theorem 3.3. Let X be a Banach space of Fourier type p ∈ [1, 2]. Let (A,D(A))
be the generator of an exponentially bounded α-times integrated semigroup (S(t))t≥0

on X and let (B,D(B)) be a linear operator in X. Choose β > α + 1
p .

(a) If A is densely defined and (C1) holds, then (A + B,D(A)) generates a
β-times integrated semigroup.

(b) If we assume (C2), then a closed extension (C,D(C)) of (A + B,D(A) ∩
D(B)) generates a β-times integrated semigroup. If A and A∗ are densely
defined, then C is the part of (A∗ + B∗)∗ in X.

As a corollary we obtain the following perturbation result for C0-semigroups on
B-convex Banach spaces.
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Corollary 3.4. Let (A,D(A)) be the generator of a C0-semigroup on a B-convex
Banach space X and let (B,D(B)) be a linear operator in X.

(1) If (C1) holds then (A + B,D(A)) generates a once integrated semigroup.
(2) If we assume (C2) then a closed extension (C,D(C)) of (A + B,D(A) ∩

D(B)) generates a once integrated semigroup. If A and A∗ are densely
defined then C is the part of (A∗ + B∗)∗ in X.

4. Existence and representation of the resolvent of A + B

In this section we collect some results on the existence and representation of the
resolvent of the sum of two linear operators A and B. We assume that the resolvent
set of A is nonempty. Our first lemma can be used if condition (C1) from Section
3 is satisfied.

Lemma 4.1. Let (A,D(A)) and (B,D(B)) be linear operators in X such that
D(A) ⊆ D(B). If there is λ ∈ ρ(A) such that ‖BR(λ,A)‖ < 1, then λ ∈ ρ(A + B)
and

R(λ,A + B) = R(λ,A)[I − BR(λ,A)]−1 = R(λ,A)

∞
∑

k=0

[BR(λ,A)]k.

Proof. Our assumptions yield that I − BR(λ,A) is invertible in L(X) and that

[I − BR(λ,A)]−1 =

∞
∑

k=0

[BR(λ,A)]k.

Now it is easy to show that λ ∈ ρ(A+B) and R(λ,A+B) = R(λ,A)[I−BR(λ,A)]−1.
¤

The next lemma is related to condition (C2).

Lemma 4.2. Let (A,D(A)) and (B,D(B)) be linear operators in X. We assume
that there are a nonempty subset G of ρ(A), a subset D of D(B) that is dense in
X and a constant M < 1 such that ‖R(λ,A)Bx‖ ≤ M‖x‖ for all x ∈ D and all
λ ∈ G. Then the following assertions hold:

(a) There is a closed extension (C,D(C)) of (A + B,D(A) ∩ D(B)) such that
G ⊆ ρ(C) and

R(λ,C) = [I − R(λ,A)B]−1R(λ,A) =

∞
∑

k=0

[R(λ,A)B]kR(λ,A)

for all λ ∈ G.

(b) If A and B are densely defined, then D(A∗) ⊆ D(B∗) and ‖B∗R(λ,A∗)‖ ≤
M for all λ ∈ G.

(c) If moreover D(A∗) = X∗, then the operator C from (a) is the part of (A∗ +
B∗)∗ in X.

Proof. (a) For λ ∈ G we can extend R(λ,A)B to a bounded operator on X with
norm ≤ M . We denote this (unique) extension also by R(λ,A)B. Then I−R(λ,A)B
is invertible in L(X) and

Rλ := [I − R(λ,A)B]−1R(λ,A) =

∞
∑

k=0

[R(λ,A)B]kR(λ,A).
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We fix λ ∈ G and define

D(C) = RanRλ,

C = λI − R−1
λ .

Using the theory on pseudo resolvents ([18, Section 1.9]), one can show that (C,D(C))
does not depend on λ ∈ G. Moreover, Rµ = R(µ,C) for all µ ∈ G and (C,D(C)) is
a closed extension of (A + B,D(A) ∩ D(B)).

