A PERTURBATION THEOREM FOR OPERATOR SEMIGROUPS IN HILBERT SPACES

CORNELIA KAISER AND LUTZ WEIS

Abstract

We prove a perturbation result for C_{0} semigroups on Hilbert spaces and use it to show that certain operators of the form $A u=i u^{(2 k)}+V$. $u^{(l)}$ on $L^{2}(\mathbb{R})$ generate a semigroup that is strongly continuous on $(0, \infty)$.

1. Introduction

Perturbation theory of C_{0}-semigroups is an important tool in applications to differential equations. A minimal condition in many of the known perturbation theorems is the relative boundedness of the perturbation B in terms of the given semigroup generator A. Often these relative boundedness conditions are expressed as

$$
\begin{equation*}
\left\|B(\lambda-A)^{-1}\right\| \leq M<1 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|(\lambda-A)^{-1} B x\right\| \leq M\|x\| \tag{2}
\end{equation*}
$$

on a certain subset of the complex plane. E.g., in the proof of the well-known result for bounded perturbations (see e.g. [5, Chapter III, Theorem 1.3], [7, Chapter 3, Theorem 1.1]) condition (1) is one of the main ideas. The Miyadera-Voigt, respectively Desch-Schappacher, perturbation theorem uses (1), respectively (2) (see [5, Chapter III, Section 3]). If A generates a bounded analytic semigroup, then condition (1), satisfied for all λ in the right half plane, is sufficient to show that $A+B$ again generates an analytic semigroup. Clearly, this cannot be true for general $C_{0}{ }^{-}$ semigroups. But in this paper we want to explore what can be said about $A+B$ if we only assume the relative boundedness conditions (1) and (2) on a halfplane. If the underlying space is a Hilbert space, we can show that $(A+B, D(A))$ generates a semigroup that is strongly continuous on $(0, \infty)$.
This paper is organized as follows. In the second section we collect some facts about semigroups that are strongly continuous on $(0, \infty)$. Section 3 contains our main results which are proved in Sections 4 and 5 . In Section 6 we apply our theorem to certain differential operators.

2. Semigroups that are strongly continuous on $(0, \infty)$

Let X be a Banach space. By $\mathcal{L}(X)$ we denote the Banach space of all bounded linear operators from X to X. If $T:(0, \infty) \rightarrow \mathcal{L}(X)$ is a strongly continuous mapping (i.e., $t \mapsto T(t) x$ is continuous on $(0, \infty)$ for each $x \in X)$ that satisfies the semigroup property $T(t) T(s)=T(t+s)$ for all $t, s>0$, then we say that the family

[^0]$(T(t))_{t>0}$ is a (operator) semigroup that is strongly continuous on $(0, \infty)$. Examples for such semigroups can be found in [3], [6, Section I.8] and [5, Chapter I, 5.9 (7)]. In this paper we want to use Laplace transform methods. Therefore we will assume from now on that the mapping T is locally integrable on $(0, \infty)$ (i.e., $T \in$ $L^{1}((0, b) ; \mathcal{L}(X))$ for every $\left.b>0\right)$ and
\[

$$
\begin{equation*}
\left\|\int_{0}^{t} T(s) d s\right\| \leq M e^{\omega t}, \quad t>0 \tag{3}
\end{equation*}
$$

\]

for some constants M and ω. Then, due to [2, Proposition 1.4.5], we can define the Laplace transform for $\lambda>\omega$. Using integration by parts and the semigroup property, we find that $(R(\lambda))_{\lambda>\omega}$ satisfies the resolvent equation $R(\lambda)-R(\mu)=$ $(\mu-\lambda) R(\lambda) R(\mu)$. Therefore the following definition makes sense.

Definition 2.1. Let $(T(t))_{t>0}$ be a semigroup on a Banach space X that is strongly continuous and locally integrable on $(0, \infty)$ and satisfies the norm estimate (3). If there exists a linear operator $(A, D(A))$ in X, where $D(A) \subseteq X$ is the domain of A, such that (ω, ∞) is contained in the resolvent set $\rho(A)$ of A and

$$
R(\lambda, A):=(\lambda I-A)^{-1}=\int_{0}^{\infty} e^{-\lambda t} T(t) d t, \quad \lambda>\omega
$$

then $(A, D(A))$ is called the generator of $(T(t))_{t>0}$.
Using this definition, one can show easily the following properties of the semigroup $(T(t))_{t>0}$ and its generator A :
(a) if $x \in D(A)$, then $T(t) x \in D(A)$ and $A T(t) x=T(t) A x$ for every $t>0$,
(b) if $x \in D(A)$ and $t>0$, then $x=T(t) x-\int_{0}^{t} T(s) A x d s$.

