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We consider generalized Calderón-Zygmund operators whose kernel takes values in the space of
all continuous linear operators between two Banach spaces. In the spirit of the T (1) theorem of
David and Journé we prove boundedness results for such operators on vector-valued Riesz potential
spaces. This improves and generalizes a result by Hytönen and Weis.

1 Introduction

In this paper we want to study non-convolution type singular integrals of the form

(Tf)(u) =
∫

RN

K(u, v)f(v)dv (1.1)

(see e.g. [19, 20]). Inspired by the famous T (1) theorem of G. David and J.-L. Journé [4, 5] on the
L2 boundedness of operators (1.1) T. Figiel [8] has proved a T (1) theorem for X-valued Lp functions,
where X has the UMD-property. The kernels K are still scalar valued, however. Recently T. Hytönen
and L. Weis [13] gave a new proof of Figiel’s T (1) theorem and extended it to operator-valued kernels
K.

On the other hand, various authors (e.g. [9, 11, 18, 21, 23]) obtained results of the same spirit as
the T (1) theorem of David and Journé for other scalar-valued function spaces, including homogeneous
Besov, Triebel-Lizorkin and Riesz potential spaces. In [12] T. Hytönen and the author give a new prove
of the T (1) theorem for Triebel-Lizorkin spaces, using methods from [13]. And in [15] we show an
operator-valued version of the T (1) theorem for vector-valued Besov spaces.

In this paper, we prove the following operator-valued T (1) theorem for vector-valued Riesz potential
spaces. The definition of these spaces, as well as of the various conditions appearing in the theorem,
are given in Section 2. The theorem is then proved in Section 3.

Theorem 1.1 Let X,Y be UMD spaces. Suppose that T : S(RN ) → S ′(RN ,L(X,Y )) is in the class
RCZOν for some ν ∈ (0, 1], satisfies the weak R-boundedness property, and T (1) = 0.

(a) T extends to a bounded linear operator from Ḣs
p(X) to Ḣs

p(Y ) for each s ∈ (0, ν) and each
p ∈ (1,∞).

(b) If in addition T ′ ∈ RCZOν and T ′(1) = 0, then T extends to a bounded linear operator from
Ḣs

p(X) to Ḣs
p(Y ) for each |s| < ν and each p ∈ (1,∞).

Theorem 1.1 contains the Lp result by Hytönen and Weis from [13] as a special case (s = 0). However,
we use a weaker version of the weak R-boundedness property, which slightly improves their theorem.

2 Definitions and Notations

Throughout this paper X and Y are complex Banach spaces. The space L(X,Y ) of bounded linear
operators from X to Y is endowed with the uniform operator topology. X ′ = L(X,C) denotes the dual
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space of X. All our (possibly vector-valued) functions and distributions will be defined on RN for a
fixed positive integer N . Therefore the various function spaces E(RN , X) in this paper are denoted
simply by E(X). For example we write Lp(X) for the Bochner-Lebesgue space Lp(RN , X), p ∈ [1,∞],
equipped with its usual norm.

N := {0, 1, 2, . . . } is the set of all nonnegative integers. The conjugate exponent p′ of p ∈ [1,∞] is
given by 1

p + 1
p′ = 1.

We write D(RN , X) for the space of all compactly supported smooth functions with values in X.
The Schwartz class S(RN , X) is the space of all X-valued rapidly decreasing smooth functions, endowed
with its usual topology. For D(RN ,C) and S(RN ,C) we also write D(RN ) and S(RN ) respectively. The
space S ′(RN , X) of all X-valued tempered distributions is defined as the space of all continuous linear
operators from S(RN ) to X. The Fourier transform F : S(RN ) → S(RN ) is defined by (Fϕ)(u) =
ϕ̂(u) =

∫
RN e−iuvϕ(v)dv.

Let Z(RN , X) be the space of all Schwartz functions ϕ ∈ S(RN , X) such that Dαϕ̂(0) = 0 for all
multiindices α ∈ NN . Then Z(RN , X) is a closed subspace of S(RN , X). If Z ′(RN , X) denotes the
space of all continuous linear operators from Z(RN ) = Z(RN ,C) to X, then S ′(RN , X)/P(RN , X) and
Z ′(RN , X) are isomorphic (cf. [22, 5.1.2] and [14, Section 7]). Here P(RN , X) stands for the space of
all polynomials on RN with coefficients in X.

