HMS symmetries (and their decategorification) for toric boundary divisors

Michel Van den Bergh (joint with Špela Špenko)

Paderborn, December 2, 2023

イロト 不得 トイヨト イヨト

1/41

Plan

- The lecture is centered around the idea of actions of fundamental groups on derived categories.
- Most of the lecture will be a survey of existing results.
- Towards the end I will mention some new results.

Everything is linear over \mathbb{C} .

Definition

If X is a normal algebraic variety with Gorenstein singularities (i.e. X is Cohen-Macaulay and the dualizing sheaf $\omega_X = (\det \Omega_X)^{**}$ is locally free) then a resolution of singularities $\pi : Y \to X$ is said to crepant if $\pi^* \omega_X = \omega_Y$.

Everything is linear over \mathbb{C} .

Definition

If X is a normal algebraic variety with Gorenstein singularities (i.e. X is Cohen-Macaulay and the dualizing sheaf $\omega_X = (\det \Omega_X)^{**}$ is locally free) then a resolution of singularities $\pi : Y \to X$ is said to crepant if $\pi^* \omega_X = \omega_Y$.

 A crepant resolution is a "tight" smooth approximation of an algebraic variety.

Everything is linear over \mathbb{C} .

Definition

If X is a normal algebraic variety with Gorenstein singularities (i.e. X is Cohen-Macaulay and the dualizing sheaf $\omega_X = (\det \Omega_X)^{**}$ is locally free) then a resolution of singularities $\pi : Y \to X$ is said to crepant if $\pi^* \omega_X = \omega_Y$.

- A crepant resolution is a "tight" smooth approximation of an algebraic variety.
- It need not exist.

Everything is linear over \mathbb{C} .

Definition

If X is a normal algebraic variety with Gorenstein singularities (i.e. X is Cohen-Macaulay and the dualizing sheaf $\omega_X = (\det \Omega_X)^{**}$ is locally free) then a resolution of singularities $\pi : Y \to X$ is said to crepant if $\pi^* \omega_X = \omega_Y$.

- A crepant resolution is a "tight" smooth approximation of an algebraic variety.
- It need not exist.
- If it exists then it is generally not unique.

Example

The conifold, i.e. the quadratic singularity xy - zw = 0 has two distinct crepant resolutions given by blowing up (x, z) and (x, w). This is the so-called "Atiyah flop".

Example

The conifold, i.e. the quadratic singularity xy - zw = 0 has two distinct crepant resolutions given by blowing up (x, z) and (x, w). This is the so-called "Atiyah flop".

Example

The three-dimensional hypersurface singularity

$$x^2 + y^2 + z^2 + w^n = 0 \qquad (n \ge 2)$$

has a crepant resolution if and only if n is even.

Nonetheless different crepant resolutions appear to be strongly related.

The Bondal-Orlov, Kawamata conjecture

Theorem (Kontsevich, Batyrev)

The Hodge numbers of Y for a crepant resolution $Y \to X$ are independent of Y.

The Bondal-Orlov, Kawamata conjecture

Theorem (Kontsevich, Batyrev)

The Hodge numbers of Y for a crepant resolution $Y \to X$ are independent of Y.

Bondal-Orlov and independently Kawamata conjectured a categorification of this result. Write $\mathcal{D}(Y) := D^b(\operatorname{coh}(Y))$.

Conjecture (Bondal-Orlov, Kawamata)

Assume $Y_i \to X$ for i = 1, 2 are two crepant resolutions of X. Then there is an equivalence of triangulated categories $\mathcal{D}(Y_1) \cong \mathcal{D}(Y_2)$ (linear over X).

Despite overwhelming evidence, this conjecture is still wide open!

The Bondal-Orlov, Kawamata conjecture II

• The conjecture makes no statement about the nature of the equivalence $\mathcal{D}(Y_1) \cong \mathcal{D}(Y_2)$.

The Bondal-Orlov, Kawamata conjecture II

- The conjecture makes no statement about the nature of the equivalence $\mathcal{D}(Y_1) \cong \mathcal{D}(Y_2)$.
- In the case of the Atiyah flop (connecting the two crepant resolutions of the conifold) one possible equivalence is given by the Fourier-Mukai functor for the "fiber product kernel" \$\mathcal{O}_{Y_1 \times_X Y_2}\$ but this is far from the only possibility.

The Bondal-Orlov, Kawamata conjecture II

- The conjecture makes no statement about the nature of the equivalence $\mathcal{D}(Y_1) \cong \mathcal{D}(Y_2)$.
- In the case of the Atiyah flop (connecting the two crepant resolutions of the conifold) one possible equivalence is given by the Fourier-Mukai functor for the "fiber product kernel" \$\mathcal{O}_{Y_1 \times_X Y_2}\$ but this is far from the only possibility.
- The fiber product kernel does not always work.

Example (Cautis)

The cotangent bundles $T^*\operatorname{Gr}(d,n)$ and $T^*\operatorname{Gr}(n-d,n)$, for complementary Grassmannians with $d \leq n/2$ are crepant resolutions of $\{X \in M_n(k) \mid X^2 = 0, \operatorname{rk} X \leq d\}$. There is an equivalence $\mathcal{D}(T^*\operatorname{Gr}(d,n)) \to \mathcal{D}(T^*\operatorname{Gr}(n-d,n))$ but it is not given by the fiber product kernel.

The Bondal-Orlov, Kawamata conjecture III

Known cases:

- Dimension 3 (Bridgeland).
- Toric varieties (Kawamata).
- Symplectic singularities (Kaledin).
- Many crepant resolutions obtained by variation of GIT (Halpern-Leistner-Sam, Ballard-Favero-Katzarkov).

