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m The lecture is centered around the idea of actions of
fundamental groups on derived categories.

m Most of the lecture will be a survey of existing results.

m Towards the end | will mention some new results.
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Crepant resolutions

Everything is linear over C.

Definition
If X is a normal algebraic variety with Gorenstein singularities (i.e.

X is Cohen-Macaulay and the dualizing sheaf wx = (det Qx)** is
locally free) then a resolution of singularities 7 : ¥ — X is said to

crepant if T*wyxy = wy.
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Crepant resolutions

Everything is linear over C.

Definition

If X is a normal algebraic variety with Gorenstein singularities (i.e.
X is Cohen-Macaulay and the dualizing sheaf wx = (det Qx)** is
locally free) then a resolution of singularities 7 : ¥ — X is said to
crepant if T*wyxy = wy.

m A crepant resolution is a “tight” smooth approximation of an
algebraic variety.

m It need not exist.

m If it exists then it is generally not unique.
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Crepant resolutions |l

Example

The conifold, i.e. the quadratic singularity xy — zw = 0 has two
distinct crepant resolutions given by blowing up (z, z) and (z,w).
This is the so-called "Atiyah flop".
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Crepant resolutions |l

Example

The conifold, i.e. the quadratic singularity xy — zw = 0 has two
distinct crepant resolutions given by blowing up (z, z) and (z,w).
This is the so-called "Atiyah flop".

Example

The three-dimensional hypersurface singularity
24y + 224w =0 (n>2)
has a crepant resolution if and only if n is even.

Nonetheless different crepant resolutions appear to be strongly
related.
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The Bondal-Orlov, Kawamata conjecture

Theorem (Kontsevich, Batyrev)

The Hodge numbers of Y for a crepant resolution Y — X are
independent of Y.
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The Bondal-Orlov, Kawamata conjecture

Theorem (Kontsevich, Batyrev)

The Hodge numbers of Y for a crepant resolution Y — X are
independent of Y .

Bondal-Orlov and independently Kawamata conjectured a
categorification of this result. Write D(Y") := D®(coh(Y)).

Conjecture (Bondal-Orlov, Kawamata)

Assume Y; — X fori = 1,2 are two crepant resolutions of X .
Then there is an equivalence of triangulated categories
D(Y1) = D(Ya) (linear over X ).

Despite overwhelming evidence, this conjecture is still wide open!
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The Bondal-Orlov, Kawamata conjecture |l

m The conjecture makes no statement about the nature of the
equivalence D(Y7) = D(Ya).
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m In the case of the Atiyah flop (connecting the two crepant
resolutions of the conifold) one possible equivalence is given
by the Fourier-Mukai functor for the “fiber product kernel”
Oy, x Y, but this is far from the only possibility.
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The Bondal-Orlov, Kawamata conjecture |l

m The conjecture makes no statement about the nature of the
equivalence D(Y7) = D(Ya).

m In the case of the Atiyah flop (connecting the two crepant
resolutions of the conifold) one possible equivalence is given
by the Fourier-Mukai functor for the “fiber product kernel”
Oy, x Y, but this is far from the only possibility.

m The fiber product kernel does not always work.

Example (Cautis)

The cotangent bundles T* Gr(d,n) and T* Gr(n — d, n), for
complementary Grassmannians with d < n/2 are crepant
resolutions of {X € M, (k) | X? =0,rk X < d}. There is an
equivalence D(T™ Gr(d,n)) — D(T™* Gr(n — d,n)) but it is not
given by the fiber product kernel.
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The Bondal-Orlov, Kawamata conjecture Il

Known cases:
m Dimension 3 (Bridgeland).
m Toric varieties (Kawamata).
m Symplectic singularities (Kaledin).
m Many crepant resolutions obtained by variation of GIT
(Halpern-Leistner-Sam, Ballard-Favero-Katzarkov).
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The stringy Kahler moduli space

m It is now understood, thanks to intuition from physics, that
the equivalences D(Y7) = D(Y3) should be canonically
associated to paths connecting two points in a topological
space called the “stringy Kahler moduli space” (SKMS).
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The stringy Kahler moduli space

m It is now understood, thanks to intuition from physics, that
the equivalences D(Y7) = D(Y3) should be canonically
associated to paths connecting two points in a topological
space called the “stringy Kahler moduli space” (SKMS).

