Mathematik für Chemiker: Übungsblatt 8

Aufgabe 8.1

Welche der nachstehenden Folgen (a_n) sind Nullfolgen? (Mit Begründung!)

a)
$$a_n = \frac{1}{n} \sin n$$

b)
$$a_n = \frac{3^{n+1}}{4^{n-1}}$$

c)
$$a_n = (-1)^n n^2 / \binom{n}{3}$$

Aufgabe 8.2

Zeigen Sie jeweils, dass die Folge (a_n) konvergiert und bestimmen Sie gegebenenfalls ihren Grenzwert für $n \to \infty$.

a)
$$a_n = \left(\frac{3n+1}{n+1} - \frac{n+1}{n}\right)^{\frac{1}{2}}$$

b)
$$a_n = \frac{7n^7(1+\frac{1}{n!})(n^3-n^2)}{(n^3+2)(n^5+\sqrt{n+1})n^2}$$

c)
$$a_n = \sqrt{n+1} - \sqrt{n}$$

d)
$$a_n = \sqrt{2n+1}(\sqrt{n+1} - \sqrt{n})$$

Aufgabe 8.3

Die Folge $(a_n)_{n\geq 0}$ sei rekursiv definiert durch

$$a_0 = 1$$
, $a_{n+1} = 1 + \frac{1}{2}a_n$ für $n \in \mathbb{N}_0$.

- a) Berechnen Sie die Folgenglieder a_1, \ldots, a_5 .
- b) Zeigen Sie mit vollständiger Induktion, dass $(a_n)_{n\geq 0}$ eine streng monoton wachsende Folge ist und dass für alle Folgenglieder $a_n\leq 2$ gilt.
- c) Zeigen Sie, dass $(a_n)_{n\geq 0}$ konvergent ist und berechnen Sie den Grenzwert.

Aufgabe 8.4 *

Die Folge (a_n) sei durch $a_1 = 3$ und $a_{n+1} = \sqrt{a_n + 12}$ für $n \ge 1$ gegeben.

- a) Zeigen Sie, dass (a_n) monoton wachsend ist mit $a_n \leq 4$ für alle $n \in \mathbb{N}$.
- b) Zeigen Sie, dass (a_n) konvergiert und bestimmen Sie den Grenzwert.

Aufgabe 8.5

Untersuchen Sie folgende Reihen auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

a)
$$\sum_{n=1}^{\infty} \left(-\frac{2}{3} \right)^n$$

$$b) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n^2+n}$$
.

Aufgabe 8.6

Welche der folgenden Reihen konvergiert, konvergiert absolut oder divergiert?

a)
$$\sum_{k=0}^{\infty} \frac{2k+1}{k^3+3k^2+1}$$

b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$$

c)
$$\sum_{k=1}^{\infty} {2k \choose k}^{-1}$$

d)
$$\sum_{k=0}^{\infty} (-1)^k \frac{k}{2k+3}$$

e)
$$\sum_{k=1}^{\infty} (-1)^k \frac{k!}{k^k}$$

f)
$$\sum_{k=0}^{\infty} \frac{k+4}{2k^2 - 3k + 3}$$