(b) Since A and B are densely defined, the adjoint operators A∗ and B∗ are well-
defined. Let y∗ ∈ D(A∗) and λ ∈ G. Then there is x∗ ∈ X∗ with y∗ = R(λ,A∗)x∗

and for all x ∈ D we obtain

〈y∗, Bx〉 = 〈R(λ,A∗)x∗, Bx〉 = 〈R(λ,A)∗x∗, Bx〉 = 〈x∗, R(λ,A)Bx〉.

Therefore y∗ ∈ D(B∗) and ‖B∗y∗‖ ≤ M‖x∗‖.

(c) From (b) and Lemma 4.1 we obtain that (A∗ + B∗,D(A∗)) is closed, G ⊆
ρ(A∗ + B∗) and R(λ,A∗ + B∗) = R(λ,A∗)[I − B∗R(λ,A∗)]−1 for each λ ∈ G.
Moreover it is easy to show that R(λ,A∗ + B∗) = R(λ,C)∗.
If D(A∗) is dense in X∗, then the adjoint (A∗ + B∗)∗ of (A∗ + B∗,D(A∗)) is well-
defined and

D(C) = R(λ,C)(X) = R(λ, (A∗ + B∗)∗)(X)

= {x ∈ X ∩ D((A∗ + B∗)∗) : (A∗ + B∗)∗x ∈ X}.

This means that C is the part of (A∗ + B∗)∗ in X. ¤

5. Proof of Theorem 3.1

In the proof of Theorem 3.1 we use the following result from ([9, Theorem 5.1]).

Proposition 5.1. Let X be a Banach space and (A,D(A)) a linear operator in X.
If there are numbers ω,L ≥ 0 and τ ≥ −1 such that

• {λ ∈ C : Re λ > ω} ⊆ ρ(A) and

• ‖R(λ,A)‖ ≤ L|λ|τ for Re λ > ω,

then A generates an α-times integrated semigroup for each α > τ + 1.

Proof of Theorem 3.1. (a) We first consider the case that (S(t))t≥0 is exponentially
bounded. Since (A,D(A)) generates an α-times integrated semigroup we obtain the
estimate

‖R(λ,A)‖ ≤ |λ|α
∫ ∞

0

e−Re λt‖S(t)‖dt ≤ K|λ|α(Re λ − ω)−1 (4)

for all λ ∈ C with Reλ ≥ λ0. Here ω ∈ (ω(S), λ0) and K ≥ 0 are chosen such that
‖S(t)‖ ≤ Keωt.

For µ ∈ C with Reµ > λ0 we put λ := λ0 + i Im µ. The resolvent equation yields
R(µ,A) = R(λ,A)[I + (λ − µ)R(µ,A)]. Then

‖BR(µ,A)‖ ≤ ‖BR(λ,A)‖‖I + (λ − µ)R(µ,A)‖

≤ M
[

1 + |λ − µ| · K|µ|α(Re µ − ω)−1
]

≤ M(1 + K|µ|α)

and BR(µ,A) satisfies the assumptions of the Phragmen-Lindelöf theorem (see e.g.
[7]), which then yields that ‖BR(λ,A)‖ ≤ M for all λ ∈ Hλ0

= {λ ∈ C : Re λ ≥ λ0}.
By Lemma 4.1, Hλ0

is contained in ρ(A + B) and R(λ,A + B) = R(λ,A)[I −
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BR(λ,A)]−1 for all λ ∈ Hλ0
. Now by (4) there is a constant L ≥ 0 such that for all

λ ∈ Hλ0
the estimate

‖R(λ,C)‖ ≤ ‖R(λ,A)‖‖[I − BR(λ,A)]−1‖ ≤ L|λ|α

is satisfied. Our claim now follows from Proposition 5.1.

In the general case (where (S(t))t≥0 is not exponentially bounded) we use the
estimate

‖R(λ,A)‖ =
∥

∥

∥
λα+1

∫ ∞

0

e−λt

∫ t

0

S(s)ds dt
∥

∥

∥
≤ K|λ|α+1(Re λ − ω)−1

instead of (4) where ω ∈ (ω(S), λ0) and K ≥ 0 are chosen such that ‖
∫ t

0
S(s)ds‖ ≤

Keωt. Then we can proceed in the same way as above.