m In the case of the conifold the SKMS is given by
P! — {0,1,00}.
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The conifold

m Recall: the conifold is the singular algebraic variety
zy — 2w = 0.
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The conifold

m Recall: the conifold is the singular algebraic variety
zy — 2w = 0.

m To understand the conifold it is convenient to write it as a
quotient singularity.

m Assume that 7= C* acts on Z = C* with weights
(1,1,—1,-1). lLe. via
t- (w1, 22,3, x4) = (tw1, tag, t w3, 0 2g).
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m Assume that 7= C* acts on Z = C* with weights
(1,1,—1,-1). lLe. via
t- (21,2, 23, 24) = (tar, twg, t g, t 7 ay).
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The conifold

m Recall: the conifold is the singular algebraic variety
zy — 2w = 0.
m To understand the conifold it is convenient to write it as a
quotient singularity.
m Assume that 7= C* acts on Z = C* with weights
(1,1,—1,-1). lLe. via
t- (21,2, 23, 24) = (tar, twg, t g, t 7 ay).
m Then Z)T = {(u,v,w,z) € C* | uz = vw} with u = z123,
v =124, W= Tox3, T = x2T4. Thus Z/T is the conifold!
m The two crepant resolutions are given by
Z55% T — Z)T
with 7255 = 7 — N* Nt = {21 = 0,25 = 0},
N~ ={x3=0,24 = 0}.
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Windows (Donovan-Segal, Halpern-Leistner)

m For a reductive group G acting on an algebraic variety we may
consider the quotient stack [Z/G]. We have

coh([Z/G]) := cohg(2)

where the righthand side denotes objects in coh(Z) equipped
with a G-action.
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Windows (Donovan-Segal, Halpern-Leistner)

m For a reductive group G acting on an algebraic variety we may
consider the quotient stack [Z/G]. We have

coh([Z/G]) := cohg(2)

where the righthand side denotes objects in coh(Z) equipped
with a G-action.

m For a representation U of G we define the corresponding
window category W(U) as the thick subcategory of D([Z/G])
generated by U ® Oz € cohg(2).

m Note: if Z is affine then W(U) = D(A(U)) where
A(U) := Endz(U ® Oz)€. This is a non-commutative ring.
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Windows I

m In the conifold example let L = C be the tautological
representation of C* and put L,, = L®".
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Windows I

m In the conifold example let L = C be the tautological
representation of C* and put L,, = L®".
m It turns out that the composition

W(Ln@Ln-H) — D([Z/T]) Estri_ctign% D([ZSS,:t/TD — D(Zss,:lz/T)
yields equivalences of categories
W(Ly, @ Lnt1) = D(Z°*)T)
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m In the conifold example let L = C be the tautological
representation of C* and put L,, = L®".
m It turns out that the composition

W(Ln®Lns1) = D(Z/T]) =252 D([2°% /1)) = D(2°*/T)
yields equivalences of categories
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m Moreover D([Z/T]) we have equivalences
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Windows I

In the conifold example let L = C be the tautological
representation of C* and put L,, = L®".
It turns out that the composition

W(Ln®Lns1) = D(Z/T]) =252 D([2°% /1)) = D(2°*/T)
yields equivalences of categories
W(Lyp @ Lpy1) = D(Zss7i/T)
Moreover D([Z/T]) we have equivalences
Li®— :W(Ly,® Lyy1) = W(Lpt1 @ Lipyo).

By composing these equivalences and their inverses we get
many autoequivalences of D(Z*$* /T') (the crepant
resolutions of the conifold)!

We can organize these in a Z-equivariant local system of

triangulated categories.
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Local systems

m Let M be a (connected) topological space. A local system on
M is a locally constant sheaf of finite dimensional vector
spaces on M.
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Local systems

m Let M be a (connected) topological space. A local system on
M is a locally constant sheaf of finite dimensional vector
spaces on M.

m Example: solution spaces of linear differential equations.

m Letz € M. Then L — L, defines an equivalence of categories
{local systems on M} = {representations of m1 (M, x)}.

m One may also specify a local system L by specifying L(U;) for
an open cover U;U; = M with U; simply connected, together
with gluing data.
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Local systems of categories

Put W, = W(L,, ® Lyp+1). We obtain a Z-equivariant local
system of triangulated categories on C — Z.