The stringy Kähler moduli space

It is now understood, thanks to intuition from physics, that the equivalences $\mathcal{D}(Y_1) \cong \mathcal{D}(Y_2)$ should be canonically associated to paths connecting two points in a topological space called the "stringy Kähler moduli space" (SKMS).

The stringy Kähler moduli space

- It is now understood, thanks to intuition from physics, that the equivalences $\mathcal{D}(Y_1) \cong \mathcal{D}(Y_2)$ should be canonically associated to paths connecting two points in a topological space called the "stringy Kähler moduli space" (SKMS).
- In the case of the conifold the SKMS is given by $\mathbb{P}^1 \{0, 1, \infty\}$.

• Recall: the conifold is the singular algebraic variety xy - zw = 0.

- Recall: the conifold is the singular algebraic variety xy zw = 0.
- To understand the conifold it is convenient to write it as a quotient singularity.
- Assume that $T = \mathbb{C}^*$ acts on $Z = \mathbb{C}^4$ with weights (1, 1, -1, -1). I.e. via $t \cdot (x_1, x_2, x_3, x_4) = (tx_1, tx_2, t^{-1}x_3, t^{-1}x_4)$.

- Recall: the conifold is the singular algebraic variety xy zw = 0.
- To understand the conifold it is convenient to write it as a quotient singularity.
- Assume that $T = \mathbb{C}^*$ acts on $Z = \mathbb{C}^4$ with weights (1, 1, -1, -1). I.e. via $t \cdot (x_1, x_2, x_3, x_4) = (tx_1, tx_2, t^{-1}x_3, t^{-1}x_4)$.
- Then $Z/\!\!/T = \{(u, v, w, x) \in \mathbb{C}^4 \mid ux = vw\}$ with $u = x_1x_3$, $v = x_1x_4$, $w = x_2x_3$, $x = x_2x_4$. Thus $Z/\!\!/T$ is the conifold!

- Recall: the conifold is the singular algebraic variety xy zw = 0.
- To understand the conifold it is convenient to write it as a quotient singularity.
- Assume that $T = \mathbb{C}^*$ acts on $Z = \mathbb{C}^4$ with weights (1, 1, -1, -1). I.e. via $t \cdot (x_1, x_2, x_3, x_4) = (tx_1, tx_2, t^{-1}x_3, t^{-1}x_4)$.
- Then $Z/\!\!/T = \{(u, v, w, x) \in \mathbb{C}^4 \mid ux = vw\}$ with $u = x_1x_3$, $v = x_1x_4$, $w = x_2x_3$, $x = x_2x_4$. Thus $Z/\!\!/T$ is the conifold!
- The two crepant resolutions are given by $Z^{ss,\pm}/T \rightarrow Z/\!\!/T$ with $Z^{ss,\pm} = Z - N^{\pm}$, $N^+ = \{x_1 = 0, x_2 = 0\}$, $N^- = \{x_3 = 0, x_4 = 0\}$.

Windows (Donovan-Segal, Halpern-Leistner)

■ For a reductive group G acting on an algebraic variety we may consider the quotient stack [Z/G]. We have

 $\operatorname{coh}([Z/G]) := \operatorname{coh}_G(Z)$

where the righthand side denotes objects in $\operatorname{coh}(Z)$ equipped with a G-action.

Windows (Donovan-Segal, Halpern-Leistner)

For a reductive group G acting on an algebraic variety we may consider the quotient stack [Z/G]. We have

$$\operatorname{coh}([Z/G]) := \operatorname{coh}_G(Z)$$

where the righthand side denotes objects in $\operatorname{coh}(Z)$ equipped with a G-action.

■ For a representation U of G we define the corresponding window category $\mathcal{W}(U)$ as the thick subcategory of $\mathcal{D}([Z/G])$ generated by $U \otimes \mathcal{O}_Z \in \operatorname{coh}_G(Z)$.

Windows (Donovan-Segal, Halpern-Leistner)

For a reductive group G acting on an algebraic variety we may consider the quotient stack [Z/G]. We have

$$\operatorname{coh}([Z/G]) := \operatorname{coh}_G(Z)$$

where the righthand side denotes objects in $\operatorname{coh}(Z)$ equipped with a G-action.

- For a representation U of G we define the corresponding window category $\mathcal{W}(U)$ as the thick subcategory of $\mathcal{D}([Z/G])$ generated by $U \otimes \mathcal{O}_Z \in \operatorname{coh}_G(Z)$.
- Note: if Z is affine then $\mathcal{W}(U) \cong \mathcal{D}(\Lambda(U))$ where $\Lambda(U) := \operatorname{End}_Z (U \otimes \mathcal{O}_Z)^G$. This is a non-commutative ring.

In the conifold example let $L = \mathbb{C}$ be the tautological representation of \mathbb{C}^* and put $L_n = L^{\otimes n}$.

