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Abstract. We prove a perturbation result for C0 semigroups on Hilbert
spaces and use it to show that certain operators of the form Au = iu(2k) + V ·

u(l) on L2(R) generate a semigroup that is strongly continuous on (0,∞).

1. Introduction

Perturbation theory of C0-semigroups is an important tool in applications to differ-
ential equations. A minimal condition in many of the known perturbation theorems
is the relative boundedness of the perturbation B in terms of the given semigroup
generator A. Often these relative boundedness conditions are expressed as

‖B(λ − A)−1‖ ≤ M < 1 (1)

or

‖(λ − A)−1Bx‖ ≤ M‖x‖ (2)

on a certain subset of the complex plane. E.g., in the proof of the well-known result
for bounded perturbations (see e.g. [5, Chapter III, Theorem 1.3], [7, Chapter 3,
Theorem 1.1]) condition (1) is one of the main ideas. The Miyadera-Voigt, respec-
tively Desch-Schappacher, perturbation theorem uses (1), respectively (2) (see [5,
Chapter III, Section 3]). If A generates a bounded analytic semigroup, then condi-
tion (1), satisfied for all λ in the right half plane, is sufficient to show that A + B
again generates an analytic semigroup. Clearly, this cannot be true for general C0-
semigroups. But in this paper we want to explore what can be said about A + B if
we only assume the relative boundedness conditions (1) and (2) on a halfplane. If
the underlying space is a Hilbert space, we can show that (A + B,D(A)) generates
a semigroup that is strongly continuous on (0,∞).

This paper is organized as follows. In the second section we collect some facts about
semigroups that are strongly continuous on (0,∞). Section 3 contains our main
results which are proved in Sections 4 and 5. In Section 6 we apply our theorem to
certain differential operators.

2. Semigroups that are strongly continuous on (0,∞)

Let X be a Banach space. By L(X) we denote the Banach space of all bounded
linear operators from X to X. If T : (0,∞) → L(X) is a strongly continuous
mapping (i.e., t 7→ T (t)x is continuous on (0,∞) for each x ∈ X) that satisfies the
semigroup property T (t)T (s) = T (t + s) for all t, s > 0, then we say that the family
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(T (t))t>0 is a (operator) semigroup that is strongly continuous on (0,∞). Examples
for such semigroups can be found in [3], [6, Section I.8] and [5, Chapter I, 5.9 (7)].

In this paper we want to use Laplace transform methods. Therefore we will as-
sume from now on that the mapping T is locally integrable on (0,∞) (i.e., T ∈
L1((0, b);L(X)) for every b > 0) and

∥

∥

∥

∫ t

0

T (s) ds
∥

∥

∥
≤ Meωt, t > 0, (3)

for some constants M and ω. Then, due to [2, Proposition 1.4.5], we can define
the Laplace transform for λ > ω. Using integration by parts and the semigroup
property, we find that (R(λ))λ>ω satisfies the resolvent equation R(λ) − R(µ) =
(µ − λ)R(λ)R(µ). Therefore the following definition makes sense.

Definition 2.1. Let (T (t))t>0 be a semigroup on a Banach space X that is strongly
continuous and locally integrable on (0,∞) and satisfies the norm estimate (3). If
there exists a linear operator (A,D(A)) in X, where D(A) ⊆ X is the domain of
A, such that (ω,∞) is contained in the resolvent set ρ(A) of A and

R(λ,A) := (λI − A)−1 =

∫ ∞

0

e−λtT (t) dt, λ > ω,

then (A,D(A)) is called the generator of (T (t))t>0.