The properties (a) and (b) imply that for $x \in D(A)$ the function u_{x}, defined by $u_{x}(t):=T(t) x(t>0)$ and $u_{x}(0)=x$, is a solution of the abstract Cauchy problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=A u(t), \quad t>0 \tag{4}\\
u(0)=x
\end{array}\right.
$$

Here, by a solution of (4) we mean a function $u \in C([0, \infty) ; X) \cap C^{1}((0, \infty) ; X)$ such that $u(t) \in D(A)$ and $u^{\prime}(t)=A u(t)$ for every $t>0$ and $u(0)=x$ (see [6, Chapter 1, Definition 3.1], [8, Section 1]).

3. Main Result

Our main result is the following perturbation theorem for C_{0}-semigroups on Hilbert spaces.
Theorem 3.1. Let $(A, D(A))$ be the generator of a C_{0}-semigroup $(T(t))_{t \geq 0}$ on a Hilbert space X and let $(B, D(B))$ be a closed operator in X such that $\bar{D}(B) \supseteq$ $D(A)$. We assume that there exist constants $M \in[0,1)$ and $\lambda_{0} \in \mathbb{R}$ such that the set $\left\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq \lambda_{0}\right\}$ is contained in the resolvent set of A and the estimates

$$
\begin{equation*}
\|B R(\lambda, A) x\| \leq M\|x\| \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|R(\lambda, A) B y\| \leq M\|y\| \tag{6}
\end{equation*}
$$

are satisfied are satisfied for all $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda \geq \lambda_{0}$ and all $x \in X, y \in D(B)$. Then $(A+B, D(A))$ generates a semigroup $(S(t))_{t \geq 0}$ that is strongly continuous on $(0, \infty)$.

The following example is a modification of the examples in $[1$, Section 3] and illustrates that it is not possible to drop condition (5) in the theorem. Using duality one can construct a similar example showing that the same is true for condition (6).
Example 3.2. Let $X=L^{2}(0, \infty)$. We define linear operators $(A, D(A))$ and $(B, D(B))$ by $(A f)(x):=f^{\prime}(x)$ and $(B f)(x):=\frac{1}{3 x} f(x)$ with maximal domains. Using Hardy's Inequality, we can show that $\|R(\lambda, A) B x\|_{2} \leq \frac{2}{3}\|x\|_{2}$ for all $\operatorname{Re} \lambda>0$, i.e. condition (6) is satisfied. The "candidate" for the perturbed semigroup is $S(t) f(x):=$ $x^{-1 / 3}(x+t)^{1 / 3} f(x+t)$. But $S(t)$ is not a bounded operator on X.

It is still an open question whether the result of Theorem 3.1 is optimal, i.e. whether one can show strong continuity at 0 of the perturbed semigroup.

To prove Theorem 3.1 we will use the following result about generators for semigroups that are strongly continuous on $(0, \infty)$.

Theorem 3.3. Let $(A, D(A))$ be a closed, densely defined operator on a Hilbert space X such that the resolvent $R(\lambda, A)$ exists and is uniformly bounded on $\{\lambda \in$ $\mathbb{C}: \operatorname{Re} \lambda \geq 0\}$. Further, we assume that there exists a constant $C \geq 0$ such that

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}\|R(i s, A) x\|^{2} d s\right)^{1 / 2} \leq C\|x\| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}\left\|R\left(i s, A^{*}\right) x\right\|^{2} d s\right)^{1 / 2} \leq C\|x\| \tag{8}
\end{equation*}
$$

for all $x \in X$. Then $(A, D(A))$ generates a semigroup $(T(t))_{t \geq 0}$ that is strongly continuous on $(0, \infty)$.

In this case, we see by the following example due to Kremn ([6]) that in general the operator A in Theorem 3.3 is not the generator of a C_{0}-semigroup.

Example 3.4. We consider the space $X=L^{2}(\mathbb{R}) \times L^{2}(\mathbb{R})$ which is a Hilbert space if we choose the norm $\|(u, v)\|_{X}:=\left(\|u\|_{2}^{2}+\|v\|_{2}^{2}\right)^{1 / 2}$. For $k \in \mathbb{N}$ and $\alpha \in[0,4 k)$ we define the function $a: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by

$$
a(x):=\left(\begin{array}{cc}
-1-x^{2 k} & x^{\alpha} \tag{9}\\
0 & -1-x^{2 k}
\end{array}\right) .
$$

Then the multiplication operator, given by

$$
\begin{equation*}
A(u, v)=a\binom{u}{v}, \quad D(A)=\{(u, v) \in X: A(u, v) \in X\} \tag{10}
\end{equation*}
$$

satisfies the conditions of Theorem 3.3, hence A generates a semigroup that is strongly continuous on $(0, \infty)$. But if $\alpha \in(2 k, 4 k)$, then A is not strongly continuous at 0 .