- In the conifold example let $L = \mathbb{C}$ be the tautological representation of \mathbb{C}^* and put $L_n = L^{\otimes n}$.
- It turns out that the composition

 $\mathcal{W}(L_n \oplus L_{n+1}) \hookrightarrow \mathcal{D}([Z/T]) \xrightarrow{\text{restriction}} \mathcal{D}([Z^{ss,\pm}/T]) = \mathcal{D}(Z^{ss,\pm}/T)$

yields equivalences of categories

$$\mathcal{W}(L_n \oplus L_{n+1}) \cong \mathcal{D}(Z^{ss,\pm}/T)$$

- In the conifold example let $L = \mathbb{C}$ be the tautological representation of \mathbb{C}^* and put $L_n = L^{\otimes n}$.
- It turns out that the composition

 $\mathcal{W}(L_n \oplus L_{n+1}) \hookrightarrow \mathcal{D}([Z/T]) \xrightarrow{\text{restriction}} \mathcal{D}([Z^{ss,\pm}/T]) = \mathcal{D}(Z^{ss,\pm}/T)$

yields equivalences of categories

$$\mathcal{W}(L_n \oplus L_{n+1}) \cong \mathcal{D}(Z^{ss,\pm}/T)$$

• Moreover $\mathcal{D}([Z/T])$ we have equivalences

$$L_1 \otimes -: \mathcal{W}(L_n \oplus L_{n+1}) \to \mathcal{W}(L_{n+1} \oplus L_{n+2}).$$

- In the conifold example let $L = \mathbb{C}$ be the tautological representation of \mathbb{C}^* and put $L_n = L^{\otimes n}$.
- It turns out that the composition

 $\mathcal{W}(L_n \oplus L_{n+1}) \hookrightarrow \mathcal{D}([Z/T]) \xrightarrow{\text{restriction}} \mathcal{D}([Z^{ss,\pm}/T]) = \mathcal{D}(Z^{ss,\pm}/T)$

yields equivalences of categories

$$\mathcal{W}(L_n \oplus L_{n+1}) \cong \mathcal{D}(Z^{ss,\pm}/T)$$

• Moreover $\mathcal{D}([Z/T])$ we have equivalences

 $L_1 \otimes -: \mathcal{W}(L_n \oplus L_{n+1}) \to \mathcal{W}(L_{n+1} \oplus L_{n+2}).$

By composing these equivalences and their inverses we get many autoequivalences of D(Z^{ss,±}/T) (the crepant resolutions of the conifold)!

- In the conifold example let $L = \mathbb{C}$ be the tautological representation of \mathbb{C}^* and put $L_n = L^{\otimes n}$.
- It turns out that the composition

 $\mathcal{W}(L_n \oplus L_{n+1}) \hookrightarrow \mathcal{D}([Z/T]) \xrightarrow{\text{restriction}} \mathcal{D}([Z^{ss,\pm}/T]) = \mathcal{D}(Z^{ss,\pm}/T)$

yields equivalences of categories

$$\mathcal{W}(L_n \oplus L_{n+1}) \cong \mathcal{D}(Z^{ss,\pm}/T)$$

• Moreover $\mathcal{D}([Z/T])$ we have equivalences

 $L_1 \otimes -: \mathcal{W}(L_n \oplus L_{n+1}) \to \mathcal{W}(L_{n+1} \oplus L_{n+2}).$

- By composing these equivalences and their inverses we get many autoequivalences of D(Z^{ss,±}/T) (the crepant resolutions of the conifold)!
- We can organize these in a Z-equivariant local system of triangulated categories.

Let M be a (connected) topological space. A local system on M is a locally constant sheaf of finite dimensional vector spaces on M.

- Let M be a (connected) topological space. A local system on M is a locally constant sheaf of finite dimensional vector spaces on M.
- Example: solution spaces of linear differential equations.

- Let M be a (connected) topological space. A local system on M is a locally constant sheaf of finite dimensional vector spaces on M.
- Example: solution spaces of linear differential equations.
- Let $x \in M$. Then $L \mapsto L_x$ defines an equivalence of categories

{local systems on M} \cong {representations of $\pi_1(M, x)$ }.

- Let M be a (connected) topological space. A local system on M is a locally constant sheaf of finite dimensional vector spaces on M.
- Example: solution spaces of linear differential equations.
- Let $x \in M$. Then $L \mapsto L_x$ defines an equivalence of categories

{local systems on M} \cong {representations of $\pi_1(M, x)$ }.

• One may also specify a local system L by specifying $L(U_i)$ for an open cover $\cup_i U_i = M$ with U_i simply connected, together with gluing data.

Local systems of categories

Put $\mathcal{W}_n = \mathcal{W}(L_n \oplus L_{n+1})$. We obtain a \mathbb{Z} -equivariant local system of triangulated categories on $\mathbb{C} - \mathbb{Z}$.

Local systems of categories

Put $\mathcal{W}_n = \mathcal{W}(L_n \oplus L_{n+1})$. We obtain a \mathbb{Z} -equivariant local system of triangulated categories on $\mathbb{C} - \mathbb{Z}$.

Local systems of categories

Put $\mathcal{W}_n = \mathcal{W}(L_n \oplus L_{n+1})$. We obtain a \mathbb{Z} -equivariant local system of triangulated categories on $\mathbb{C} - \mathbb{Z}$.

- Choosing a base point in the blue area we get an action of $\pi_1(\mathbb{C} \mathbb{Z})$ on $\mathcal{D}(Z^{ss,+}/T)$.
- Using the \mathbb{Z} -action we get a $\pi_1((\mathbb{C}-\mathbb{Z})/\mathbb{Z})$ -action is the set of $\pi_1(\mathbb{C}-\mathbb{Z})/\mathbb{Z}$

Local systems of categories II

There is a homeomorphism of topological spaces

$$(\mathbb{C} - \mathbb{Z})/\mathbb{Z} \cong \mathbb{P}^1(\mathbb{C}) - \{0, 1, \infty\} : \bar{z} \mapsto e^{2\pi i z}.$$

Note that $\mathbb{P}^1(\mathbb{C})-\{0,1,\infty\}$ is a sphere minus three points!

- Near the poles we have "commutative resolutions" D(Z^{ss,+}/T).
- Near the equator we have a "noncommutative resolution" such as $\mathcal{W}_0 \cong \mathcal{D}(\Lambda(L_0 \oplus L_1)).$
- The Z-action corresponds to loops around the poles.
The standard pattern

■ The SKMS (C – Z)/Z of the conifold is a special case of a common (but not universal) pattern.