Using this definition, one can show easily the following properties of the semigroup
(T (t))t>0 and its generator A:

(a) if x ∈ D(A), then T (t)x ∈ D(A) and AT (t)x = T (t)Ax for every t > 0,

(b) if x ∈ D(A) and t > 0, then x = T (t)x −
∫ t

0
T (s)Axds.

The properties (a) and (b) imply that for x ∈ D(A) the function ux, defined by
ux(t) := T (t)x (t > 0) and ux(0) = x, is a solution of the abstract Cauchy problem

{

u′(t) = Au(t), t > 0,

u(0) = x.
(4)

Here, by a solution of (4) we mean a function u ∈ C([0,∞);X) ∩ C1((0,∞);X)
such that u(t) ∈ D(A) and u′(t) = Au(t) for every t > 0 and u(0) = x (see [6,
Chapter 1, Definition 3.1], [8, Section 1]).

3. Main result

Our main result is the following perturbation theorem for C0-semigroups on Hilbert
spaces.

Theorem 3.1. Let (A,D(A)) be the generator of a C0-semigroup (T (t))t≥0 on a
Hilbert space X and let (B,D(B)) be a closed operator in X such that D(B) ⊇
D(A). We assume that there exist constants M ∈ [0, 1) and λ0 ∈ R such that the
set {λ ∈ C : Re λ ≥ λ0} is contained in the resolvent set of A and the estimates

‖BR(λ,A)x‖ ≤ M‖x‖ (5)

and

‖R(λ,A)By‖ ≤ M‖y‖ (6)

are satisfied are satisfied for all λ ∈ C with Re λ ≥ λ0 and all x ∈ X, y ∈ D(B).
Then (A+B,D(A)) generates a semigroup (S(t))t≥0 that is strongly continuous on
(0,∞).
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The following example is a modification of the examples in [1, Section 3] and illus-
trates that it is not possible to drop condition (5) in the theorem. Using duality one
can construct a similar example showing that the same is true for condition (6).

Example 3.2. Let X = L2(0,∞). We define linear operators (A,D(A)) and (B,D(B))
by (Af)(x) := f ′(x) and (Bf)(x) := 1

3xf(x) with maximal domains. Using Hardy’s

Inequality, we can show that ‖R(λ,A)Bx‖2 ≤ 2
3‖x‖2 for all Reλ > 0, i.e. condi-

tion (6) is satisfied. The “candidate” for the perturbed semigroup is S(t)f(x) :=
x−1/3(x + t)1/3f(x + t). But S(t) is not a bounded operator on X.

It is still an open question whether the result of Theorem 3.1 is optimal, i.e. whether
one can show strong continuity at 0 of the perturbed semigroup.

To prove Theorem 3.1 we will use the following result about generators for semi-
groups that are strongly continuous on (0,∞).

Theorem 3.3. Let (A,D(A)) be a closed, densely defined operator on a Hilbert
space X such that the resolvent R(λ,A) exists and is uniformly bounded on {λ ∈
C : Re λ ≥ 0}. Further, we assume that there exists a constant C ≥ 0 such that

(
∫ ∞

−∞

‖R(is, A)x‖2ds

)1/2

≤ C‖x‖ (7)

and
(

∫ ∞

−∞

‖R(is, A∗)x‖2ds

)1/2

≤ C‖x‖ (8)

for all x ∈ X. Then (A,D(A)) generates a semigroup (T (t))t≥0 that is strongly
continuous on (0,∞) .

In this case, we see by the following example due to Krĕın ([6]) that in general the
operator A in Theorem 3.3 is not the generator of a C0-semigroup.

Example 3.4. We consider the space X = L2(R) × L2(R) which is a Hilbert space
if we choose the norm ‖(u, v)‖X := (‖u‖2

2 + ‖v‖2
2)

1/2. For k ∈ N and α ∈ [0, 4k) we
define the function a : R → R

2 by

a(x) :=

(

−1 − x2k xα

0 −1 − x2k

)

. (9)

Then the multiplication operator, given by

A(u, v) = a
(

u
v

)

, D(A) = {(u, v) ∈ X : A(u, v) ∈ X}, (10)

satisfies the conditions of Theorem 3.3, hence A generates a semigroup that is
strongly continuous on (0,∞). But if α ∈ (2k, 4k), then A is not strongly continuous
at 0.