(b) Since D(B) is dense in X, we can extend R(λ,A)B for each λ ∈ λ0 + iR to a
bounded linear operator on X with norm ≤ M . We denote this operator again by
R(λ,A)B. Now the assertion can be proved in the same way as (a) using Lemma
4.2 instead of Lemma 4.1. ¤

6. Proof of Theorem 3.3

The case p = 1 we have already proved above. Let p ∈ (1, 2] and 1
p + 1

q = 1. Observe

that for x ∈ X, r ≥ λ0 and s ∈ R we have
∫ ∞

0

(e−rt‖S(t)x‖)pdt ≤ c1‖x‖
p (5)

and

(r − is)−αR(r − is, A)x =

∫ ∞

0

eist(e−rtS(t)x)dt. (6)

We first prove (b). Since X has Fourier type p, we obtain that
∫ ∞

−∞

‖(r + is)−αR(r + is, A)x‖qds ≤ c2‖x‖
q

for all r ≥ λ0 and all x ∈ X. As in the proof of Theorem 3.1 we use the Phragmen-
Lindelöf theorem and Lemma 4.2 to show that there exists a closed extension
(C,D(C)) of (A + B,D(A) ∩ D(B)) such that for Reλ ≥ λ0 the resolvent can
be written as R(λ,C) = [I − R(λ,A)B]−1R(λ,A). This yields

∫ ∞

−∞

‖(r + is)−αR(r + is, C)x‖qds ≤ c3‖x‖
q.

Moreover, λ−αR(λ,C) is holomorphic for Reλ ≥ λ0.

Let γ > 1
p . For t ≥ 0 and x ∈ X we define

U(t)x :=
1

2πi

∫

Re λ=λ0

eλtλ−γ [λ−αR(λ,C)x]dλ.

By Hölder’s inequality, U(t) ∈ L(X). Using the Riemann-Lebesgue-Lemma and [11,
Theorem 6.6.1], we obtain that (U(t))t≥0 is strongly continuous and

λ−αR(λ,C) = λγ

∫ ∞

0

e−λtU(t) dt

for each Reλ > λ0. The claim now follows with Definition 2.1.
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To prove (a), we first observe that (5) and (6) also hold if we replace S(t) by its
adjoint S(t)∗ and x by x∗ ∈ X∗. Recall that X∗ has Fourier type p since X has. So
we obtain in the same way as above that

∫ ∞

−∞

‖(r + is)−αR(r + is, A + B)∗x∗‖qds ≤ c‖x∗‖q

for all r ≥ λ0 and all x∗ ∈ X∗.

Again let γ > 1
p . For t ≥ 0 and x∗ ∈ X∗ define

U∗(t)x∗ :=
1

2πi

∫

Re λ=λ0

eλtλ−γ [λ−αR(λ,A + B)∗x∗]dλ.

Then the family (U∗(t))t≥0 ⊆ L(X∗) is strongly continuous and

λ−αR(λ,A + B)∗ = λγ

∫ ∞

0

e−λtU∗(t) dt

for Reλ > λ0. For x ∈ D(A) and t ∈ [0,∞), the integral in

U(t)x :=
1

2πi

∫

Re λ=λ0

eλtλ−γ [λ−αR(λ,A + B)x]dλ

converges absolutely. Therefore t 7→ U(t)x is continuous in [0,∞) if x ∈ D(A) and

R(λ,A + B)x = λγ+α

∫ ∞

0

e−λtU(t)x dt.

Now the uniqueness theorem for the Laplace transform and the fact that t 7→
(U∗(t))∗x is weakly continuous yields that U(t)x = (U∗(t))∗x for all t ≥ 0 and all
x ∈ D(A). Since ((U∗(t))∗)t≥0 is exponentially bounded and D(A) is dense in X,
the family ((U∗(t))∗)t≥0 is strongly continuous and the claim follows with Definition
2.1. ¤

7. An example

The following example shows that the bound for β in Theorem 3.3 is optimal.