The standard pattern

- The SKMS (C Z)/Z of the conifold is a special case of a common (but not universal) pattern.
- It is of the form (Cⁿ − H_C)/L where H_C is the complexification of a real affine hyperplane arrangement H and L is a real lattice leaving H invariant (in the conifold case we have n = 1, H = Z, L = Z).

The standard pattern II

■ The commutative crepant resolutions are given by the connected components of *i*ℝⁿ − *i*ℋ_c where ℋ_c is the central hyperplane arrangement corresponding to ℋ.

The standard pattern II

- The commutative crepant resolutions are given by the connected components of *i*ℝⁿ − *i*ℋ_c where ℋ_c is the central hyperplane arrangement corresponding to ℋ.
- The noncommutative (crepant) resolutions are given by the connected components of (ℝⁿ − ℋ)/L.

A D N A B N A B N A B N

A four-dimensional example

Consider $(\mathbb{C}^*)^2$ acting on \mathbb{C}^6 with weights (0,1), (1,1), (1,0), (0,-1), (-1,-1), (-1,0).

Quotient

$$V(uvw - pq) \subset \mathbb{C}^5$$

Hyperplane arrangement

Resolutions which are partially commutative and partially non-commutative also appear in this setting.

Slodowy slices (Anno, Bezrukavnikov, Mirkovič).

- Slodowy slices (Anno, Bezrukavnikov, Mirkovič).
- Symplectic resolutions of symplectic singularities (ongoing project of Bezrukavnikov and Okounkov).

- Slodowy slices (Anno, Bezrukavnikov, Mirkovič).
- Symplectic resolutions of symplectic singularities (ongoing project of Bezrukavnikov and Okounkov).
- Crepant resolutions of threedimensional terminal Gorenstein singularities (lyama-Wemyss).

- Slodowy slices (Anno, Bezrukavnikov, Mirkovič).
- Symplectic resolutions of symplectic singularities (ongoing project of Bezrukavnikov and Okounkov).
- Crepant resolutions of threedimensional terminal Gorenstein singularities (lyama-Wemyss).
- GIT quotients of "quasi-symmetric" representations (Špenko-VdB, Halpern-Leistner-Sam). Note: a G-representation W is said to be symmetric if W ≅ W*.
 "Quasi-symmetry" is a weaker version of this (see below).

- Slodowy slices (Anno, Bezrukavnikov, Mirkovič).
- Symplectic resolutions of symplectic singularities (ongoing project of Bezrukavnikov and Okounkov).
- Crepant resolutions of threedimensional terminal Gorenstein singularities (lyama-Wemyss).
- GIT quotients of "quasi-symmetric" representations (Špenko-VdB, Halpern-Leistner-Sam). Note: a G-representation W is said to be symmetric if W ≅ W*.
 "Quasi-symmetry" is a weaker version of this (see below).
- Non-quasi-symmetric representations do not satisfy the pattern.

Decategorification

If \mathcal{D} is a local system of categories on a topological space M then $U \mapsto K_0(\mathcal{D}(U))_{\mathbb{C}}$ defines a local system of vector spaces which we call the decategorification of \mathcal{D} . It is often given by the solutions of an interesting differential equation.

Decategorification

If \mathcal{D} is a local system of categories on a topological space M then $U \mapsto K_0(\mathcal{D}(U))_{\mathbb{C}}$ defines a local system of vector spaces which we call the decategorification of \mathcal{D} . It is often given by the solutions of an interesting differential equation.

Example

For $a,b,c\in\mathbb{C}$ the hypergeometric equation is

$$z(1-z)\frac{d^2f}{dz^2} + (c - (a+b+1)z)\frac{df}{dz} - abf = 0$$

Decategorification

If \mathcal{D} is a local system of categories on a topological space M then $U \mapsto K_0(\mathcal{D}(U))_{\mathbb{C}}$ defines a local system of vector spaces which we call the decategorification of \mathcal{D} . It is often given by the solutions of an interesting differential equation.

Example

For $a,b,c\in\mathbb{C}$ the hypergeometric equation is

$$z(1-z)\frac{d^2f}{dz^2} + (c - (a+b+1)z)\frac{df}{dz} - abf = 0$$

Fact

The local system corresponding to the conifold is the rank two local system given by the solutions of the hypergeometric equation for a = b = c = 0.

It may be a bit disappointing that we only get solutions for the case a = b = c = 0. This can be repaired by considering equivariant derived categories!

- It may be a bit disappointing that we only get solutions for the case a = b = c = 0. This can be repaired by considering equivariant derived categories!
- For a reductive group G acting on an algebraic variety Z we have an action of or $\operatorname{rep}(G)$ on $\mathcal{D}([Z/G])$ by tensoring: $(W, \mathcal{F}) \mapsto W \otimes_{\mathbb{C}} \mathcal{F}$. Hence $K_0(\mathcal{D}([Z/G]))$ is an $R(G) := K_0(\operatorname{rep}(G))$ -module.

- It may be a bit disappointing that we only get solutions for the case a = b = c = 0. This can be repaired by considering equivariant derived categories!
- For a reductive group G acting on an algebraic variety Z we have an action of or $\operatorname{rep}(G)$ on $\mathcal{D}([Z/G])$ by tensoring: $(W, \mathcal{F}) \mapsto W \otimes_{\mathbb{C}} \mathcal{F}$. Hence $K_0(\mathcal{D}([Z/G]))$ is an $R(G) := K_0(\operatorname{rep}(G))$ -module.
- The conifold is given by $\mathbb{C}^4/\!\!/T$ where $T = \mathbb{C}^*$ acts as (1, 1, -1, -1). We can view it as a singular toric variety for $H := (\mathbb{C}^*)^4/T \cong (\mathbb{C}^*)^3$. Note $R(H) = \mathbb{Z}[p^{\pm 1}, q^{\pm 1}, r^{\pm 1}]$.