4. Proof of Theorem 3.3

In this section we give a proof of Theorem 3.3. We first state two technical lemmas.

Lemma 4.1. Let (A,D(A)) be a closed operator in a Banach space X with 0 ∈
ρ(A). If we can find a subset G of ρ(A) and a constant M ≥ 0 such that ‖R(λ,A)‖ ≤
M on G, then there is a constant c ≥ 0 such that

‖R(λ,A)x‖ ≤ c
1+|λ|‖Ax‖ and ‖R(λ,A)2y‖ ≤ c

1+|λ|2 ‖A2y‖
for every λ ∈ G and every x ∈ D(A), y ∈ D(A2).
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Proof. For λ ∈ G \ {0} and x ∈ D(A) the resolvent R(λ,A)x can be written
as R(λ,A)x = 1

λ (x + R(λ,A)Ax). If y ∈ D(A2) we obtain R(λ,A)2y = 1
λ2 (y +

2R(λ,A)Ay + R(λ,A)2A2y). Since 0 is in the resolvent set of A and the resolvent
is uniformly bounded on G, the lemma is proved. ¤

Lemma 4.2. Let (A,D(A)) be a closed operator in a Banach space X such that
{λ ∈ C : Re λ ≥ 0} ⊆ ρ(A) and ‖R(λ,A)‖ ≤ M for all λ ∈ C with Re λ ≥ 0. For
x ∈ X, t > 0 and a ≥ 0 we define

U(t)x :=
1

2πit

∫ a+i∞

a−i∞

eµtR(µ,A)2x dµ. (11)

Then,

(a) if x ∈ D(A2), the integral in (11) is absolutely convergent and does not depend
on a ≥ 0,

(b) for all x ∈ D(A2) and all t > 0, the limit

lim
r→∞

1

2πi

∫ a+ir

a−ir

eµtR(µ,A)x dµ (12)

exists and is equal to U(t)x,

(c) for x ∈ D(A2) and Re λ > 0, we have that

R(λ,A)x =
x

λ
+

∫ ∞

0

e−λt(U(t)x − x)dt, (13)

(d) the semigroup property

U(t)U(s)x = U(t + s)x

holds for all t, s > 0 and all x ∈ D(A4).

Proof. Let x ∈ D(A2) and t, s > 0.
(a) Lemma 4.1 implies that the integral in (11) converges absolutely. The indepen-
dence of a ≥ 0 is a consequence of Cauchy’s Theorem.
(b) Integration by parts yields that for r > 0

∫ a+ir

a−ir

eµtR(µ,A)x dµ =
1

t
(ea+irtR(a + ir, A)x − ea−irtR(a − ir, A)x)

+
1

t

∫ a+ir

a−ir

eµtR(µ,A)2x dµ.

By Lemma 4.1, ‖R(ir, A)x‖ converges to 0 if |r| → ∞. Therefore we have that the
limit (12) exists and is equal to U(t)x.
(c) Let Re λ > 0. If x ∈ D(A), t > 0 and 0 < a < Re λ, we find

U(t)x − x =
1

2πi

∫ a+i∞

a−i∞

eµt

(

R(µ,A)x − x

µ

)

dµ =
1

2πi

∫ a+i∞

a−i∞

eµtR(µ,A)Ax
dµ

µ
.