Riesz potential spaces

Let p ∈ (1,∞) and s ∈ R. The Riesz potential spaces Ḣs
p(X) = Ḣs

p(Rn, X) is the space consisting of all
f ∈ Z ′(RN , X) such that

‖f‖Ḣs
p(X) = ‖F−1(| · |sf̂(·))‖Lp(X)

is finite. Note that F−1(| · |sf̂(·)) maps Z ′(RN , X) onto itself and that ‖·‖Ḣs
p(X) is a norm on Ḣs

p(X).

Let φ̂ ∈ D(RN ) be radial, equal to 1 in B(0, 1), and supported in B(0, 2). Let ϕ̂ = φ̂ − φ̂(2·) and
ϕ̂j = ϕ̂(2j ·), j ∈ Z. It follows from the results in [16] that, if p ∈ (1,∞) and X is a UMD space (for a
definition see below), then

∥∥f∥∥
Ḟ s,p

2 (X)
:=

(∫ 1

0

∥∥∥∑
j∈Z

rj(t)2−jsf ∗ ϕj

∥∥∥2

Lp(X)
dt

)1/2

.

is an equivalent norm on Ḣs
p(X). Here (rj) is some sequence of distinct Rademacher functions.

The operator T

We consider a continuous linear operator

T : S(RN ) → S ′(RN ,L(X,Y )).

T can be identified with the continuous bilinear form

S(RN )× S(RN ) → L(X,Y ), (ϕ,ψ) 7→ (Tϕ)(ψ).

In place of (Tϕ)ψ we also use the notation
〈
ψ, Tϕ

〉
. To T we assign an “adjoint” operator

T ′ : S(RN ) → S ′(RN ,L(Y ′, X ′)),
〈
ψ, T ′ϕ

〉
:=

〈
ϕ, Tψ

〉′
,

where the latter ′ designates the usual Banach adjoint of an operator in L(X,Y ).
From T we derive a linear mapping T̃ : S(RN )⊗X → S ′(RN , Y ) : for x ∈ X and ϕ,ψ ∈ S(RN ), we

let 〈
ψ, T̃ [ϕ⊗ x]

〉
:=

〈
ψ, Tϕ

〉
x ∈ Y.

This makes sense, since
〈
ψ, Tϕ

〉
∈ L(X,Y ). So T̃ [ϕ⊗ x] is a Y -valued tempered distribution and T̃ is

well-defined on S(RN )×X. Now we extend T̃ to S(RN )⊗X by linearity. In the following we will not
distinguish between T and T̃ .
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The associated kernel

Suppose now that K : {(u, v) ∈ RN ×RN : u 6= v} → L(X,Y ) is continuous. We say that T is associated
with K if 〈

ϕ, Tφ
〉

=
∫

RN

ϕ(u)
∫

RN

K(u, v)φ(v)dv du (2.1)

holds for all ϕ, φ ∈ D(RN ) with suppϕ ∩ suppφ = ∅. This means that, for each φ ∈ D(RN ), the
distribution Tφ agrees almost everywhere on the complement of suppφ with the continuous function∫

RN K(·, v)φ(v)dv, defined on the complement of suppφ. It is clear from (2.1) that T ′ is associated to
K ′ given by K ′(u, v) = K(v, u)′ for u 6= v.

Now we assume that K satisfies the standard estimates

(SE0) sup
{
|u− v|N

∥∥K(u, v)
∥∥ : u 6= v

}
<∞,

(SEν) sup
{
|u− v|N+ν ‖K(u, v)−K(u0, v)‖

|u− u0|ν
: |u− v| > 2|u− u0| > 0

}
<∞.

for some ν ∈ (0, 1]. We say that T ∈ CZOν if T is associated with K satisfying (SE0) and (SEν). Note
that T ∈ CZOν does not emply that T ′ ∈ CZOν .

Definition of T (1)

The action of T ∈ CZOν is not a priori defined on the constant function 1 /∈ S(RN ), but we can make
sense of the notion T (1): We will define T (1) as a linear operator acting on

D0(RN ) := {ϕ ∈ D(RN ) :
∫

RN

ϕ(u)du = 0}.