- It may be a bit disappointing that we only get solutions for the case a = b = c = 0. This can be repaired by considering equivariant derived categories!
- For a reductive group G acting on an algebraic variety Z we have an action of or $\operatorname{rep}(G)$ on $\mathcal{D}([Z/G])$ by tensoring: $(W, \mathcal{F}) \mapsto W \otimes_{\mathbb{C}} \mathcal{F}$. Hence $K_0(\mathcal{D}([Z/G]))$ is an $R(G) := K_0(\operatorname{rep}(G))$ -module.
- The conifold is given by $\mathbb{C}^4/\!\!/T$ where $T = \mathbb{C}^*$ acts as (1, 1, -1, -1). We can view it as a singular toric variety for $H := (\mathbb{C}^*)^4/T \cong (\mathbb{C}^*)^3$. Note $R(H) = \mathbb{Z}[p^{\pm 1}, q^{\pm 1}, r^{\pm 1}]$.
- By using H-equivariant derived categories in the construction of the local system of triangulated categories on $(\mathbb{C} \mathbb{Z})/\mathbb{Z} \cong \mathbb{P}^1 \{0, 1, \infty\}$ we get, after decategorification, a local system of modules of rank two over R(H). Specializing we get indeed a local system depending on 3 parameters!

Gorenstein affine toric varieties

• Let $P \subset \mathbb{R}^{k-1} \times \{1\}$ be a lattice polygon (for the lattice $\mathbb{Z}^{k-1} \times \{1\} \subset \mathbb{R}^{k-1} \times \{1\}$) and let σ be the cone over P. Then $X_P := \operatorname{Spec} \mathbb{C}[\sigma^{\vee} \cap \mathbb{Z}^k]$ for

$$\sigma^{\vee} = \{ x \in \mathbb{R}^k \mid \forall y \in \mathbb{R}^k : \langle x, y \rangle \ge 0 \}.$$

is the Gorenstein affine toric variety associated to P. It is a (singular) affine Gorenstein variety.

Gorenstein affine toric varieties

• Let $P \subset \mathbb{R}^{k-1} \times \{1\}$ be a lattice polygon (for the lattice $\mathbb{Z}^{k-1} \times \{1\} \subset \mathbb{R}^{k-1} \times \{1\}$) and let σ be the cone over P. Then $X_P := \operatorname{Spec} \mathbb{C}[\sigma^{\vee} \cap \mathbb{Z}^k]$ for

$$\sigma^{\vee} = \{ x \in \mathbb{R}^k \mid \forall y \in \mathbb{R}^k : \langle x, y \rangle \ge 0 \}.$$

is the Gorenstein affine toric variety associated to P. It is a (singular) affine Gorenstein variety.

Example

If $P \subset \mathbb{R}^2 \times \{1\}$ is the square with corners $\{(0,0,1), (0,1,1), (1,1,1), (1,0,1)\}$ then X_P is the conifold.

Gorenstein affine toric varieties II

Another way to construct Gorenstein affine toric varieties is as GIT quotients $\mathbb{C}^d/\!\!/T$ where $T \cong (\mathbb{C}^*)^l$ acts linearly on \mathbb{C}^d with weights $\beta_1, \ldots, \beta_d \in X(T) := \operatorname{Hom}(T, \mathbb{C}^*)$ such that $\sum_i \beta_i = 0.$

Gorenstein affine toric varieties II

- Another way to construct Gorenstein affine toric varieties is as GIT quotients $\mathbb{C}^d /\!\!/ T$ where $T \cong (\mathbb{C}^*)^l$ acts linearly on \mathbb{C}^d with weights $\beta_1, \ldots, \beta_d \in X(T) := \operatorname{Hom}(T, \mathbb{C}^*)$ such that $\sum_i \beta_i = 0.$
- We say that the weights are quasi-symmetric is $\sum_{\beta_i \in \ell} \beta_i = 0$ for every line $\ell \subset X(T)_{\mathbb{R}}$ through the origin.

Fact: the crepant resolutions of X_P (by Deligne-Mumford stacks) correspond to lattice triangulations of P. If Σ is the fanassociated to a lattice triangulation, i.e. the collection of cones spanned by the triangles then the resolution is the corresponding toric stack X_{Σ} .

The two crepant resolutions of the conifold

Gorenstein affine toric varieties IV

 The projective crepant resolutions are given by so-called "regular triangulations" (linear loci of piecewise linear convex functions)

Gorenstein affine toric varieties V

The two triangulations of the square are regular

Gorenstein affine toric varieties VI

■ Fact: the regular triangulations (= projective crepant resolutions) with vertices in a fixed A ⊂ P ∩ Z^k with conv(A) = P correspond to the maximal cones in the so-called "secondary fan" (Gelfand-Kapranov-Zelevinsky). In general the secondary fan does not correspond to the complement of a hyperplane arrangement.

Examples of secondary fans

We assume T = (ℂ^{*})² so that X(T) ≅ ℤ². In that case the secondary fan can be deduced from the weights (β_i)_i.

27/41

Examples of secondary fans

We assume T = (ℂ^{*})² so that X(T) ≅ ℤ². In that case the secondary fan can be deduced from the weights (β_i)_i.