For x ∈ D(A2), Lemma 4.1 yields ‖R(µ,A)Ax‖ ≤ c
1+|µ|‖A2x‖. Therefore the above

integral is absolutely convergent and ‖U(t)x − x‖ ≤ c′‖A2x‖ for all t > 0. So we
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can form the Laplace transform of U(t)x − x and obtain

λ

∫ ∞

0

e−λt(U(t)x − x)dt =
λ

2πi

∫ ∞

0

e−λt

∫ a+i∞

a−i∞

eµtR(µ,A)Ax
dµ

µ
dt

=
λ

2πi

∫ a+i∞

a−i∞

∫ ∞

0

e(µ−λ)tdt R(µ,A)Ax
dµ

µ

=
λ

2πi

∫ a+i∞

a−i∞

1

λ − µ
R(µ,A)Ax

dµ

µ

= R(λ,A)Ax = λR(λ,A)x − x,

using Fubini’s and Cauchy’s Theorems.
(d) Let µ > λ > 0. Then integration by parts yields

R(λ,A)x − R(µ,A)x

µ − λ
=

∫ ∞

0

e(λ−µ)tR(λ,A)x dt − x

µ(µ − λ)

− 1

µ − λ

∫ ∞

0

e(λ−µ)te−λt(U(t)x − x) dt

=

∫ ∞

0

e(λ−µ)t x

λ
dt +

∫ ∞

0

e(λ−µ)t

∫ ∞

0

e−λs(U(s)x − x) ds dt

− x

µ(µ − λ)
−

∫ ∞

0

e(λ−µ)t

∫ t

0

e−λs(U(s)x − x) ds dt

=
x

λ(µ − λ)
− x

µ(µ − λ)
+

∫ ∞

0

e(λ−µ)t

∫ ∞

t

e−λs(U(s)x − x) ds dt

=
µx − λx

λµ(µ − λ)
+

∫ ∞

0

e−µt

∫ ∞

t

eλ(t−s)(U(s)x − x) ds dt

=
x

λµ
+

∫ ∞

0

e−µt

∫ ∞

0

e−λs(U(t + s)x − x) ds dt.

On the other hand, if x ∈ D(A4), then U(t)x ∈ D(A2) and

R(µ,A)R(λ,A)x =
R(λ,A)x

µ
+

∫ ∞

0

e−µt(U(t)R(λ,A)x − R(λ,A)x) dt

=
x

λµ
+

1

µ

∫ ∞

0

e−λs(U(s)x − x) ds +

∫ ∞

0

e−µt

(

U(t)
x

λ
− x

λ

)

dt

+

∫ ∞

0

e−µt

∫ ∞

0

e−λs(U(t)(U(s)x − x) − (U(s)x − x)) ds dt

=
x

λµ
+

∫ ∞

0

e−µt

∫ ∞

0

e−λs(U(t)U(s)x − x) ds dt.

By the uniqueness theorem for the Laplace transform we obtain that

U(t + s)x − x = U(t)U(s)x − x (14)

for almost all s, t > 0 and for all x ∈ D(A4). For fixed s, the functions t 7→ U(t+s)x
and t 7→ U(t)U(s)x both are continuous. So the equation (14) holds for all t > 0
and almost all s > 0. By exchanging the roles of s and t we obtain

U(t + s)x = U(t)U(s)x

for all s, t > 0 and all x ∈ D(A4). ¤

We now are able to prove Theorem 3.3.
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Proof of Theorem 3.3. We prove the theorem in four steps. Here, c is always
an appropriate constant, and by 〈·, ·〉 we denote the inner product on X.

Step 1: A “candidate” for the semigroup
We apply the inverse Fourier transform to R(i·, A)x ∈ L2(R,X): Take t > 0 and
x ∈ X and define

T (t)x :=
1

2π

∫ ∞

−∞

eistR(is, A)x ds =
1

2πi

∫ i∞

−i∞

eλtR(λ,A)x dλ.

Since X is a Hilbert space, Plancherel’s theorem yields T (·)x ∈ L2((0,∞),X) and
(
∫ ∞

0
‖T (t)x‖2ds)1/2 ≤ c‖x‖ for each x ∈ X. Obviously, T is linear in x, and from

Lemma 4.2 (d) we know that the semigroup property T (t)T (s)x = T (t + s)x is
satisfied whenever x ∈ D(A4) and t, s > 0.

