Mathematik für Chemiker: Übungsblatt 10

Aufgabe 10.1

Bestimmen Sie für $f(T) = Ae^{-\frac{\alpha}{T}}$ $(A, \alpha > 0)$ die Gleichung der Tangente an den Graphen von f im Punkt $(T_0, f(T_0))$ für $T_0 = \alpha$.

Aufgabe 10.2

Geben Sie jeweils den maximalen Definitionsbereich D_f der Funktion f an. In welchen Punkten $x \in D_f$ ist f differenzierbar. Bestimmen Sie dort die Ableitung von f.

a)
$$f(x) = x^3 e^x$$

b)
$$f(x) = \sin x \cos x$$

c)
$$f(x) = \frac{1}{\sin^2 x}$$

d)
$$f(x) = 2^{\sqrt{x}}$$

e)
$$f(x) = e^{-\pi^2 + 1}$$

$$f) f(x) = \sqrt{\frac{x+1}{x-1}}$$

g)
$$f(x) = x^2 \sin(\ln x) e^{\sqrt{x}}$$

g)
$$f(x) = x^2 \sin(\ln x) e^{\sqrt{x}}$$
 h) $f(x) = \frac{x^3 - 2x}{x^2 + x + 1}$

$$i) f(x) = x^x$$

j)
$$f(x) = \frac{\sin(x + e^x)}{2 + 2\sin x - \cos^2 x}$$
 k) $f(x) = \frac{\sqrt{1 - x^2}}{\ln(\tan x)}$

$$f(x) = \frac{\sqrt{1 - x^2}}{\ln(\tan x)}$$

l)
$$f(x) = \operatorname{arsinh}(e^x)$$

Tipp zu (j): Vereinfachen Sie zuerst den Nenner.

Aufgabe 10.3

Zeigen Sie mit Hilfe des Mittelwertsatzes, dass folgende Ungleichungen für alle $x, y \in \mathbb{R}$ richtig sind.

a)
$$|\sin x - \sin y| \le |x - y|$$

b)
$$|\cos x - \cos y| \le |x - y|$$

Aufgabe 10.4

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei durch $f(x) = x^3 + x$ gegeben.

- a) Zeigen Sie, dass f streng monoton wachsend ist. Welche Bildmenge hat f?
- b) Nach (a) ist f invertierbar. Berechnen Sie $(f^{-1})'(2)$.

Aufgabe 10.5

Berechnen Sie die folgenden Grenzwerte.

a)
$$\lim_{x \to 0} \frac{1 - \cosh x}{1 - \cos x}$$

b)
$$\lim_{x\to 0} \frac{\arctan(\ln(1+x))}{x^2-1}$$
 c) $\lim_{x\to 1} \frac{\arctan(\ln x)}{x^2-1}$.

c)
$$\lim_{x \to 1} \frac{\arctan(\ln x)}{x^2 - 1}.$$

Aufgabe 10.6

Führen Sie eine Kurvendiskussion für die Funktionen

a)
$$f(x) = 3x^4 + 4x^3 - 12x^2$$

b)
$$f(x) = x^2 e^{-2x}$$

c)
$$f(x) = \ln(1+x^2) - 1$$

durch. Dazu sind jeweils folgende Punkte zu bearbeiten:

- \bullet Definitions- und Wertebereich von f
- Symmetrieeigenschaften (gerade/ungerade)?
- \bullet Nullstellen, Extrema und Wendepunkte von f
- Verhalten von f für $x \to \pm \infty$
- Skizze des Funktionsgraphen

Aufgabe 10.7 *

Bei einer chemischen Reaktion $A \to B$ erster Ordnung erfüllt die Konzentration $c_A(t)$ des Stoffes A die Gleichung

$$c_A'(t) = -kc_A(t)$$

mit einer Reaktionsgeschwindigkeitskonstanten k>0. Zu Beginn der Reaktion (d.h. für t=0) habe A die Anfangskonzentration $c_A(0)=c_A^0$.

Wie groß ist die Konzentration von A zur Zeit t>0? Nach welcher Zeit ist die Konzentration von A auf die Hälfte abgesunken?