4. Proof of Theorem 3.3

In this section we give a proof of Theorem 3.3. We first state two technical lemmas.
Lemma 4.1. Let $(A, D(A))$ be a closed operator in a Banach space X with $0 \in$ $\rho(A)$. If we can find a subset G of $\rho(A)$ and a constant $M \geq 0$ such that $\|R(\lambda, A)\| \leq$ M on G, then there is a constant $c \geq 0$ such that

$$
\|R(\lambda, A) x\| \leq \frac{c}{1+|\lambda|}\|A x\| \quad \text { and } \quad\left\|R(\lambda, A)^{2} y\right\| \leq \frac{c}{1+|\lambda|^{2}}\left\|A^{2} y\right\|
$$

for every $\lambda \in G$ and every $x \in D(A), y \in D\left(A^{2}\right)$.

Proof. For $\lambda \in G \backslash\{0\}$ and $x \in D(A)$ the resolvent $R(\lambda, A) x$ can be written as $R(\lambda, A) x=\frac{1}{\lambda}(x+R(\lambda, A) A x)$. If $y \in D\left(A^{2}\right)$ we obtain $R(\lambda, A)^{2} y=\frac{1}{\lambda^{2}}(y+$ $\left.2 R(\lambda, A) A y+R(\lambda, A)^{2} A^{2} y\right)$. Since 0 is in the resolvent set of A and the resolvent is uniformly bounded on G, the lemma is proved.

Lemma 4.2. Let $(A, D(A))$ be a closed operator in a Banach space X such that $\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda \geq 0\} \subseteq \rho(A)$ and $\|R(\lambda, A)\| \leq M$ for all $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda \geq 0$. For $x \in X, t>0$ and $a \geq 0$ we define

$$
\begin{equation*}
U(t) x:=\frac{1}{2 \pi i t} \int_{a-i \infty}^{a+i \infty} e^{\mu t} R(\mu, A)^{2} x d \mu \tag{11}
\end{equation*}
$$

Then,
(a) if $x \in D\left(A^{2}\right)$, the integral in (11) is absolutely convergent and does not depend on $a \geq 0$,
(b) for all $x \in D\left(A^{2}\right)$ and all $t>0$, the limit

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{1}{2 \pi i} \int_{a-i r}^{a+i r} e^{\mu t} R(\mu, A) x d \mu \tag{12}
\end{equation*}
$$

exists and is equal to $U(t) x$,
(c) for $x \in D\left(A^{2}\right)$ and $\operatorname{Re} \lambda>0$, we have that

$$
\begin{equation*}
R(\lambda, A) x=\frac{x}{\lambda}+\int_{0}^{\infty} e^{-\lambda t}(U(t) x-x) d t \tag{13}
\end{equation*}
$$

(d) the semigroup property

$$
U(t) U(s) x=U(t+s) x
$$

holds for all $t, s>0$ and all $x \in D\left(A^{4}\right)$.

Proof. Let $x \in D\left(A^{2}\right)$ and $t, s>0$.
(a) Lemma 4.1 implies that the integral in (11) converges absolutely. The independence of $a \geq 0$ is a consequence of Cauchy's Theorem.
(b) Integration by parts yields that for $r>0$

$$
\begin{array}{r}
\int_{a-i r}^{a+i r} e^{\mu t} R(\mu, A) x d \mu=\frac{1}{t}\left(e^{a+i r t} R(a+i r, A) x-e^{a-i r t} R(a-i r, A) x\right) \\
+\frac{1}{t} \int_{a-i r}^{a+i r} e^{\mu t} R(\mu, A)^{2} x d \mu
\end{array}
$$

By Lemma 4.1, $\| R($ ir, $A) x \|$ converges to 0 if $|r| \rightarrow \infty$. Therefore we have that the limit (12) exists and is equal to $U(t) x$.
(c) Let $\operatorname{Re} \lambda>0$. If $x \in D(A), t>0$ and $0<a<\operatorname{Re} \lambda$, we find

$$
U(t) x-x=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} e^{\mu t}\left(R(\mu, A) x-\frac{x}{\mu}\right) d \mu=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} e^{\mu t} R(\mu, A) A x \frac{d \mu}{\mu} .
$$

For $x \in D\left(A^{2}\right)$, Lemma 4.1 yields $\|R(\mu, A) A x\| \leq \frac{c}{1+|\mu|}\left\|A^{2} x\right\|$. Therefore the above integral is absolutely convergent and $\|U(t) x-x\| \leq c^{\prime}\left\|A^{2} x\right\|$ for all $t>0$. So we
can form the Laplace transform of $U(t) x-x$ and obtain