Step 2: Boundedness of T (t)
First we consider the adjoint operator A∗. As in step 1 we can show that T ∗(·)x,
defined by

T ∗(t)x :=
1

2π

∫ ∞

−∞

eistR(is, A∗)xds =
1

2πi

∫ i∞

−i∞

eλtR(λ,A∗)xdλ, t > 0,

is in L2((0,∞),X) for each x ∈ X and (
∫ ∞

0
‖T ∗(t)x‖2ds)1/2 ≤ c‖x‖. It is easy to

see that 〈y, T (t)x〉 = 〈T ∗(t)y, x〉 for x, y ∈ X and t > 0.

Now let t > 0, x ∈ D(A4) and y ∈ X. Then

t〈y, T (t)x〉 =

∫ t

0

〈y, T (t)x〉ds =

∫ t

0

〈y, T (t − s)T (s)x〉ds

=

∫ t

0

〈T ∗(t − s)y, T (s)x〉ds ≤
∫ t

0

‖T ∗(t − s)y‖ ‖T (s)x‖ds

and we can estimate
∫ t

0

‖T ∗(t − s)y‖ ‖T (s)x‖ds ≤
(

∫ t

0

‖T ∗(t − s)y‖2ds

)1/2(∫ t

0

‖T (s)x‖2ds

)1/2

≤
(

∫ ∞

0

‖T ∗(s)y‖2ds

)1/2(∫ ∞

0

‖T (s)x‖2ds

)1/2

≤ c ‖x‖ ‖y‖.
This yields ‖T (t)x‖ ≤ c

t‖x‖ for x ∈ D(A4). Since (A,D(A)) is densely defined and

injective, D(A4) is dense in X. So we have proved that T (t) ∈ L(X). Moreover, the
semigroup property T (t)T (s) = T (t + s) is satisfied for all s, t > 0.

Step 3: The generator of (T (t))t>0

Let Re λ > 0. We want of prove that R(λ,A) =
∫ ∞

0
e−λtT (t)dt.

In Lemma 4.2 (c) we have already shown that R(λ,A)x = x
λ +

∫ ∞

0
e−λt(U(t)x−x)dt

for all x ∈ D(A2). Since (
∫ ∞

0
‖T (t)x‖2ds)1/2 ≤ c‖x‖ and D(A2) is dense in X, the

assertion is proved.

Step 4: Strong continuity on (0,∞)
Finally, we show that t 7→ T (t)x is continuous on (0,∞) for each x ∈ X.

For x ∈ D(A2), Lemma 4.1 yields that T (t)x − x = 1
2πi

∫ i∞

−i∞
eλtR(λ,A)Ax dλ

λ

converges absolutely and uniformly on compact intervals. Therefore t 7→ T (t)x is
continuous on [0,∞) if x ∈ D(A2). Since D(A2) is dense in X and tT (t) is uniformly
bounded (Step 2), the mapping t 7→ T (t)x is continuous on (0,∞) for each x ∈ X.
This proves the theorem. ¤
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5. Proof of Theorem 3.1

The following lemma is implicit in the standard presentations of perturbation theory
([5, Chapter III], [7, Chapter 3]).

Lemma 5.1. Let (A,D(A)) and (B,D(B)) be closed operators on a Banach space
X where D(A) ⊆ D(B). Suppose that A and A∗ are densely defined and that the
resolvent set of A is nonempty . If there exists M ∈ [0, 1) and ∅ 6= G ⊆ ρ(A) such
that

‖BR(λ,A)x‖ ≤ M‖x‖ for every x ∈ X and every λ ∈ G (15)

and

‖R(λ,A)Bx‖ ≤ M‖x‖ for every x ∈ D(B) and every λ ∈ G, (16)

then the operator (A+B,D(A)) is closed and G ⊆ ρ(A+B). Furthermore we have
that

R(λ,A + B) = [I − R(λ,A)B]−1R(λ,A) (17)

and

R(λ, (A + B)∗) = [I − R(λ,A∗)B∗]−1R(λ,A∗) (18)

for every λ ∈ G.