• Let $A \subset P \cap \mathbb{Z}^k$ be such that $\operatorname{conv}(A) = P$.

• Let $A \subset P \cap \mathbb{Z}^k$ be such that $\operatorname{conv}(A) = P$.

• For F a face of P (e.g. F = P) let $\nabla_F \subset \mathbb{C}^{F \cap A}$ be the set of $(\alpha_a)_a \in \mathbb{C}^{F \cap A}$ such that the variety

$$\{x \in (\mathbb{C}^*)^k \mid \sum_{a \in F \cap A} \alpha_a x^a = 0\}$$

is singular.

• Let $A \subset P \cap \mathbb{Z}^k$ be such that $\operatorname{conv}(A) = P$.

For F a face of P (e.g. F = P) let $\nabla_F \subset \mathbb{C}^{F \cap A}$ be the set of $(\alpha_a)_a \in \mathbb{C}^{F \cap A}$ such that the variety

$$\{x \in (\mathbb{C}^*)^k \mid \sum_{a \in F \cap A} \alpha_a x^a = 0\}$$

is singular.

• Set $V(A) := \bigcup_F p_F^{-1}(\nabla_F)$, where $p_F : \mathbb{C}^A \to \mathbb{C}^{F \cap A}$ is the projection.

• Let $A \subset P \cap \mathbb{Z}^k$ be such that $\operatorname{conv}(A) = P$.

For F a face of P (e.g. F = P) let $\nabla_F \subset \mathbb{C}^{F \cap A}$ be the set of $(\alpha_a)_a \in \mathbb{C}^{F \cap A}$ such that the variety

$$\{x \in (\mathbb{C}^*)^k \mid \sum_{a \in F \cap A} \alpha_a x^a = 0\}$$

is singular.

- Set $V(A) := \bigcup_F p_F^{-1}(\nabla_F)$, where $p_F : \mathbb{C}^A \to \mathbb{C}^{F \cap A}$ is the projection.
- We let $(\mathbb{C}^*)^k$ act on \mathbb{C}^A with weights given by the elements of *A*. *V*(*A*) is invariant under this action. We set

$$\mathcal{K}_A := [(\mathbb{C}^A \setminus V(A))/(\mathbb{C}^*)^k].$$

This is a Deligne-Mumford stack.

The SKMS for the conifold

In the conifold case the elements of A are the columns of

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Consider the case F = P. The Laurent polynomial

$$az + bxz + cyz + dxyz$$

is singular when

$$bz + dyz = 0$$
$$cz + dxz = 0$$
$$a + bx + cy + dxy = 0$$

which has a solution in $(\mathbb{C}^*)^3$ if and only if $ad - bc \neq 0$.

The SKMS of the conifold

Taking the other faces of P = conv(A) (a square) into account one gets that the SKMS of the conifold is

$$((\mathbb{C}^*)^4 - V(ad - bc))/(\mathbb{C}^*)^3$$

where the group action is given by

 $(u, v, w) \cdot (a, b, c, d) = (wa, uwb, vwd, uvwd)$

The SKMS of the conifold

Taking the other faces of P = conv(A) (a square) into account one gets that the SKMS of the conifold is

$$((\mathbb{C}^*)^4 - V(ad - bc))/(\mathbb{C}^*)^3$$

where the group action is given by

 $(u,v,w)\cdot(a,b,c,d)=(wa,uwb,vwd,uvwd)$

Sending (a, b, c, d) to ad/bc defines an isomorphism $(\mathbb{C}^*)^4/(\mathbb{C}^*)^3 \cong \mathbb{C}^*$. It identifies the SKMS with

$$\mathbb{C}^* - \{1\} = \mathbb{P}^1 - \{0, 1, \infty\}$$

(like before).

Theorem (Kite)

Assume that that X_P is given by a quasi-symmetric GIT quotient $\mathbb{C}^d/\!\!/T$. Then \mathcal{K}_A is of the form $(X(T)_{\mathbb{C}} - \mathcal{H}_{\mathbb{C}})/X(T)$ where $\mathcal{H}_{\mathbb{C}}$ is the complexification of real affine hyperplane arrangement \mathcal{H} in $X(T)_{\mathbb{R}}$.

Standard pattern!!

Conjecture (SKMS conjecture)

 $\pi_1(\mathcal{K}_A)$ acts on $\mathcal{D}(Y)$ for any crepant resolution $Y \to X_P$ corresponding to a triangulation of P with vertices in A.
Conjecture (SKMS conjecture)

 $\pi_1(\mathcal{K}_A)$ acts on $\mathcal{D}(Y)$ for any crepant resolution $Y \to X_P$ corresponding to a triangulation of P with vertices in A.

Using earlier work of Halpern-Leistner and Špenko-VdB it follows

Theorem

The SKMS conjecture is true in the quasi-symmetric case.

 The SKMS conjecture has been checked for some non-quasi-symmetric examples by Kite and Segal.

- The SKMS conjecture has been checked for some non-quasi-symmetric examples by Kite and Segal.
- Various "wall-crossing" results "near infinity" are known (Balard-Favero-Katzarkov, Halpern-Leistner, Halpern-Leistner-Shipman, Segal-Kite,...) which are in particular sufficient to prove the Bondal-Orlov-Kawamata conjecture in the toric case.

- The SKMS conjecture has been checked for some non-quasi-symmetric examples by Kite and Segal.
- Various "wall-crossing" results "near infinity" are known (Balard-Favero-Katzarkov, Halpern-Leistner, Halpern-Leistner-Shipman, Segal-Kite,...) which are in particular sufficient to prove the Bondal-Orlov-Kawamata conjecture in the toric case.
- The SKMS is related to the Bridgeland moduli space of stability conditions although they are not the same.