For doing this we first observe that, if ϕ ∈ D0(RN ), the distribution T ′ϕ agrees with an integrable
function on the exterior of any neighborhood of suppϕ. Now choose ψ ∈ D(RN ) such that ψ ≡ 1 in a
neighborhood of suppϕ and define〈

1, T ′ϕ
〉

:=
〈
ψ, T ′ϕ

〉
+

∫
RN

(1− ψ(u))(T ′ϕ)(u)du.

Here the first term is given by the usual pairing between test functions and distributions and the second
term exists because T ′ϕ is integrable on the support of 1− ψ. One can show that the value of

〈
1, T ′ϕ

〉
is independent of the actual choice of ψ. Now we make the natural definition

〈
ϕ, T (1)

〉
:=

〈
1, T ′ϕ

〉′∣∣
X
∈

L(X,Y ).

The weak boundedness property

The closed ball with center u ∈ RN and radius r > 0 is denoted by B(u, r). We say that ϕ is a
normalized bump function associated with the unit ball B(0, 1) if ϕ ∈ D(RN ) with suppϕ ⊆ B(0, 1) and
‖Dαϕ‖L∞ ≤ 1 for all |α| ≤ M , where M is a large fixed number. φ is a normalized bump function
associated with the ball B(u, r) if φ(·) = r−Nϕ(r−1(· − u)), where ϕ is a normalized bump function
associated with the unit ball.

The operator T is said to have

• the weak boundedness property provided that, for every pair of normalized bump functions ϕ, φ
associated with any ball B(u, r) we have

∥∥〈
φ, Tϕ

〉∥∥ ≤ Cr−N .

• the weak boundedness property at 0 provided that, for every pair of normalized bump functions ϕ, φ
associated with any ball B(0, r) we have

∥∥〈
φ, Tϕ

〉∥∥ ≤ Cr−N .

The following lemma is a refinement of an auxiliary result in [13, Sect. 2]. For a proof see [15].
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Lemma 2.1 Let k ∈ N, a > 0, w ∈ RN , and let ϕ, φ ∈ D0(RN ) be normalized bump functions
associated with B(0, a) and B(w, 2ka) respectively. Let T ∈ CZOν satisfy the weak boundedness property
at 0.
(a) There is a constant C1 <∞ such that

∥∥〈
φ, Tϕ

〉∥∥ ≤ C1
1 + k

(a2k)N

(
1 +

|w|
a2k

)−N−ν

.

(b) If in addition T (1) = 0, then there are constants C2 <∞ and δ > 0 such that

∥∥〈
ϕ, Tφ

〉∥∥ ≤ C2(a2k)−N−ν

(
1 +

|w|
a2k

)−N−δ

.

Notions from Banach space theory

For our result on Riesz potential spaces we will restrict ourselves to Banach spaces that have a certain
geometric property, namely the property of Unconditional Martingale Differences (UMD). There are
several equivalent definitions for this property (see [2, p.141-142] and the references given there). Here
is one of them:

Definition 2.2 A Banach space X is a UMD space if and only if the Hilbert transform

(Hf)(u) = PV −
∫

f(v)
u− v

dv, f ∈ S(R, X),

extends to a bounded linear operator on Lp(R, X) for some (and thus for each) p ∈ (1,∞).
Remark 2.3 (a) It is clear from the definition that each Hilbert space is a UMD space. The dual

space and each closed subspace of a UMD space is a UMD space. A UMD spaceX always has a uniformly
convex renorming [1] and therefore is super-reflexive [7]. In particular, `1 is not finitely representable
in X. Hence X is B-convex [6, Theorem 13.6].
(b) Let (Ω,Σ, µ) be a σ-finite measure space. If X is a UMD space and p ∈ (1,∞), then Lp(Ω, µ,X) is
also a UMD space [2, p.145].

Next we recall the notion of R-boundedness.
Definition 2.4 Let X,Y be Banach spaces. A set of operators τ ⊆ L(X,Y ) is called R-bounded if

there is a constant C < ∞ such that for all m ∈ N, all T1, . . . , Tm ∈ τ and all x1, . . . xm ∈ X we have
that ∥∥∥ m∑

k=1

rkTkxk

∥∥∥
L2([0,1],Y )

≤ C
∥∥∥ m∑

k=1

rkxk

∥∥∥
L2([0,1],X)

, (2.2)

where rk is the k-th Rademacher function on [0, 1]. The infimum over all C such that (2.2) holds is
called the R-bound of τ and is denoted by R(τ).

