Beispiel 2.1

Wieviele Sauerstoffatome sind in 10 m³ Luft bei Normalbedingungen (also 0 °C, 10 130 Pa) enthalten?

Daten:

- Luft enthält 20.8 Volumenprozent Sauerstoff.
- 1 mol Gasteilchen beanspruchen bei Normalbedingungen ein Volumen von 22.41 (Molvolumen; A. AVOGADRO (1776-1856)).
- 1 mol eines chemischen Stoffes enthält $L := 602\,300\,000\,000\,000\,000\,000\,000$ Teilchen (Loschmidt'sche Zahl).

Probleme:

- Unterschiedliche Einheiten für gleiche Größen verwendet:
- Rechnen mit derart großen bzw. kleinen Zahlen ist sehr unhandlich!

Cornelia Kaiser

Mathematik für Chemiker

2. Rechentechniken

2.1 Potenzen

Normalisierte Gleitpunktzahlen

Eine k-stellige normalisierte Gleitpunktzahl zur Basis E ist eine reelle Zahl $x \neq 0$ der Form $x = v \cdot a \cdot E^b$ mit

- dem Vorzeichen $v \in \{-1, 1\}$,
- der Basis $E \in \mathbb{N}$, E > 1,
- dem Exponenten $b \in \mathbb{Z}$,
- der Mantisse $a = a_1 E^{-1} + a_2 E^{-2} + \cdots + a_k E^{-k}$.

Dabei ist k die Mantissenlänge und a_j sind Ziffern des Zahlensystems (d.h. $0 \le a_j \le E - 1$) und $a_1 \ne 0$.

Beispiel 2.2

$$1 \text{ m}^3 = 1000 \text{ l} = 11 = 0,001 \text{ m}^3 = L = 0,6023 \cdot 10^{24}.$$

Multiplikation und Division

Erinnerung:

- bei gleicher Basis: $a^n \cdot a^m = a^{n+m}, \qquad \frac{a^n}{a^m} = a^{n-m}$
- $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$ • bei gleichem Exponent: $a^n \cdot b^n = (ab)^n$,

Für $x = c_1 \cdot 10^n$ und $y = c_2 \cdot 10^m$ in exponentieller Darstellung folgt:

$$xy = c_1 \cdot c_2 \cdot 10^{n+m}, \qquad \frac{x}{y} = \frac{c_1}{c_2} \cdot 10^{n-m}.$$

Beachten Sie: Das Ergebnis ist nicht automatisch normalisiert!

Beispiel 2.3

$$x = 0,72 \cdot 10^5, y = 0,11 \cdot 10^{-2}$$

 $\implies x \cdot y =$

Cornelia Kaiser

Mathematik für Chemiker

2. Rechentechniken

2.1 Potenzen

Zu Beispiel 2.1

- $10 \,\mathrm{m}^3$ Luft enthalten $\frac{20.8}{100} \cdot 10 \,\mathrm{m}^3 = 2,08 \,\mathrm{m}^3 = 0,208 \cdot 10^4 \,\mathrm{l}$ Sauerstoff.
- 0,208 · 10⁴ l Gas entsprechen $\frac{0.208 \cdot 10^4}{0.224 \cdot 10^2} \, \text{mol} = \frac{0.208}{0.224} 10^2 \, \text{mol} \approx 0.929 \cdot 10^2 \, \text{mol}$
- $0.929 \cdot 10^2 \, \text{mol Gas}$ enthalten $0.929 \cdot 10^2 \cdot 0.6023 \cdot 10^{24} =$ $0,929 \cdot 0,6023 \cdot 10^{26} = 0,560 \cdot 10^{26}$ Teilchen.

Zusammen:

 $10\,\mathrm{m}^3$ Luft enthalten ca. $0,560\cdot10^{26}$ Sauerstoffmoleküle (O₂), also ca. $2 \cdot 0,560 \cdot 10^{26} = 1,120 \cdot 10^{26} = 0.112 \cdot 10^{27}$ Sauerstoffatome.

Potenzieren

Erinnerung: Für a > 0 und $m, n \in \mathbb{Z}$ gilt

$$(a^m)^n = a^{m \cdot n}$$
.

Damit folgt

$$(x \cdot 10^m)^n = x^n \cdot (10^m)^n = x^n \cdot 10^{m \cdot n}$$

Das Ergebnis muss nicht normalisiert sein!

Beispiel 2.4

$$(0,21\cdot 10^3)^2 =$$

Cornelia Kaiser

Mathematik für Chemiker

2. Rechentechniken

2.1 Potenzen

Wurzelziehen

Erinnerung: Für a > 0, $n \in \mathbb{N}$ und $m \in \mathbb{Z}$ gilt $\sqrt[n]{a^m} = a^{m/n}$.

Beispiel 2.5

$$\sqrt{0,16\cdot 10^6} =$$

Gegebenenfalls kann hier eine Potenz mit gebrochenem Exponenten entstehen. In diesem Fall muss der ganzzahlige Anteil des Exponenten abgespalten werden:

Beispiel 2.6

$$\sqrt{0,42\cdot 10^5} =$$

Addition und Subtraktion

Falls die Zehnerpotenzen gleiche Exponenten haben:

$$c_1 \cdot 10^n + c_2 \cdot 10^n = (c_1 + c_2) \cdot 10^n$$
.

Beispiel 2.7

$$0,74 \cdot 10^{-3} + 0,42 \cdot 10^{-3} =$$

Sind die Exponenten verschieden, so müssen die Zahlen erst umgeformt werden:

$$c_1 \cdot 10^n + c_2 \cdot 10^m = c_1 \cdot 10^n + (c_2 \cdot 10^{m-n}) \cdot 10^n = (c_1 + c_2 \cdot 10^{m-n}) \cdot 10^n$$

Das Ergebnis muss *nicht* normalisiert sein!

Beispiel 2.8

$$0,604 \cdot 10^4 + 0,36 \cdot 10^3 =$$

Cornelia Kaiser

Mathematik für Chemiker

2. Rechentechniken

2.1 Potenzen

Beispiel 2.9: Dissoziation von Essigsäure H Ac

Beim Auflösen von H Ac (Ac: Säurerest) in Wasser findet eine Aufspaltung von H Ac in H⁺ und Ac⁻ statt: H Ac \rightarrow H⁺ + Ac⁻. Diese Reaktion findet mit der Reaktionsrate $r_{\text{Hin}} = k_{\text{Hin}} c_{\text{H Ac}}$ statt; dabei ist k_{Hin} die Reaktionsgeschwindigkeitskonstante und $c_{\text{H Ac}}$ die Konzentration der Essigsäurelösung.

Simultan findet auch die Rückreaktion $H^+ + Ac^- \rightarrow H$ Ac mit der Rate $r_{\text{Rück}} = k_{\text{Rück}} c_{\text{H}^+} c_{\text{Ac}^-}$ statt. Dieser Prozess läuft so lange, bis Hin- und Rückreaktion mit genau der gleichen Rate stattfinden (chemisches Gleichgewicht), d.h. $r_{\text{Hin}} = r_{\text{Rück}}$. Außerdem kennt man $K := \frac{k_{\text{Hin}}}{k_{\text{Rück}}} = 0,174 \cdot 10^{-4}$ bei 20°C.

Wie groß ist die Konzentration von H⁺ im Gleichgewicht, wenn die Konzentration von H Ac 0,1 mol/l beträgt und die Dissoziation von Wasser vernachlässigt wird?