Using this lemma and Theorem 3.3, we can show Theorem 3.1.

Proof of Theorem 3.1. We can assume that max{ω(T ), λ0} < 0. Otherwise we
consider (A − ω,D(A)) instead of (A,D(A)), where ω > max{ω(T ), λ0}.
For x ∈ X we define the function ux : R → X by

ux(t) :=

{

T (t)x, t ≥ 0,

0, t < 0.

Since ω(T ) < 0, the function ux is in L2(R,X) and there is a constant c ≥ 0 such
that (

∫ ∞

−∞
‖ux(t)‖2dt)1/2 ≤ c‖x‖. By Plancherel’s Theorem the Fourier transform

Fux of ux is also L2(R,X) and ‖Fux‖2 =
√

2π‖ux‖2. On the other hand, we know
that (Fux)(s) =

∫ ∞

−∞
e−istux(t)dt =

∫ ∞

0
e−istT (t)xdt = R(is, A)x for every s ∈ R.

Therefore
(

∫ ∞

−∞

‖R(is, A)x‖2ds

)1/2

≤ c
√

2π ‖x‖. (19)

Using Lemma 5.1, it follows that
(

∫ ∞

−∞

‖R(is, A + B)x‖2ds

)1/2

=

(
∫ ∞

−∞

‖[I − R(is, A)B]−1R(is, A)x‖2ds

)1/2

≤ 1

1 − M

(
∫ ∞

−∞

‖R(is, A)x‖2ds

)1/2

≤ c
√

2π

1 − M
‖x‖

for all x ∈ X.

We now consider (A + B)∗. As before we can show that
(

∫ ∞

−∞

‖R(i·, (A + B)∗)x‖
)2

≤ c
√

2π

1 − M
‖x‖
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for each x ∈ X. So we can apply Theorem 3.3. ¤

6. Application to ordinary differential operators

Let X be the Hilbert space L2(R) and k ∈ N. We consider the operator (A,D(A))
in X defined by

Au := iu(2k), D(A) := W 2k,2(R) = {u ∈ L2(R) : u(2k) ∈ L2(R)}. (20)

Here u(2k) denotes the 2kth (distributional) derivative of the function u. It is well
known that (A,D(A)) generates a C0-semigroup on X (see, e.g, [2, Section 8.1]).

One can compute that C \ (iR) ⊆ ρ(A) and that for λ ∈ C \ (iR) the resolvent of A
is given by

R(λ,A)f(x) =
i

2k

∫ ∞

−∞

k
∑

j=1

e−µj |x−s|

(−µj)2k−1
f(s) ds, x ∈ R,

where f is a function in L2(R) and µj (j = 1, . . . , k) are the k solutions of the
equation λ − iµ2k = 0 with Re µj > 0.

We now define the operator (B,D(B)) by

Bf := V · f (l), D(B) := {f ∈ X : V · f (l) ∈ X}, (21)

where V is a potential in L2(R) and l ∈ N0 such that l < k.

We want to look at BR(λ,A). Take f ∈ C∞
c (R), i.e., f is in C∞(R) and has compact

support. For λ ∈ C \ (iR) we compute

BR(λ,A)f(x) = V (x) · i

2k

k
∑

j=1

(
∫ x

−∞

e−µj(x−s)

(−µj)2k−l−1
f(s) ds −

∫ ∞

x

eµj(x−s)

µ2k−l−1
j

f(s) ds

)

.