D(2*7/T)

~

Zeaction (L1 ® )
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Local systems of categories

Put W, = W(L,, ® Lyp+1). We obtain a Z-equivariant local
system of triangulated categories on C — Z.

D(2*7/T)

\

Zeaction (Lt © ) [ 4
m Choosing a base point in the blue area we get an action of
m(C —Z) on D(Z551)T).
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Local systems of categories

Put W, = W(L,, ® Lyp+1). We obtain a Z-equivariant local
system of triangulated categories on C — Z.

D(2°~/T)

\

Zeaction (Lt © ) [ 4
m Choosing a base point in the blue area we get an action of
m(C —Z) on D(Z551)T).
m Using the Z-action we get a m1((C — Z)/Z)-action.
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Local systems of categories Il

There is a homeomorphism of topological spaces
(C—17)/7. =P (C) —{0,1,00} : Z s 2™,
Note that P}(C) — {0, 1,00} is a sphere minus three points!

oo m Near the poles we have

“commutative resolutions”
D(z5%)T).

m Near the equator we have a
“noncommutative
resolution” such as
Wy = D(A(LO D Ll))

m The Z-action corresponds to
loops around the poles.
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The standard pattern

D(2*/T)

\
[ 4

Zaction (Li & )

m The SKMS (C — Z)/Z of the conifold is a special case of a
common (but not universal) pattern.
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The standard pattern

(2~ T)

\

p—T— Y 4

m The SKMS (C — Z)/Z of the conifold is a special case of a
common (but not universal) pattern.

m It is of the form (C" — H¢)/L where Hc is the
complexification of a real affine hyperplane arrangement H
and L is a real lattice leaving H invariant (in the conifold case
we haven =1, H =127, L =17).
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The standard pattern |l

(2~ T)

\
4
m The commutative crepant resolutions are given by the

connected components of {R"™ — iH,. where H, is the central
hyperplane arrangement corresponding to H.
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The standard pattern |l

(2~ T)

\
[ 4

m The commutative crepant resolutions are given by the
connected components of {R"™ — iH,. where H, is the central
hyperplane arrangement corresponding to H.

m The noncommutative (crepant) resolutions are given by the
connected components of (R” —H)/L.
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A four-dimensional example

Consider (C*)? acting on C°® with L
weights (0,1), (1,1), (1,0), (0,-1), < e 4 e
(71771)1 (7170) e o o
Quotient

V(uwvw — pq) C C?

Hyperplane arrangement

iR2

Resolutions which are partially commutative and partially
non-commutative also appear in this setting. 17/41



Other examples of the pattern

m Slodowy slices (Anno, Bezrukavnikov, Mirkovic).
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Other examples of the pattern

m Slodowy slices (Anno, Bezrukavnikov, Mirkovic).

m Symplectic resolutions of symplectic singularities (ongoing
project of Bezrukavnikov and Okounkov).

m Crepant resolutions of threedimensional terminal Gorenstein
singularities (lyama-Wemyss).

m GIT quotients of “quasi-symmetric” representations
(Spenko-VdB, Halpern-Leistner-Sam). Note: a
G-representation W is said to be symmetric if W = W*.
“Quasi-symmetry” is a weaker version of this (see below).

m Non-quasi-symmetric representations do not satisfy the
pattern.
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Decategorification

If D is a local system of categories on a topological space M then
U+ Ko(D(U))c defines a local system of vector spaces which we
call the decategorification of D. It is often given by the solutions
of an interesting differential equation.
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If D is a local system of categories on a topological space M then
U+ Ko(D(U))c defines a local system of vector spaces which we
call the decategorification of D. It is often given by the solutions
of an interesting differential equation.

Example

For a, b, c € C the hypergeometric equation is

2
z(l—z)%—l—(e—(a—i—b—i—l)z)j—‘i—abf:O
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Decategorification

If D is a local system of categories on a topological space M then
U+ Ko(D(U))c defines a local system of vector spaces which we
call the decategorification of D. It is often given by the solutions
of an interesting differential equation.

