Mathematik für Chemiker: Übungsblatt 3

Aufgabe 3.1

Bestimmen Sie Definitions- und Lösungsmenge der folgenden Ungleichungen. Die Definitionsmenge sei dabei die Menge aller reellen Zahlen, für die die Ungleichung definiert ist.

a)
$$\frac{x-1}{2x+1} > \frac{1}{3}$$

b)
$$x < \frac{3-x}{x+1}$$

Aufgabe 3.2

Bestimmen Sie die Lösungsmenge der folgenden Ungleichungen mit Definitionsmenge \mathbb{R} .

a)
$$|2x| + 3x + 4 = 0$$

b)
$$x + |x - 1| = 1$$

c)
$$|x-1|+|x|-|x+1| = \frac{1-4x}{2}$$
.

Aufgabe 3.3

Bestimmen Sie die Lösungsmenge der folgenden Gleichungen mit Definitionsmenge \mathbb{R} .

a)
$$|x^2 - 9| < |x - 1|$$

b)
$$|x-1| \ge |x+2|$$

c)
$$2x - 8 > |x|$$

d)
$$x^2 + x + 1 \ge 0$$

e)
$$|x| < x - 2$$

f)
$$|x-4| > x^2$$

Aufgabe 3.4 *

Bestimmen Sie Definitions- und Lösungsmenge der folgenden Ungleichungen. Die Definitionsmenge sei dabei die Menge aller reellen Zahlen, für die die Ungleichung definiert ist.

a)
$$\sqrt{x+1} + x \le 5$$

b)
$$x < 2 + \sqrt{x+4}$$

Aufgabe 3.5

Beweisen Sie durch vollständige Induktion:

- a) Die Zahl 3 teilt $4^n 1$ für jedes $n \in \mathbb{N}$.
- b) $\sum_{k=1}^{n} (2k-1) = n^2 \text{ für jedes } n \in \mathbb{N}.$

Aufgabe 3.6

Berechnen Sie den Koeffizienten von x^6 in

a)
$$(x+1)^9$$
,

b)
$$(x - \frac{2}{x})^8$$
,

c)
$$(x^2+3)^6$$
.

Aufgabe 3.7 *

Zeigen Sie, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$