$$
\begin{aligned}
\lambda \int_{0}^{\infty} & e^{-\lambda t}(U(t) x-x) d t=\frac{\lambda}{2 \pi i} \int_{0}^{\infty} e^{-\lambda t} \int_{a-i \infty}^{a+i \infty} e^{\mu t} R(\mu, A) A x \frac{d \mu}{\mu} d t \\
& =\frac{\lambda}{2 \pi i} \int_{a-i \infty}^{a+i \infty} \int_{0}^{\infty} e^{(\mu-\lambda) t} d t R(\mu, A) A x \frac{d \mu}{\mu} \\
& =\frac{\lambda}{2 \pi i} \int_{a-i \infty}^{a+i \infty} \frac{1}{\lambda-\mu} R(\mu, A) A x \frac{d \mu}{\mu} \\
& =R(\lambda, A) A x=\lambda R(\lambda, A) x-x
\end{aligned}
$$

using Fubini's and Cauchy's Theorems.
(d) Let $\mu>\lambda>0$. Then integration by parts yields

$$
\begin{aligned}
& \frac{R(\lambda, A) x-R(\mu, A) x}{\mu-\lambda}=\int_{0}^{\infty} e^{(\lambda-\mu) t} R(\lambda, A) x d t-\frac{x}{\mu(\mu-\lambda)} \\
&=-\frac{1}{\mu-\lambda} \int_{0}^{\infty} e^{(\lambda-\mu) t} e^{-\lambda t}(U(t) x-x) d t \\
&= \int_{0}^{\infty} e^{(\lambda-\mu) t} \frac{x}{\lambda} d t+\int_{0}^{\infty} e^{(\lambda-\mu) t} \int_{0}^{\infty} e^{-\lambda s}(U(s) x-x) d s d t \\
&-\frac{x}{\mu(\mu-\lambda)}-\int_{0}^{\infty} e^{(\lambda-\mu) t} \int_{0}^{t} e^{-\lambda s}(U(s) x-x) d s d t \\
&= \frac{x}{\lambda(\mu-\lambda)}-\frac{x}{\mu(\mu-\lambda)}+\int_{0}^{\infty} e^{(\lambda-\mu) t} \int_{t}^{\infty} e^{-\lambda s}(U(s) x-x) d s d t \\
&= \frac{\mu x-\lambda x}{\lambda \mu(\mu-\lambda)}+\int_{0}^{\infty} e^{-\mu t} \int_{t}^{\infty} e^{\lambda(t-s)}(U(s) x-x) d s d t \\
&= \frac{x}{\lambda \mu}+\int_{0}^{\infty} e^{-\mu t} \int_{0}^{\infty} e^{-\lambda s}(U(t+s) x-x) d s d t
\end{aligned}
$$

On the other hand, if $x \in D\left(A^{4}\right)$, then $U(t) x \in D\left(A^{2}\right)$ and

$$
\begin{aligned}
& R(\mu, A) R(\lambda, A) x=\frac{R(\lambda, A) x}{\mu}+\int_{0}^{\infty} e^{-\mu t}(U(t) R(\lambda, A) x-R(\lambda, A) x) d t \\
& =\frac{x}{\lambda \mu}+\frac{1}{\mu} \int_{0}^{\infty} e^{-\lambda s}(U(s) x-x) d s+\int_{0}^{\infty} e^{-\mu t}\left(U(t) \frac{x}{\lambda}-\frac{x}{\lambda}\right) d t \\
& \quad+\int_{0}^{\infty} e^{-\mu t} \int_{0}^{\infty} e^{-\lambda s}(U(t)(U(s) x-x)-(U(s) x-x)) d s d t \\
& =\frac{x}{\lambda \mu}+\int_{0}^{\infty} e^{-\mu t} \int_{0}^{\infty} e^{-\lambda s}(U(t) U(s) x-x) d s d t
\end{aligned}
$$

By the uniqueness theorem for the Laplace transform we obtain that

$$
\begin{equation*}
U(t+s) x-x=U(t) U(s) x-x \tag{14}
\end{equation*}
$$

for almost all $s, t>0$ and for all $x \in D\left(A^{4}\right)$. For fixed s, the functions $t \mapsto U(t+s) x$ and $t \mapsto U(t) U(s) x$ both are continuous. So the equation (14) holds for all $t>0$ and almost all $s>0$. By exchanging the roles of s and t we obtain

$$
U(t+s) x=U(t) U(s) x
$$

for all $s, t>0$ and all $x \in D\left(A^{4}\right)$.
We now are able to prove Theorem 3.3.