Example

For a, b, c € C the hypergeometric equation is

z(1— );‘2 +(c—(a+b+1)z )Z—‘Z—abf:O

Fact

The local system corresponding to the conifold is the rank two
local system given by the solutions of the hypergeometric equation

fora=b=c=0.
19/41



Decategorification (Intermezzo)

m It may be a bit disappointing that we only get solutions for
the case a = b = ¢ = 0. This can be repaired by considering
equivariant derived categories!

20/41



Decategorification (Intermezzo)

m It may be a bit disappointing that we only get solutions for
the case a = b = ¢ = 0. This can be repaired by considering
equivariant derived categories!

m For a reductive group G acting on an algebraic variety Z we
have an action of or rep(G) on D([Z/G]) by tensoring:
(W, F)— W ®c F. Hence Ko(D([Z/G])) is an
R(G) := Ko(rep(G))-module.
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have an action of or rep(G) on D([Z/G]) by tensoring:
(W, F)— W ®c F. Hence Ko(D([Z/G])) is an
R(G) := Ko(rep(G))-module.

m The conifold is given by C* /T where T = C* acts as
(1,1,—1,—1). We can view it as a singular toric variety for
H := (C*)*/T = (C*)%. Note R(H) = Z[p*™!, ¢t r¥l].
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Decategorification (Intermezzo)

m It may be a bit disappointing that we only get solutions for
the case a = b = ¢ = 0. This can be repaired by considering
equivariant derived categories!

For a reductive group G acting on an algebraic variety Z we
have an action of or rep(G) on D([Z/G]) by tensoring:
(W, F)— W ®c F. Hence Ko(D([Z/G])) is an

R(G) := Ko(rep(G))-module.

The conifold is given by C* /T where T = C* acts as
(1,1,—1,—1). We can view it as a singular toric variety for
H := (C*)*/T = (C*)%. Note R(H) = Z[p*™!, ¢t r¥l].

By using H-equivariant derived categories in the construction
of the local system of triangulated categories on

(C—17))Z =P —{0,1,00} we get, after decategorification, a
local system of modules of rank two over R(H). Specializing

we get indeed a local system depending on 3 parameters!
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Gorenstein affine toric varieties

m Let P C R¥! x {1} be a lattice polygon (for the lattice
ZF=1 x {1} ¢ R¥=1 x {1}) and let o be the cone over P.
Then Xp := Spec C[oV N Z¥] for

oV ={z e RF | vy e R¥ : (x,y) > 0}.

is the Gorenstein affine toric variety associated to P. It is a
(singular) affine Gorenstein variety.
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Gorenstein affine toric varieties

m Let P C R¥! x {1} be a lattice polygon (for the lattice
ZF=1 x {1} ¢ R¥=1 x {1}) and let o be the cone over P.
Then Xp := Spec C[oV N Z¥] for

oV ={z e RF | vy e R¥ : (x,y) > 0}.

is the Gorenstein affine toric variety associated to P. It is a
(singular) affine Gorenstein variety.

If P C R? x {1} is the square with corners
{(0,0,1),(0,1,1),(1,1,1),(1,0,1)} then Xp is the conifold.
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Gorenstein affine toric varieties Il

m Another way to construct Gorenstein affine toric varieties is as
GIT quotients C? /T where T = (C*)! acts linearly on C?
with weights (1,...,8; € X(T) := Hom(T, C*) such that
2.iBi=0.
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Gorenstein affine toric varieties Il

m Another way to construct Gorenstein affine toric varieties is as
GIT quotients C? /T where T = (C*)! acts linearly on C?
with weights (1,...,8; € X(T) := Hom(T, C*) such that
> Bi = 0.

m We say that the weights are quasi-symmetric is Z,Bieé Bi=0
for every line ¢ C X (T')r through the origin.
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Gorenstein affine toric varieties Il|

Fact: the crepant resolutions of Xp (by Deligne-Mumford stacks)
correspond to lattice triangulations of P. If ¥ is the fan-
associated to a lattice triangulation, i.e. the collection of cones
spanned by the triangles then the resolution is the corresponding
toric stack Xy.