Example 7.1. Let X = Lp(0,∞), p ∈ (1,∞) and γ ∈ C. We define the operators A

and Bγ by

(Af)(x) :=
d

dx
f(x), (Bγf)(x) :=

γ

x
f(x),

with maximal domains in X. The closure of (A+Bγ ,D(A)∩D(Bγ)) in X we denote
by Cγ . Then:

a) ‖R(λ,A)Bγx‖p ≤ p|γ|‖x‖p for all x ∈ D(B) and all Reλ > 0, i.e. if |γ| < 1
p and

α > max{ 1
p , 1 − 1

p}, then Cγ generates an α-times integrated semigroup.

b) If 0 < α < γ < 1
p , then Cγ does not generate an α-times integrated semigroup.

c) If γ ≥ 1
p , then there is no α > 0 such that Cγ generates an α-times integrated

semigroup.

Proof. a) Let 1 < p < ∞, |γ| < 1
p , 1

p + 1
q = 1, Reλ > 0, f ∈ D(Bγ) and g ∈

Lq(0,∞). It is well known that the operator (A,D(A)) generates the C0-semigroup
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(T (t))t≥0 given by T (t)f(x) = f(x + t). Using this we obtain

|〈g,R(λ,A)Bγf〉| =

∣

∣

∣

∣

∫ ∞

0

g(x)

∫ ∞

0

e−λtT (t)Bγf(x) dt dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

g(x)

∫ ∞

0

e−λt γ

x + t
f(x + t) dt dx

∣

∣

∣

∣

= |γ|

∣

∣

∣

∣

∫ ∞

0

g(x)

∫ ∞

x

e−λ(t−x) f(t)

t
dt dx

∣

∣

∣

∣

= |γ|

∣

∣

∣

∣

∫ ∞

0

f(t)

t

∫ t

0

e−λ(t−x)g(x) dx dt

∣

∣

∣

∣

≤ |γ|

∫ ∞

0

|f(t)|

t

∫ t

0

e−Re λ(t−x)|g(x)| dx dt

≤ |γ|

∫ ∞

0

|f(t)|
1

t

∫ t

0

|g(x)| dx dt.

Let G(t) := 1
t

∫ t

0
|g(x)| dx. Then by Hardy’s inequality ([8, VI.10.11]) ‖G‖q ≤ p‖g‖q

and by Hölder’s inequality

|〈g,R(λ,A)Bγf〉| ≤ |γ|

∫ ∞

0

|f(t)| G(t) dt ≤ |γ| ‖f‖p ‖G‖q ≤ p|γ| ‖f‖p ‖g‖q.

Therefore ‖R(λ,A)Bγ‖p ≤ p|γ| ‖f‖p. Since (Cγ ,D(Cγ)) is closed and X is reflexive
we have (C∗

γ)∗ = Cγ . Theorem 3.3 now yields that (Cγ ,D(Cγ)) generates an α-

times integrated semigroup if α > max
{

1
p , 1 − 1

p

}

.

b) Let 0 < α < γ < 1
p . For a test function f ∈ C∞

c (0,∞) and t > 0 we define Stf

by

Stf(x) =
1

Γ(α)

∫ t

0

(t − s)α−1

(

x + s

x

)γ

f(x + s) ds.

Part a) and Lemma 4.2 yields that {λ ∈ C : Re λ > 0} ⊆ ρ(Cγ). Moreover, for
f ∈ C∞

c (0,∞) and Reλ > 0

R(λ,Cγ)f = λα

∫ ∞

0

e−λtStf dt.

If (Cγ ,D(Cγ)) generates an α-times integrated semigroup, then by uniqueness of
the Laplace transform the α-times integrated semigroup is given by Stf for f ∈
C∞

c (0,∞). But St can not be extended to a bounded linear operator on X.

c) For f ∈ C∞
c (0,∞) and λ ∈ R we define Rλf by

Rλf(x) := x−γeλx

∫ ∞

x

e−λttγf(t) dt.