Proof of Theorem 3.3. We prove the theorem in four steps. Here, c is always an appropriate constant, and by $\langle\cdot, \cdot\rangle$ we denote the inner product on X.
Step 1: A "candidate" for the semigroup
We apply the inverse Fourier transform to $R(i \cdot, A) x \in L^{2}(\mathbb{R}, X)$: Take $t>0$ and $x \in X$ and define

$$
T(t) x:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i s t} R(i s, A) x d s=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{\lambda t} R(\lambda, A) x d \lambda
$$

Since X is a Hilbert space, Plancherel's theorem yields $T(\cdot) x \in L^{2}((0, \infty), X)$ and $\left(\int_{0}^{\infty}\|T(t) x\|^{2} d s\right)^{1 / 2} \leq c\|x\|$ for each $x \in X$. Obviously, T is linear in x, and from Lemma 4.2 (d) we know that the semigroup property $T(t) T(s) x=T(t+s) x$ is satisfied whenever $x \in D\left(A^{4}\right)$ and $t, s>0$.
Step 2: Boundedness of $T(t)$
First we consider the adjoint operator A^{*}. As in step 1 we can show that $T^{*}(\cdot) x$, defined by

$$
T^{*}(t) x:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i s t} R\left(i s, A^{*}\right) x d s=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{\lambda t} R\left(\lambda, A^{*}\right) x d \lambda, \quad t>0
$$

is in $L^{2}((0, \infty), X)$ for each $x \in X$ and $\left(\int_{0}^{\infty}\left\|T^{*}(t) x\right\|^{2} d s\right)^{1 / 2} \leq c\|x\|$. It is easy to see that $\langle y, T(t) x\rangle=\left\langle T^{*}(t) y, x\right\rangle$ for $x, y \in X$ and $t>0$.
Now let $t>0, x \in D\left(A^{4}\right)$ and $y \in X$. Then

$$
\begin{aligned}
t\langle y, T(t) x\rangle & =\int_{0}^{t}\langle y, T(t) x\rangle d s=\int_{0}^{t}\langle y, T(t-s) T(s) x\rangle d s \\
& =\int_{0}^{t}\left\langle T^{*}(t-s) y, T(s) x\right\rangle d s \leq \int_{0}^{t}\left\|T^{*}(t-s) y\right\|\|T(s) x\| d s
\end{aligned}
$$

and we can estimate

$$
\begin{aligned}
\int_{0}^{t}\left\|T^{*}(t-s) y\right\|\|T(s) x\| d s & \leq\left(\int_{0}^{t}\left\|T^{*}(t-s) y\right\|^{2} d s\right)^{1 / 2}\left(\int_{0}^{t}\|T(s) x\|^{2} d s\right)^{1 / 2} \\
& \leq\left(\int_{0}^{\infty}\left\|T^{*}(s) y\right\|^{2} d s\right)^{1 / 2}\left(\int_{0}^{\infty}\|T(s) x\|^{2} d s\right)^{1 / 2} \\
& \leq c\|x\|\|y\|
\end{aligned}
$$

This yields $\|T(t) x\| \leq \frac{c}{t}\|x\|$ for $x \in D\left(A^{4}\right)$. Since $(A, D(A))$ is densely defined and injective, $D\left(A^{4}\right)$ is dense in X. So we have proved that $T(t) \in \mathcal{L}(X)$. Moreover, the semigroup property $T(t) T(s)=T(t+s)$ is satisfied for all $s, t>0$.

Step 3: The generator of $(T(t))_{t>0}$
Let $\operatorname{Re} \lambda>0$. We want of prove that $R(\lambda, A)=\int_{0}^{\infty} e^{-\lambda t} T(t) d t$.
In Lemma 4.2 (c) we have already shown that $R(\lambda, A) x=\frac{x}{\lambda}+\int_{0}^{\infty} e^{-\lambda t}(U(t) x-x) d t$ for all $x \in D\left(A^{2}\right)$. Since $\left(\int_{0}^{\infty}\|T(t) x\|^{2} d s\right)^{1 / 2} \leq c\|x\|$ and $D\left(A^{2}\right)$ is dense in X, the assertion is proved.
Step 4: Strong continuity on $(0, \infty)$
Finally, we show that $t \mapsto T(t) x$ is continuous on $(0, \infty)$ for each $x \in X$.
For $x \in D\left(A^{2}\right)$, Lemma 4.1 yields that $T(t) x-x=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} e^{\lambda t} R(\lambda, A) A x \frac{d \lambda}{\lambda}$ converges absolutely and uniformly on compact intervals. Therefore $t \mapsto T(t) x$ is continuous on $[0, \infty)$ if $x \in D\left(A^{2}\right)$. Since $D\left(A^{2}\right)$ is dense in X and $t T(t)$ is uniformly bounded (Step 2), the mapping $t \mapsto T(t) x$ is continuous on $(0, \infty)$ for each $x \in X$. This proves the theorem.

5. Proof of Theorem 3.1

The following lemma is implicit in the standard presentations of perturbation theory ([5, Chapter III], [7, Chapter 3]).