Let A ⊂ P ∩ Z^k with P = conv(A). Put d = |A|. We think of A as a k × d-matrix (i.e. the elements of A correspond to the columns, and the last row of A consists of 1's).

- Let A ⊂ P ∩ Z^k with P = conv(A). Put d = |A|. We think of A as a k × d-matrix (i.e. the elements of A correspond to the columns, and the last row of A consists of 1's).
- Let $(x_i)_{i=1}^d$ be coordinates on \mathbb{C}^d and let $(\partial_i)_{i=1}^d$ be the corresponding vector fields.

- Let A ⊂ P ∩ Z^k with P = conv(A). Put d = |A|. We think of A as a k × d-matrix (i.e. the elements of A correspond to the columns, and the last row of A consists of 1's).
- Let $(x_i)_{i=1}^d$ be coordinates on \mathbb{C}^d and let $(\partial_i)_{i=1}^d$ be the corresponding vector fields.
- For i = 1, ..., k let E_i be the "Euler vector field" $E_i = \sum_{j=1}^d a_{ij} x_j \partial_j.$

- Let A ⊂ P ∩ Z^k with P = conv(A). Put d = |A|. We think of A as a k × d-matrix (i.e. the elements of A correspond to the columns, and the last row of A consists of 1's).
- Let $(x_i)_{i=1}^d$ be coordinates on \mathbb{C}^d and let $(\partial_i)_{i=1}^d$ be the corresponding vector fields.
- For i = 1, ..., k let E_i be the "Euler vector field" $E_i = \sum_{j=1}^d a_{ij} x_j \partial_j.$

• For $l \in \mathbb{Z}^d$ such that Al = 0 write

$$\Box_l = \prod_{l_j > 0} \partial_j^{j_j} - \prod_{l_j < 0} \partial_j^{-l_j}$$

- Let A ⊂ P ∩ Z^k with P = conv(A). Put d = |A|. We think of A as a k × d-matrix (i.e. the elements of A correspond to the columns, and the last row of A consists of 1's).
- Let $(x_i)_{i=1}^d$ be coordinates on \mathbb{C}^d and let $(\partial_i)_{i=1}^d$ be the corresponding vector fields.
- For i = 1, ..., k let E_i be the "Euler vector field" $E_i = \sum_{j=1}^d a_{ij} x_j \partial_j.$
- For $l \in \mathbb{Z}^d$ such that Al = 0 write

$$\Box_l = \prod_{l_j > 0} \partial_j^{j_j} - \prod_{l_j < 0} \partial_j^{-l_j}$$

• The GKZ system is the system of differential equations given by $(E_i - b_i)(f) = 0$ for i = 1, ..., k and $\Box_l(f) = 0$ for all lsuch that Al = 0.

The GKZ system for the conifold

In the conifold case we have

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

and one find that the GKZ system is given by

$$(x_2\partial_2 + x_4\partial_4)f = b_1$$
$$(x_3\partial_3 + x_4\partial_4)f = b_2$$
$$(x_1\partial_1 + x_2\partial_2 + x_3\partial_3 + x_4\partial_4)f = b_3$$
$$(\partial_1\partial_4 - \partial_2\partial_3)f = 0$$

One may show that this is equivalent to the hypergeometric system we have introduced above.

35/41

Decategorification: the GKZ system II

Assuming the SKMS conjecture, we can add:

Conjecture

The $\pi_1(\mathcal{K}_A)$ action after decategorification corresponds to GKZ system for a suitable parameter *b*.

To avoid having to choose a parameter one can work with equivariant derived categories as explained above for the conifold.

Decategorification: the GKZ system II

Assuming the SKMS conjecture, we can add:

Conjecture

The $\pi_1(\mathcal{K}_A)$ action after decategorification corresponds to GKZ system for a suitable parameter *b*.

To avoid having to choose a parameter one can work with equivariant derived categories as explained above for the conifold.

Theorem (Špenko-VdB)

The equivariant version of the conjecture is true in the quasi-symmetric case for generic parameters.

Decategorification: the GKZ system II

Assuming the SKMS conjecture, we can add:

Conjecture

The $\pi_1(\mathcal{K}_A)$ action after decategorification corresponds to GKZ system for a suitable parameter *b*.

To avoid having to choose a parameter one can work with equivariant derived categories as explained above for the conifold.

Theorem (Špenko-VdB)

The equivariant version of the conjecture is true in the quasi-symmetric case for generic parameters.

In the general case "wall-crossing" results "near infinity" are known (Borisov-Horja, Borisov-Han).

The toric boundary

Definition

If X is a smooth toric stack for a torus H then X has a unique dense H-orbit. The complement of this orbit, denoted by ∂X , is called the the toric boundary. It is a normal crossing divisor.

The toric boundary

Definition

If X is a smooth toric stack for a torus H then X has a unique dense H-orbit. The complement of this orbit, denoted by ∂X , is called the the toric boundary. It is a normal crossing divisor.

It turns out that a version of the SKMS conjecture holds for the toric boundary!

Theorem (Špenko-VdB)

 $\pi_1(\mathcal{K}_A)$ acts on $\mathcal{D}(\partial Y)$ for any crepant resolution $Y \to X_P$ corresponding to a triangulation of P with vertices in $A \subset P \cap \mathbb{Z}^k$ (with conv(A) = P).

The toric boundary II

We can also describe the decategorification for this action.