Then Rλ(λ−Cγ)f = f = (λ−Cγ)Rλf . But if γ ≥ 1
p , then Rλ can not be extended

to a bounded operator on Lp(0,∞). So R ⊆ σ(Cγ). Hence there can be no α > 0
such that (Cγ ,D(Cγ)) generates an α-times integrated semigroup. ¤

8. Application

Let X = Lp(R) where 1 < p < ∞ and let m ≥ 2 be an integer. We define the
operator (Am,D(Am)) by

Amf := if (m) if m is even,

and by

Amf := f (m) if m is odd,
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with domain D(A) := Wm,p(R) in Lp(R).

Then (Am,D(Am)) generates a C0-semigroup on X if and only if p = 2 ([9]). For
m = 2 this was proved first by Hörmander [12] in 1960. If p 6= 2, (Am,D(Am))
generates an α-times integrated semigroup on X for α >

∣

∣

1
2 − 1

p

∣

∣ ([9]).

We consider the Cauchy problem
{

u′(t) = (Am + B)u(t), t ≥ 0,

u(0) = x,

where (B,D(B)) is defined by

Bf := V · f (l)

with maximal domain

D(B) := {f ∈ Lp(R) : V · f (l) ∈ Lp(R)}

in Lp(R). Here, V is a potential and l ∈ N∪ {0}. We will use Theorem 3.3 to show
the following proposition.

Proposition 8.1. Let X = Lp(R) where 1 < p < ∞. The operators (Am,D(Am))
and (B,D(B)) are defined as above. If one of the conditions

(i) l ≤ 1
p (m − 1) und V ∈ Lp(R)

or
(ii) l = 0 und V ∈ Lp(R) + L∞(R)

are satisfied, then D(B) ⊇ D(A) and (Am + B,D(Am)) generates a β-times inte-
grated semigroup for each β > σp. Here

σp =

{

2
p − 1

2 p ∈ (1, 2]
3
2 − 2

p p ∈ (2,∞).

Proof. We only give the proof for the case that m is even, i.e, m = 2k for some
k ∈ N. If m is odd, the proposition can be shown in a similar way.

One can compute that C \ (iR) ⊆ ρ(A2k) and that for λ ∈ C \ (iR) the resolvent of
A2k is given by

R(λ,A2k)f(x) =
i

2k

∫ ∞

−∞

k
∑

j=1

e−µj |x−s|

(−µj)2k−1
f(s) ds, x ∈ R,

where f is a function in Lp(R) and µj (j = 1, . . . , k) are the k solutions of the
equation λ − iµ2k = 0 with Re µj > 0. Moreover, using Young’s inequality, we
obtain the resolvent estimate

‖R(λ,A2k)f‖p ≤
‖f‖p

|λ|1−1/(2k) min{Re µj : j = 1, . . . , k}
.

Let λ = reiϕ where r > 0 and ϕ ∈ (−π
2 , π

2 ). Then a careful computation yields

min{Re µj : j = 1, . . . , k} = |λ|1/(2k) cos ψk

where

ψk =

{

ϕ
2k − π

4k + π
2 , if k even,

ϕ
2k + π

4k − π
2 , if k odd.

Since |λ| = Re λ
cos ϕ , we have

|λ|1−1/(2k) min{Re µj : j = 1, . . . , k} = Re λ
cos ψk

cos ϕ
.
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But cos ϕ
cos ψk

is bounded by a positive constant ck that depends only on k and not on

ϕ ∈ (−π
2 , π

2 ). This shows the estimate

‖R(λ,A2k)‖ ≤
ck

Re λ
. (7)

We look at BR(λ,A2k). Take f ∈ C∞
c (R). For λ ∈ C \ (iR) we compute

BR(λ,A2k)f = V (x)
i

2k

k
∑

j=1

(
∫ x

−∞

e−µj(x−s)

(−µj)2k−l−1
f(s) ds −

∫ ∞

x

eµj(x−s)

µ2k−l−1
j

f(s) ds

)

.