Lemma 5.1. Let $(A, D(A))$ and $(B, D(B))$ be closed operators on a Banach space X where $D(A) \subseteq D(B)$. Suppose that A and A^{*} are densely defined and that the resolvent set of A is nonempty. If there exists $M \in[0,1)$ and $\emptyset \neq G \subseteq \rho(A)$ such that

$$
\begin{equation*}
\|B R(\lambda, A) x\| \leq M\|x\| \quad \text { for every } x \in X \text { and every } \lambda \in G \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|R(\lambda, A) B x\| \leq M\|x\| \quad \text { for every } x \in D(B) \text { and every } \lambda \in G \tag{16}
\end{equation*}
$$

then the operator $(A+B, D(A))$ is closed and $G \subseteq \rho(A+B)$. Furthermore we have that

$$
\begin{equation*}
R(\lambda, A+B)=[I-R(\lambda, A) B]^{-1} R(\lambda, A) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
R\left(\lambda,(A+B)^{*}\right)=\left[I-R\left(\lambda, A^{*}\right) B^{*}\right]^{-1} R\left(\lambda, A^{*}\right) \tag{18}
\end{equation*}
$$

for every $\lambda \in G$.
Using this lemma and Theorem 3.3, we can show Theorem 3.1.

Proof of Theorem 3.1. We can assume that $\max \left\{\omega(T), \lambda_{0}\right\}<0$. Otherwise we consider $(A-\omega, D(A))$ instead of $(A, D(A))$, where $\omega>\max \left\{\omega(T), \lambda_{0}\right\}$.
For $x \in X$ we define the function $u_{x}: \mathbb{R} \rightarrow X$ by

$$
u_{x}(t):=\left\{\begin{aligned}
T(t) x, & t \geq 0 \\
0, & t<0
\end{aligned}\right.
$$

Since $\omega(T)<0$, the function u_{x} is in $L^{2}(\mathbb{R}, X)$ and there is a constant $c \geq 0$ such that $\left(\int_{-\infty}^{\infty}\left\|u_{x}(t)\right\|^{2} d t\right)^{1 / 2} \leq c\|x\|$. By Plancherel's Theorem the Fourier transform $\mathcal{F} u_{x}$ of u_{x} is also $L^{2}(\mathbb{R}, X)$ and $\left\|\mathcal{F} u_{x}\right\|_{2}=\sqrt{2 \pi}\left\|u_{x}\right\|_{2}$. On the other hand, we know that $\left(\mathcal{F} u_{x}\right)(s)=\int_{-\infty}^{\infty} e^{-i s t} u_{x}(t) d t=\int_{0}^{\infty} e^{-i s t} T(t) x d t=R(i s, A) x$ for every $s \in \mathbb{R}$. Therefore

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}\|R(i s, A) x\|^{2} d s\right)^{1 / 2} \leq c \sqrt{2 \pi}\|x\| \tag{19}
\end{equation*}
$$

Using Lemma 5.1, it follows that

$$
\begin{aligned}
\left(\int_{-\infty}^{\infty}\|R(i s, A+B) x\|^{2} d s\right)^{1 / 2} & =\left(\int_{-\infty}^{\infty}\left\|[I-R(i s, A) B]^{-1} R(i s, A) x\right\|^{2} d s\right)^{1 / 2} \\
& \leq \frac{1}{1-M}\left(\int_{-\infty}^{\infty}\|R(i s, A) x\|^{2} d s\right)^{1 / 2} \\
& \leq \frac{c \sqrt{2 \pi}}{1-M}\|x\|
\end{aligned}
$$

for all $x \in X$.
We now consider $(A+B)^{*}$. As before we can show that

$$
\left(\int_{-\infty}^{\infty}\left\|R\left(i \cdot,(A+B)^{*}\right) x\right\|\right)^{2} \leq \frac{c \sqrt{2 \pi}}{1-M}\|x\|
$$

for each $x \in X$. So we can apply Theorem 3.3.

6. Application to ordinary differential operators

Let X be the Hilbert space $L^{2}(\mathbb{R})$ and $k \in \mathbb{N}$. We consider the operator $(A, D(A))$ in X defined by

$$
\begin{equation*}
A u:=i u^{(2 k)}, \quad D(A):=W^{2 k, 2}(\mathbb{R})=\left\{u \in L^{2}(\mathbb{R}): u^{(2 k)} \in L^{2}(\mathbb{R})\right\} \tag{20}
\end{equation*}
$$

Here $u^{(2 k)}$ denotes the $2 k^{\text {th }}$ (distributional) derivative of the function u. It is well known that $(A, D(A))$ generates a C_{0}-semigroup on X (see, e.g, [2, Section 8.1]).
One can compute that $\mathbb{C} \backslash(i \mathbb{R}) \subseteq \rho(A)$ and that for $\lambda \in \mathbb{C} \backslash(i \mathbb{R})$ the resolvent of A is given by

$$
R(\lambda, A) f(x)=\frac{i}{2 k} \int_{-\infty}^{\infty} \sum_{j=1}^{k} \frac{e^{-\mu_{j}|x-s|}}{\left(-\mu_{j}\right)^{2 k-1}} f(s) d s, \quad x \in \mathbb{R}
$$