Theorem (Špenko-VdB)

Let *L* be the local system which is the decategorification of the $\pi(\mathcal{K}_A)$ -action on $D^b(\operatorname{coh}(\partial Y))$. Then we have an exact sequence of local systems

$$0 \to \underline{\mathbb{C}}^k \to L \to G \to \underline{\mathbb{C}} \to 0$$

where the first and the last local system are constant and where G is a GKZ system for suitable parameters.

In other words: up to constant local system the decategorification is given by a GKZ system!

Idea of proof: homological mirror symmetry

Let $f_{\alpha}(x)$ be the function on $(\mathbb{C}^*)^k$ given by $f_{\alpha}(x) = \sum_{a \in A} \alpha_a x^a$. Let $r \in \mathbb{C}$ be generic and put $F_{\alpha} := f_{\alpha}^{-1}(r)$. Note that $(\mathbb{C}^*)^k$ is a symplectic manifold with symplectic form $\sum_i dx_i \overline{dx_i} / (x_i \overline{x_i})$. One shows that F_{α} is a symplectic submanifold (a Liouville manifold to be more precise)

Idea of proof: homological mirror symmetry

Let $f_{\alpha}(x)$ be the function on $(\mathbb{C}^*)^k$ given by $f_{\alpha}(x) = \sum_{a \in A} \alpha_a x^a$. Let $r \in \mathbb{C}$ be generic and put $F_{\alpha} := f_{\alpha}^{-1}(r)$. Note that $(\mathbb{C}^*)^k$ is a symplectic manifold with symplectic form $\sum_i dx_i \overline{dx_i}/(x_i \overline{x}_i)$. One shows that F_{α} is a symplectic submanifold (a Liouville manifold to be more precise)

Theorem (Gammache-Shende, Zhou)

We have $\mathcal{D}(\partial Y) \cong DFuk(F_{\alpha})$ for a suitable choice of $\alpha \in \mathbb{C}^A$ where $DFuk(F_{\alpha})$ is the thick closure of the (wrapped) Fukaya category of F_{α} .

Idea of proof: homological mirror symmetry

Let $f_{\alpha}(x)$ be the function on $(\mathbb{C}^*)^k$ given by $f_{\alpha}(x) = \sum_{a \in A} \alpha_a x^a$. Let $r \in \mathbb{C}$ be generic and put $F_{\alpha} := f_{\alpha}^{-1}(r)$. Note that $(\mathbb{C}^*)^k$ is a symplectic manifold with symplectic form $\sum_i dx_i \overline{dx_i} / (x_i \overline{x_i})$. One shows that F_{α} is a symplectic submanifold (a Liouville manifold to be more precise)

Theorem (Gammache-Shende, Zhou)

We have $\mathcal{D}(\partial Y) \cong DFuk(F_{\alpha})$ for a suitable choice of $\alpha \in \mathbb{C}^A$ where $DFuk(F_{\alpha})$ is the thick closure of the (wrapped) Fukaya category of F_{α} .

The following result yields the existence of the $\pi_1(\mathcal{K}_A)$ -action.

Theorem (Špenko-VdB)

 $\alpha \to \mathrm{DFuk}(F_{\alpha})$ defines a local system of categories on $\mathbb{C}^A - V(A)$.

The mirror dual of the crepant resolution Y is the Landau-Ginzurg model $((\mathbb{C}^*)^k, f_\alpha)$.

- The mirror dual of the crepant resolution Y is the Landau-Ginzurg model $((\mathbb{C}^*)^k, f_\alpha)$.
- Gammache and Shende show that for suitable $\alpha \in \mathbb{C}^A$ one may give $((\mathbb{C}^*)^k, f_{\alpha}^{-1}(r))$ the structure of a stopped Liouville manifold which may be used to define $\mathrm{DFuk}((\mathbb{C}^*)^k, f_{\alpha})$ by the work of Ganatra-Pardon-Shende.

- The mirror dual of the crepant resolution Y is the Landau-Ginzurg model $((\mathbb{C}^*)^k, f_\alpha)$.
- Gammache and Shende show that for suitable $\alpha \in \mathbb{C}^A$ one may give $((\mathbb{C}^*)^k, f_{\alpha}^{-1}(r))$ the structure of a stopped Liouville manifold which may be used to define $\mathrm{DFuk}((\mathbb{C}^*)^k, f_{\alpha})$ by the work of Ganatra-Pardon-Shende.
- Gammache and Shende show that $\mathcal{D}(Y) \cong DFuk(((\mathbb{C}^*)^k, f_\alpha))$.

- The mirror dual of the crepant resolution Y is the Landau-Ginzurg model $((\mathbb{C}^*)^k, f_\alpha)$.
- Gammache and Shende show that for suitable $\alpha \in \mathbb{C}^A$ one may give $((\mathbb{C}^*)^k, f_{\alpha}^{-1}(r))$ the structure of a stopped Liouville manifold which may be used to define $\mathrm{DFuk}((\mathbb{C}^*)^k, f_{\alpha})$ by the work of Ganatra-Pardon-Shende.
- Gammache and Shende show that $\mathcal{D}(Y) \cong DFuk(((\mathbb{C}^*)^k, f_\alpha))$.
- However it is not known to how to define DFuk((C*)^k, f_α) for every α, in such a way that it defines a local system! This breaks the approach ☺

An alternative approach is to try to manipulate the stopped Liouville manifold $((\mathbb{C}^*)^k, f_{\alpha}^{-1}(r))$ directly by "mutating the stop".

- An alternative approach is to try to manipulate the stopped Liouville manifold $((\mathbb{C}^*)^k, f_{\alpha}^{-1}(r))$ directly by "mutating the stop".
- So far this does not work in general. However it has been carried out by Huang and Zhou in the quasi-symmetric case using similar combinatorics as before.