It is clear from the definition that R-boundedness implies uniform boundedness. But in general the
notion of R-boundedness is stronger than that of uniform boundedness. In fact, G. Pisier proved that
every bounded subset of L(X) is R-bounded if and only if X is isomorphic to a Hilbert space (cf. [3]).
But R-boundedness is equivalent to uniform boundedness between the so called Rademacher spaces,
which we define now.

Definition 2.5 For a Banach space X, the Rademacher space RadX is the closure in L2([0, 1], X)
of the subspace of all finite linear combinations

∑m
k=1 rkxk, where rk are Rademacher functions and xk

are elements of X.
For T1, . . . , Tm ∈ L(X,Y ), the operator [Tk]mk=1 : RadX → RadY is defined by

[Tk]mk=1 :
m∑

k=1

rkxk 7→
m∑

k=1

rkTkxk.
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With this definition it is immediate that τ ⊆ L(X,Y ) is R-bounded if and only if {[Tk]mk=1 : m ∈
Z+, T1, . . . , Tm ∈ τ} is a bounded subset of L(RadX,RadY ).

Proposition 2.6 [17, Proposition 3.5] Let τ be a R-bounded subset of L(X,Y ). If X is B-convex,
then {T ′ : T ∈ τ} ⊆ L(Y ′, X ′) is R-bounded.

In particular, if X and Y are UMD spaces, then τ ⊆ L(X,Y ) is R-bounded if and only if {T ′ : T ∈
τ} ⊆ L(Y ′, X ′) is R-bounded.

The class RCZOν

For a kernel K : {(u, v) ∈ RN × RN : u 6= v} → L(X,Y ) and a real number ν ∈ (0, 1] we consider the
standard R-estimates

(SRE0) R
({
|u− v|N

∥∥K(u, v)
∥∥ : u 6= v

})
<∞,

(SREν) R
({

|u− v|N+ν ‖K(u, v)−K(u0, v)‖
|u− u0|ν

: |u− v| > 2|u− u0| > 0
})

<∞.

We say that T ∈ RCZOν if T is associated with K satisfying (SRE0) and (SREν).
It is clear from the definition that the class RCZOν is contained in CZOν . If X,Y are Hilbert spaces

then the two classes coincide.

The weak R-boundedness property

For r > 0 and w ∈ RN we define the dilation and translation operators on S(RN ) by

δrϕ = r−N/2ϕ(r−1·), τwϕ = ϕ(· − w).

Moreover we define the continuous linear operator T r
w : S(RN ) → S ′(RN ,L(X,Y )) by〈

φ, T r
wϕ

〉
=

〈
τwδrφ, T [τwδrϕ]

〉
, ϕ, φ ∈ S(RN ).

With this definition we can reformulate the weak boundedness property as follows: The operator T has
the weak boundedness property if and only if for all normalized bump functions φ, ϕ associated with
the unit ball, the set

{〈
φ, T r

wϕ
〉

: w ∈ R, r > 0
}

is bounded.
The operator T is said to have the weak R-boundedness property provided that there is a constant C

such that, for every pair of normalized bump functions ϕ, φ associated with the unit ball, we have that
supv∈RN R

({〈
φ, T 2j

v ϕ
〉

: j ∈ Z
})
≤ C.

If T is a singular integral operator with associated kernel K and φ, ϕ are test functions with disjoint
support, then〈

φ, T r
wϕ

〉
= r−N

〈
φ( ·−w

r ), T [ϕ( ·−w
r )]

〉
= r−N

∫
RN

∫
RN

φ(u−w
r )K(u, v)ϕ(v−w

r )dv du

= rN

∫
Rn

∫
RN

φ(u)K(ru+ w, rv + w)ϕ(v)dv du.

Therefore T r
w is also a singular integral operator associated with the kernel Kr

w given by

Kr
w(u, v) = rNK(ru+ w, rv + w).

Corollary 2.7 Let a > 0, k ∈ N, w ∈ RN , and let ϕ, φ ∈ D0(RN ) be normalized bump functions
associated with B(0, a) and B(w, 2ka) respectively. Let T ∈ RCZOν satisfy the weak R-boundedness
property.
(a) There is a constant C1 <∞ such that for all v ∈ RN

R
({〈

φ, T 2j

v ϕ
〉

: j ∈ Z
})
≤ C1

1 + k

(a2k)N

(
1 +

|w|
a2k

)−N−ν

.
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(b) If in addition T (1) = 0, then there are constants C2 <∞ and δ > 0 such that for all v ∈ RN ,

R
({〈

ϕ, T 2j

v φ
〉

: j ∈ Z
})
≤ C2(a2k)−N−ν

(
1 +

|w|
a2k

)−N−δ

.