where f is a function in $L^{2}(\mathbb{R})$ and $\mu_{j}(j=1, \ldots, k)$ are the k solutions of the equation $\lambda-i \mu^{2 k}=0$ with $\operatorname{Re} \mu_{j}>0$.
We now define the operator $(B, D(B))$ by

$$
\begin{equation*}
B f:=V \cdot f^{(l)}, \quad D(B):=\left\{f \in X: V \cdot f^{(l)} \in X\right\} \tag{21}
\end{equation*}
$$

where V is a potential in $L^{2}(\mathbb{R})$ and $l \in \mathbb{N}_{0}$ such that $l<k$.
We want to look at $B R(\lambda, A)$. Take $f \in C_{c}^{\infty}(\mathbb{R})$, i.e., f is in $C^{\infty}(\mathbb{R})$ and has compact support. For $\lambda \in \mathbb{C} \backslash(i \mathbb{R})$ we compute

$$
B R(\lambda, A) f(x)=V(x) \cdot \frac{i}{2 k} \sum_{j=1}^{k}\left(\int_{-\infty}^{x} \frac{e^{-\mu_{j}(x-s)}}{\left(-\mu_{j}\right)^{2 k-l-1}} f(s) d s-\int_{x}^{\infty} \frac{e^{\mu_{j}(x-s)}}{\mu_{j}^{2 k-l-1}} f(s) d s\right) .
$$

Now, if $g \in C_{c}^{\infty}(\mathbb{R})$ we find

$$
\begin{aligned}
& |\langle g, B R(\lambda, A) f\rangle| \\
& \quad \leq \frac{1}{2 k|\lambda|^{1-(l+1) /(2 k)}} \sum_{j=1}^{k} \int_{-\infty}^{\infty}|g(x)||V(x)| \int_{-\infty}^{\infty} e^{-\operatorname{Re} \mu_{j}|x-s|}|f(s)| d s d x \\
& \quad \leq \frac{1}{2 k|\lambda|^{1-(l+1) /(2 k)}} \sum_{j=1}^{k} \int_{-\infty}^{\infty}|g(x)||V(x)|\left(\int_{-\infty}^{\infty} e^{-2 \operatorname{Re} \mu_{j}|x-s|} d s\right)^{1 / 2} d x\|f\|_{2} \\
& \quad=\frac{1}{2 k|\lambda|^{1-(l+1) /(2 k)}} \sum_{j=1}^{k}\left(\frac{1}{\operatorname{Re} \mu_{j}}\right)^{1 / 2} \int_{-\infty}^{\infty}|g(x)||V(x)| d x\|f\|_{2} \\
& \quad \leq \frac{\|V\|_{2}}{2|\lambda|^{1-(l+1) /(2 k)}} \frac{1}{k} \sum_{j=1}^{k}\left(\frac{1}{\operatorname{Re} \mu_{j}}\right)^{1 / 2}\|g\|_{2}\|f\|_{2} .
\end{aligned}
$$

Since $C_{c}^{\infty}(\mathbb{R})$ is dense in $L^{2}(\mathbb{R})$, we have shown the estimate

$$
\begin{aligned}
\|B R(\lambda, A)\| & \leq \frac{\|V\|_{2}}{2|\lambda|^{1-(l+1) /(2 k)}} \frac{1}{k} \sum_{j=1}^{k}\left(\frac{1}{\operatorname{Re} \mu_{j}}\right)^{1 / 2} \\
& \leq \frac{\|V\|_{2}}{2|\lambda|^{1-(l+1) /(2 k)} \min \left\{\left(\operatorname{Re} \mu_{j}\right)^{1 / 2}: j=1, \ldots, k\right\}}
\end{aligned}
$$

If $\lambda=r e^{i \varphi}$ with $r>0$ and $\varphi \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then a careful computation yields

$$
\min \left\{\left(\operatorname{Re} \mu_{j}\right)^{1 / 2}: j=1, . ., k\right\}=|\lambda|^{1 /(4 k)}\left(\cos \psi_{k}\right)^{1 / 2}
$$

where

$$
\psi_{k}= \begin{cases}\frac{\varphi}{2 k}-\frac{\pi}{4 k}+\frac{\pi}{2}, & \text { if } k \text { is even } \\ \frac{\varphi}{2 k}+\frac{\pi}{4 k}-\frac{\pi}{2}, & \text { if } k \text { is odd }\end{cases}
$$

Since $|\lambda|=\operatorname{Re} \lambda\left(1+\tan ^{2} \varphi\right)^{1 / 2}=\frac{\operatorname{Re} \lambda}{\cos \varphi}$, we have

$$
\begin{aligned}
& |\lambda|^{1-(l+1) /(2 k)} \min \left\{\left(\operatorname{Re} \mu_{j}\right)^{1 / 2}: j=1, \ldots, k\right\}=|\lambda|^{1-(l+1) /(2 k)+1 /(4 k)}\left(\cos \psi_{k}\right)^{1 / 2} \\
& =(\operatorname{Re} \lambda)^{1-l /(2 k)-1 /(4 k)} \frac{\left(\cos \psi_{k}\right)^{1 / 2}}{(\cos \varphi)^{1-l /(2 k)-1 /(4 k)}} \\
& \quad=(\operatorname{Re} \lambda)^{1-l /(2 k)-1 /(4 k)}\left(\frac{\cos \psi_{k}}{\cos \varphi}\right)^{1 / 2}(\cos \varphi)^{-1 / 2+l /(2 k)+1 /(4 k)} .
\end{aligned}
$$