Then, if g ∈ C∞
c (R) and 1

p + 1
q = 1, we find

|〈g,BR(λ,A2k)f〉|

≤
1

2k|λ|1−(l+1)/(2k)

k
∑

j=1

∫ ∞

−∞

|g(x)| |V (x)|

∫ ∞

−∞

e−Re µj |x−s| |f(s)| ds dx

≤
‖f‖p

2k|λ|1−(l+1)/(2k)

k
∑

j=1

∫ ∞

−∞

|g(x)| |V (x)|

(
∫ ∞

−∞

e−q Re µj |x−s|ds

)1/q

dx

=
‖f‖p

2k|λ|1−(l+1)/(2k)

k
∑

j=1

(

2

q Re µj

)1/q ∫ ∞

−∞

|g(x)| |V (x)|dx

=
c(p)

|λ|1−(l+1)/(2k)

1

k

k
∑

j=1

(

1

Re µj

)1/q

‖V ‖p‖g‖q‖f‖p

where c(p) ≤ 1 is a constant only depending on p. Therefore D(B) ⊇ D(A) and

‖BR(λ,A2k)‖ ≤
c(p)‖V ‖p

|λ|1−(l+1)/(2k)

1

k

k
∑

j=1

(

1

Re µj

)1/q

≤
c(p)‖V ‖p

|λ|1−(l+1)/(2k) min{(Re µj)1/q : j = 1, . . . , k}

for all λ ∈ C with Reλ > 0. As above we see that

min{(Re µj)
1/q : j = 1, . . . , k} = |λ|1/(2kq)(cos ψk)1/q.

So we obtain

|λ|1−(l+1)/(2k) min{(Re µj)
1/q : j = 1, . . . , k} = |λ|1−(l+1)/(2k)+1/(2kq)(cos ψk)1/q

= |λ|1−(lp+1)/(2kp)(cos ψk)1/q

= (Re λ)1−(lp+1)/(2kp) (cos ψk)1/q

(cos ϕ)1−(lp+1)/(2kp)

= (Re λ)1−(lp+1)/(2kp)

(

cos ψk

cos ϕ

)1/q

(cos ϕ)1/q−1+(lp+1)/(2kp).

If we assume that l ≤ 1
p (2k−1), we obtain 1

q −1+ lp+1
2kp = lp+1

2kp − 1
p ≤ 2k−1+1

2kp − 1
p = 0.

So there is a positive constant ck > 0 that only depends on k such that

|λ|1−1/(2k) min{(Re µj)
1/q : j = 1, . . . , k} ≥ c−1

k (Re λ)1−(lp+1)/(2kp).

Hence for all λ ∈ C with Reλ > 0,

‖BR(λ,A2k)‖ ≤
ck‖V ‖p

(Re λ)1−(lp+1)/(2kp)
. (8)

If we assume (i), the estimate (8) yields that there is λ0 > 0 such that ‖BR(λ,A2k)‖ ≤
M < 1 for all Reλ ≥ λ0.
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If (ii) holds, V can be written as Vp +V∞ where Vp ∈ Lp(R) and V∞ ∈ L∞(R). Let
Bpf := Vp · f with maximal domain D(Bp) = D(B). The operator B∞ defined by
B∞f := V∞ · f is a bounded on Lp(R) and B = Bp + B∞. Using (8) to estimate
‖BpR(λ,A2k)‖ and (7) for ‖B∞R(λ,A2k)‖, we again obtain that there is λ0 > 0
such that ‖BR(λ,A2k)‖ ≤ M < 1 for all Reλ ≥ λ0.

Since (A2k,D(A2k)) generates an α-times integrated semigroup for α >
∣

∣

1
2 − 1

p

∣

∣,

the assumptions of Theorem 3.3 are satisfied in both cases. Hence the operator
(A2k + B,D(A2k)) generates a β-times integrated semigroup for β >

∣

∣

1
2 − 1

p

∣

∣ +

max
{

1
p , 1 − 1

p

}

= σp. ¤
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