P r o o f. Let v ∈ Rn be fixed and τv = {T 2j

v : j ∈ Z}. For (Sk)m
k=1 ⊆ τv consider the continuous linear

operator
[Sk] : S(RN ) → S ′(RN ,L(RadX,RadY ))

defined by 〈
ϕ, [Sk]φ

〉
=

[〈
ϕ, Skφ

〉]
, ϕ, φ ∈ S(RN ).

Then [Sk] is in CZOν , with constant not depending on v or the choice of the finite sequence (Sk).
Moreover, [Sk] satisfies the weak boundedness property at 0, also with independent constant. Finally,
if T (1) = 0, then also [Sk](1) = 0. So we can apply Lemma 2.1.

3 Proof of Theorem 1.1

In the proof of Theorem 1.1, we proceed in a similar way as in [13].
We will decompose our operator T into parts we can handle using Corollary 2.7. For this we use

a resolution of unity from [13, Sect. 2]: Take Φ ∈ D0(RN ) and Ψ ∈ S(RN ) such that Φ is radial and
real-valued, both Φ̂ and Ψ̂ are non-negative, Φ̂(u) ≥ 1 for 1

2 ≤ |u| ≤ 2, Ψ̂ is supported in { 1
2 ≤ |u| ≤ 2},

and ∑
j∈Z

Φ̂(2ju)Ψ̂(2ju) = 1 for all u ∈ RN \ {0}.

We write Φj(u) := 2−NjΦ(2−ju), Ψj(u) := 2−NjΨ(2−ju) and Pjf := Φj ∗ f , Qjf = Ψj ∗ f for
f ∈ S ′(RN , X).

For f ∈ S(RN ) and j, k ∈ Z,

(PjTPkf)(u) = (Φj ∗ T [Φk ∗ f ])(u) =
〈

Φj(u− ·), T
[∫

R
Φk(· − v)f(v)dv

]〉
=

∫
R

〈
Φj(u− ·), T [Φk(· − v)]

〉
f(v)dv =

∫
R
Kj,k(u, v)f(v)dv

where Kj,k(u, v) :=
〈
Φj(· − u), T [Φk(· − v)]

〉
∈ L(X,Y ). (Recall that Φ is radial.) We will consider the

operators Tj,k associated with the kernels Kj,k:

Tj+k,jf =
∫

RN

Kj+k,j(u, v)f(v)dv, f ∈ S(RN , X).

One can show that Tj,k can be extended to bounded linear operators from Lp(X) to Lp(Y ) for all
p ∈ [1,∞] [15].

P r o o f. First we consider the case that k ∈ N. Then for g ∈ S(RN ) ⊗ Y ′ and f ∈ S(RN ) ⊗X, we
can estimate ∣∣∣∣∑

j∈Z

〈
g,Qj+kTj+k,jQjf

〉∣∣∣∣ =
∣∣∣∣∑
j∈Z

〈
2(j+k)s(Tj+k,j)′Qj+kg, 2−(j+k)sQjf

〉∣∣∣∣
=

∣∣∣∣∫ 1

0

〈∑
j∈Z

rj(t)2(j+k)s(Tj+k,j)′Qj+kg,
∑
l∈Z

rl(t)2−(l+k)sQlf

〉
dt

∣∣∣∣
≤

(∫ 1

0

∥∥∥∥∑
j∈Z

rj(t)2(j+k)s(Tj+k,j)′Qj+kg

∥∥∥∥p′

Lp′ (X
′)

dt

)1/p′

×
(∫ 1

0

∥∥∥∥∑
l∈Z

rl(t)2−(l+k)sQlf

∥∥∥∥p

Lp(X)

dt

)1/p

.
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The second factor is bounded by C2−ks‖f‖Ḣs
p

by Kahane’s inequality and results from [16]. To estimate
the first factor, we observe that

([Tj+k,j ]′Qj+kg)(v) =
∫

RN

[Kj+k,j(u, v)]′(Qj+kg)(u)du

=
∫

RN

2jN [Kj+k,j(v + 2ju, v)]′(Qj+kg)(v + 2ju)du.