But $-\frac{1}{2}+\frac{l}{2 k}+\frac{1}{4 k}=\frac{1}{2 k}\left(l-k+\frac{1}{2}\right) \leq 0$, and $\frac{\cos \psi_{k}}{\cos \varphi}$ is bounded from below by a constant $c>0$ for all $\varphi \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Therefore

$$
|\lambda|^{1-(l+1) /(2 k)} \min \left\{\left(\operatorname{Re} \mu_{j}\right)^{1 / 2}: j=1, . ., k\right\} \geq c(\operatorname{Re} \lambda)^{1-l /(2 k)-1 /(4 k)}
$$

This shows the estimate

$$
\begin{equation*}
\|B R(\lambda, A)\| \leq \frac{\|V\|_{2}}{2 c(\operatorname{Re} \lambda)^{1-l /(2 k)-1 /(4 k)}} \tag{22}
\end{equation*}
$$

We now can prove the following proposition.
Proposition 6.1. Let $X=L^{2}(\mathbb{R})$ and let $(A, D(A))$ be defined as in (20). If $(B, D(B))$ is given by

$$
B f:=V \cdot f^{(l)}, \quad D(B):=\left\{f \in X: V \cdot f^{(l)} \in X\right\}
$$

where V is a potential in $L^{2}(\mathbb{R})$ and $l \in \mathbb{N}_{0}$ such that $l<k$, then $(A+B, D(A))$ generates a semigroup on X that is strongly continuous on $(0, \infty)$.

Proof. Since $1-l /(2 k)-1 /(4 k)>0$ by assumption, we obtain from (22) that there is $M<1$ such that

$$
\|B R(\lambda, A)\| \leq M
$$

if $\operatorname{Re} \lambda$ is large enough. It is easy to see that the same is true for A^{*} and B^{*} instead of A and B. This yields $\|R(\lambda, A) B f\| \leq M\|f\|$ for $f \in D(B)$ and we can apply Theorem 3.1.

Corollary 6.2. Let $X=L^{2}(\mathbb{R})$ and let $(A, D(A))$ be defined as in (20). If $V \in$ $L^{2}(\mathbb{R})+L^{\infty}(\mathbb{R})$ and $(B, D(B))$ is defined as

$$
B f:=V \cdot f, \quad D(B):=\{f \in X: V \cdot f \in X\}
$$

then $(A+B, D(A))$ generates a semigroup on X that is strongly continuous on $(0, \infty)$.

Proof. We split V into an L^{2}-part and a bounded part. The bounded part can be estimated by the Hille-Yosida theorem. For the L^{2}-part, we use again (22) as in the proof of Proposition 6.1

References

[1] Wolfgang Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), 321349.
[2] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Birkhäuser, Basel Boston Berlin, 2001.
[3] Richard Beals, On the abstract Cauchy problem, J. Functional Analysis 10 (1972), 281-299.
[4] Adam Bobrowski, On the generation of non-continuous semigroups, Semigroup Forum 54 (1997), 237-252.
[5] Klaus-Jochen Engel and Rainer Nagel, "One-parameter semigroups for linear evolution equations", Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.
[6] Selim Grigorevich Kreı̆n, "Linear differential equations in Banach spaces", Translated from the Russian by J. M. Danskin, Translations of Mathematical Monographs, Vol. 29, American Mathematical Society, Providence, R.I., 1971.
[7] A. Pazy, "Semigroups of linear operators and applications to partial differential equations", Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
[8] Kazuaki Taira, The theory of semigroups with weak singularity and its application to partial differential equations, Tsukuba J. Math. 13 (1989), no. 2, 513-562.

Mathematisches Institut I, Universität Karlsruhe, Englerstrasse 2, 76128 Karlsruhe, Germany

E-mail address: cornelia.kaiser@math.uni-karlsruhe.de

Mathematisches Institut I, Universität Karlsruhe, Englerstrasse 2, 76128 Karlsruhe, Germany

E-mail address: lutz.weis@math.uni-karlsruhe.de

[^0]: 2000 Mathematics Subject Classification. Primary 47A55, 47D06. Secondary 47D62, 47E05.
 Key words and phrases. Co-semigroup, Perturbation.
 The research is supported in part by the Landesforschungsschwerpunkt Evolutionsgleichungen des Landes Baden-Württenberg.