Now, if g ∈ C∞
c (R) we find

|〈g,BR(λ,A)f〉|

≤ 1

2k|λ|1−(l+1)/(2k)

k
∑

j=1

∫ ∞

−∞

|g(x)| |V (x)|
∫ ∞

−∞

e−Re µj |x−s| |f(s)| ds dx

≤ 1

2k|λ|1−(l+1)/(2k)

k
∑

j=1

∫ ∞

−∞

|g(x)| |V (x)|
(

∫ ∞

−∞

e−2 Re µj |x−s|ds

)1/2

dx ‖f‖2

=
1

2k|λ|1−(l+1)/(2k)

k
∑

j=1

(

1

Re µj

)1/2 ∫ ∞

−∞

|g(x)| |V (x)|dx ‖f‖2

≤ ‖V ‖2

2|λ|1−(l+1)/(2k)

1

k

k
∑

j=1

(

1

Re µj

)1/2

‖g‖2‖f‖2.

Since C∞
c (R) is dense in L2(R), we have shown the estimate

‖BR(λ,A)‖ ≤ ‖V ‖2

2|λ|1−(l+1)/(2k)

1

k

k
∑

j=1

(

1

Re µj

)1/2

≤ ‖V ‖2

2|λ|1−(l+1)/(2k) min{(Re µj)1/2 : j = 1, ..., k} .

If λ = reiϕ with r > 0 and ϕ ∈ (−π
2 , π

2 ), then a careful computation yields

min{(Re µj)
1/2 : j = 1, .., k} = |λ|1/(4k)(cos ψk)1/2,
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where

ψk =

{

ϕ
2k − π

4k + π
2 , if k is even,

ϕ
2k + π

4k − π
2 , if k is odd.

Since |λ| = Re λ(1 + tan2 ϕ)1/2 = Re λ
cos ϕ , we have

|λ|1−(l+1)/(2k) min{(Re µj)
1/2 : j = 1, ..., k} = |λ|1−(l+1)/(2k)+1/(4k)(cos ψk)1/2

= (Re λ)1−l/(2k)−1/(4k) (cos ψk)1/2

(cos ϕ)1−l/(2k)−1/(4k)

= (Re λ)1−l/(2k)−1/(4k)

(

cos ψk

cos ϕ

)1/2

(cos ϕ)−1/2+l/(2k)+1/(4k).

But − 1
2 + l

2k + 1
4k = 1

2k (l − k + 1
2 ) ≤ 0, and cos ψk

cos ϕ is bounded from below by a

constant c > 0 for all ϕ ∈ (−π
2 , π

2 ). Therefore

|λ|1−(l+1)/(2k) min{(Re µj)
1/2 : j = 1, .., k} ≥ c(Re λ)1−l/(2k)−1/(4k).

This shows the estimate

‖BR(λ,A)‖ ≤ ‖V ‖2

2c(Re λ)1−l/(2k)−1/(4k)
. (22)

We now can prove the following proposition.

Proposition 6.1. Let X = L2(R) and let (A,D(A)) be defined as in (20). If
(B,D(B)) is given by

Bf := V · f (l), D(B) := {f ∈ X : V · f (l) ∈ X},

where V is a potential in L2(R) and l ∈ N0 such that l < k, then (A + B,D(A))
generates a semigroup on X that is strongly continuous on (0,∞).

Proof. Since 1− l/(2k)−1/(4k) > 0 by assumption, we obtain from (22) that there
is M < 1 such that

‖BR(λ,A)‖ ≤ M

if Reλ is large enough. It is easy to see that the same is true for A∗ and B∗ instead
of A and B. This yields ‖R(λ,A)Bf‖ ≤ M‖f‖ for f ∈ D(B) and we can apply
Theorem 3.1. ¤

Corollary 6.2. Let X = L2(R) and let (A,D(A)) be defined as in (20). If V ∈
L2(R) + L∞(R) and (B,D(B)) is defined as

Bf := V · f, D(B) := {f ∈ X : V · f ∈ X},

then (A + B,D(A)) generates a semigroup on X that is strongly continuous on
(0,∞).

Proof. We split V into an L2-part and a bounded part. The bounded part can be
estimated by the Hille-Yosida theorem. For the L2-part, we use again (22) as in the
proof of Proposition 6.1 ¤
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