Since
2jN [Kj+k,j(v + 2ju, v)]′ = 2jN

〈
Φj+k(· − v − 2ju), T [Φj(· − v)]

〉′
,

and Φj+k(· − v − 2ju) = τvδ2jτuδ2kΦ, Corollary 2.7 (a) is applicable and yields (cf. Proposition 2.6)

sup
v∈RN

R
({

2jN [Kj+k,j(v + 2ju, v)]′ : j ∈ Z
})
≤ C

1 + k

(a2k)N

(
1 +

|u|
a2k

)−N−ν

.

On the other hand, by a result of Bourgain ([10, Lemma 3.5]),(∫ 1

0

∥∥∥∥∑
j∈Z

rj(t)2(j+k)s(Qj+kg)(·+ 2ju)
∥∥∥∥p′

Lp′ (Y
′)

dt

)1/p′

≤ C ln(2 + 2−k|u|)‖g‖Ḣs
p(Y ′).

So (∫ 1

0

∥∥∥∥∑
j∈Z

rj(t)2(j+k)s(Tj+k,j)′Qj+kg

∥∥∥∥p′

Lp′ (X
′)

dt

)1/p′

≤C 1 + k

(a2k)N

∫
RN

(
1 +

|u|
a2k

)−N−ν

ln(2 + 2−k|u|) du ‖g‖Ḣ−s

p′ (Y ′)

=C(1 + k)
∫

RN

(1 + |u|)−N−ν ln(2 + a|u|) du ‖g‖Ḣ−s

p′ (Y ′).

Now let −k ∈ N. Then for g ∈ S(RN )⊗ Y ′ and f ∈ S(RN )⊗X, we can estimate∣∣∣∣∑
j∈Z

〈
g,Qj+kTj+k,jQjf

〉∣∣∣∣ =
∣∣∣∣∑
j∈Z

〈
2(j+k)sQj+kg, 2−(j+k)sTj+k,jQjf

〉∣∣∣∣
≤

(∫ 1

0

∥∥∥∥∑
j∈Z

rj(t)2(j+k)sQj+kg

∥∥∥∥p′

Lp′ (Y
′)

dt

)1/p′

×
(∫ 1

0

∥∥∥∥∑
l∈Z

rl(t)2−(l+k)sTj+k,jQlf

∥∥∥∥p

Lp(Y )

dt

)1/p

.

Now we proceed in a similar way. We use Corollary 2.7 (b) to show that

sup
u∈RN

R(2(j+k)NKj+k,j(u, u+ 2j+kv) : j ∈ Z) ≤ C2(a2|k|)−N−ν

(
1 +

|v|
a2|k|

)−N−δ

.

(Observe that Φj(· − u − 2jv) = τuδ2j+kτvδ2−kΦ and τvδ2−kΦ ∼ B(v, 2|k|a).) Then, using again Bour-
gain’s result, we obtain(∫ 1

0

∥∥∥∥∑
j∈Z

rj(t)2(j+k)sTj+k,jQjf

∥∥∥∥p

Lp(Y )

dt

)1/p

≤C(a2|k|)−N−ν2−ks

∫
RN

(
1 +

|v|
a2|k|

)−N−δ

ln(2 + 2k|u|) du ‖f‖Ḣs
p(X)

=C(a2|k|)−ν2−ks

∫
RN

(1 + |v|)−N−δ ln(2 + a|u|) du ‖f‖Ḣs
p(X).
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Finally, putting everything together,

∥∥Tf∥∥
Ḣs

p(Y )
≤

∑
k∈Z

∥∥∥∥∑
j∈Z

Qj+kTj+k,jQjf

∥∥∥∥
Ḣs

p(Y )

≤ C
0∑

k=−∞

2−|k|(n+ν)2|k|s‖f‖Ḣs
p(X) + C

∞∑
k=1

2−ks(1 + k)‖f‖Ḣs
p(X)

≤ C
∥∥f∥∥

Ḣs
p(X)

.
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gulières, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 175–187. MR 87j:47074

[19] Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cam-
bridge University Press, Cambridge, 1997, Calderón-Zygmund and multilinear operators, Translated from
the 1990 and 1991 French originals by David Salinger. MR 98e:42001

[20] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton
Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of
Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR 95c:42002

[21] Rodolfo H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem.
Amer. Math. Soc. 90 (1991), no. 442, viii+172. MR 91g:47044

[22] Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel,
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