Einfache Rechenregeln

Aus Satz 4.11 folgt

Satz 4.30

1 Aus
$$\sum_{k=0}^{\infty} a_k = a$$
 und $\sum_{k=0}^{\infty} b_k = b$ folgt $\sum_{k=0}^{\infty} (a_k + b_k) = a + b$.

2 Falls
$$\sum_{k=0}^{\infty} a_k = a \text{ und } \lambda \in \mathbb{C}$$
, so ist $\sum_{k=0}^{\infty} (\lambda a_k) = \lambda a$.

Vorsicht! Im Allgemeinen ist
$$\sum_{k=0}^{\infty} a_k b_k \neq \left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right)!$$

Cornelia Kaiser

Mathematik für Chemiker

4. Folgen und Grenzwerte

4.4 Konvergenzkriterien für unendliche Reihen

Absolute Konvergenz

Definition 4.31

Die unendliche Reihe $\sum_{k=0}^{\infty} a_k$ heißt **absolut konvergent**, wenn

die Reihe $\sum_{k=0}^{\infty} |a_k|$ konvergent ist.

Beispiel 4.32

Die geometrische Reihe $\sum\limits_{k=0}^{\infty}q^k$ ist für alle $q\in\mathbb{C}$ mit |q|<1 absolut konvergent.

Das Cauchy-Produkt

Satz 4.33

Wenn $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ absolut konvergieren, dann gilt

$$\left(\sum_{k=0}^{\infty} a_k\right) \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) \qquad (Cauchy-Produkt).$$

Beispiel 4.34

Für |q| < 1 gilt

$$\frac{1}{(1-q)^2} = \left(\sum_{k=0}^{\infty} q^k\right)^2 = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} q^k q^{n-k}\right) = \sum_{n=0}^{\infty} (n+1)q^n.$$

Cornelia Kaiser

Mathematik für Chemiker

4. Folgen und Grenzwerte

4.4 Konvergenzkriterien für unendliche Reihen

Kriterien für absolute Konvergenz

Satz 4.35

Die Reihe $\sum_{k=0}^{\infty} a_k$ ist absolut konvergent, falls eine der folgenden Bedingungen erfüllt ist.

Majorantenkriterium:

$$|a_k| \le b_k$$
 (für $k \ge k_0$) und $\sum_{k=k_0}^{\infty} b_k$ ist konvergent.

2 Wurzelkriterium: Es gibt eine reelle Zahl q < 1 mit

$$\sqrt[k]{|a_k|} \le q$$
 für $k \ge k_0$.

3 Quotientenkriterium: Es gibt eine reelle Zahl q < 1 mit

$$\left|\frac{a_{k+1}}{a_k}\right| \leq q$$
 für $k \geq k_0$.

Im Wurzel- bzw. Quotientenkriterium verwendet man praktisch oft die stärkere Bedingung

$$\lim_{k \to \infty} \sqrt[k]{|a_k|} < 1$$
 bzw. $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| < 1$.

Beispiele 4.36

- ① $\sum_{k=1}^{\infty} \frac{1}{k^p}$ mit $p \ge 2$.

Cornelia Kaiser

Mathematik für Chemiker

4. Folgen und Grenzwerte

4.4 Konvergenzkriterien für unendliche Reihen

Potenzreihen

Die Reihe $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ heißt **Potenzreihe** mit Entwicklungspunkt $z_0 \in \mathbb{C}$. Häufig ist $z_0 = 0$.

Beispiele 4.37

- ① $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ konvergiert für alle $z \in \mathbb{C}$ (Quotientenkrit.) und $\sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z, \qquad z \in \mathbb{C}.$
- 2 $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$ konvergiert für |z| < 1 (geom. Reihe) und $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$, |z| < 1.

Weitere Beispiele für Potenzreihen

Beispiele 4.38

①
$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$
 für $x \in \mathbb{R}$.

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$
 für $x \in \mathbb{R}$.

3
$$\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} \text{ für } x \in \mathbb{R}.$$

Cornelia Kaiser

Mathematik für Chemiker

4. Folgen und Grenzwerte

4.4 Konvergenzkriterien für unendliche Reihen

Das Leibniz-Kriterium

Eine Reihe der Form $\sum_{k=0}^{\infty} (-1)^k a_k$ mit $a_k \ge 0$ für alle $k \in \mathbb{N}_0$ heißt **alternierend**.

Satz 4.39 (Leibniz-Kriterium)

Die alternierende Reihe $\sum_{k=0}^{\infty} (-1)^k a_k$ ist konvergent, falls (a_k) eine monoton fallende Nullfolge ist.

Beispiel 4.40

 $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ ist konvergent (mit dem Wert ln 2).

Beispiel 4.40 zeigt, dass es konvergente Reihen gibt, die nicht absolut konvergieren.

Cornelia Kaiser

Mathematik für Chemiker