P

The two crepant resolutions of the conifold
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Gorenstein affine toric varieties 1V

m The projective crepant resolutions are given by so-called
“regular triangulations” (linear loci of piecewise linear convex
functions)

Regular Non-regular

24 /41



Gorenstein affine toric varieties V

The two triangulations of the square are regular
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Gorenstein affine toric varieties VI

m Fact: the regular triangulations (= projective crepant
resolutions) with vertices in a fixed A C P N ZF with
conv(A) = P correspond to the maximal cones in the
so-called “secondary fan” (Gelfand-Kapranov-Zelevinsky). In
general the secondary fan does not correspond to the
complement of a hyperplane arrangement.
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Examples of secondary fans

m We assume T' = (C*)? so that X (7T') = Z2. In that case the
secondary fan can be deduced from the weights (5;);.

B3, Ba
Bs Bs B, B2
B, Bs
Non-quasi-symmetric case Quasi-symmetric case
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Examples of secondary fans

m We assume T' = (C*)? so that X (7T') = Z2. In that case the
secondary fan can be deduced from the weights (5;);.

B3, Ba
Bs Bs B, B2
B, Bs
Non-quasi-symmetric case Quasi-symmetric case

m Fact: in the quasi-symmetric case the secondary fan
corresponds to the complement of a central hyperplane

arrangement. 27 /a1



The SKMS for Gorenstein affine toric varieties

m Let A C PNZF be such that conv(A) = P.
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The SKMS for Gorenstein affine toric varieties

m Let A C PNZF be such that conv(A) = P.

m For F aface of P (e.g. F = P) let Vi C C'M4 be the set of
(q)q € CFM4 such that the variety

{z e (CHE Z ax® =0}

acFNA

is singular.
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The SKMS for Gorenstein affine toric varieties

m Let A C PNZF be such that conv(A) = P.

m For F aface of P (e.g. F = P) let Vi C C'M4 be the set of
(q)q € CFM4 such that the variety

{z € (C*)* Z agz® =0}
a€EFNA

is singular.
m Set V(A) := Uppp'(VF), where pp : C4 — CF14 is the
projection.
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The SKMS for Gorenstein affine toric varieties

m Let A C PNZF be such that conv(4) = P.

m For F aface of P (e.g. F = P) let Vi C C'M4 be the set of
(q)q € CFM4 such that the variety

{z e (CHE Z ax® =0}

acFNA
is singular.
m Set V(A) := Uppp'(VF), where pp : C4 — CF14 is the
projection.

m We let (C*)* act on C* with weights given by the elements
of A. V(A) is invariant under this action. We set

Ka = [(CH\ V(4))/(CH)"].

This is a Deligne-Mumford stack.
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The SKMS for the conifold

m In the conifold case the elements of A are the columns of

Consider the case F' = P. The Laurent polynomial
az + bxz + cyz + dxyz
is singular when

bz +dyz=0
cz+drz=0
a+bx+cy+dry=20
which has a solution in (C*)? if and only if ad — bc # 0.
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The SKMS of the conifold

m Taking the other faces of P = conv(A) (a square) into
account one gets that the SKMS of the conifold is

((C)* = V(ad - be))/(C*)?
where the group action is given by

(u,v,w) - (a,b, c,d) = (wa, uwb, vwd, uvwd)
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The SKMS of the conifold

m Taking the other faces of P = conv(A) (a square) into
account one gets that the SKMS of the conifold is

(€)' = V(ad = be)) /(C)°?
where the group action is given by
(u,v,w) - (a,b, c,d) = (wa, uwb, vwd, uvwd)

m Sending (a,b, ¢, d) to ad/bc defines an isomorphism
(C*)*/(C*)3 = C*. It identifies the SKMS with

C*— {1} =P' - {0,1,00}

(like before).
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The SKMS for Gorenstein affine toric varieties |l

Theorem (Kite)

Assume that that Xp is given by a quasi-symmetric GIT quotient
C4))T. Then K is of the form (X(T)c — Hc)/ X (T) where Hc is
the complexification of real affine hyperplane arrangement H in
X(T)r.

Standard pattern!!
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The SKMS for Gorenstein affine toric varieties |11

Conjecture (SKMS conjecture)

m1(K4) acts on D(Y') for any crepant resolution Y — Xp
corresponding to a triangulation of P with vertices in A.
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The SKMS for Gorenstein affine toric varieties |11

Conjecture (SKMS conjecture)

m1(K4) acts on D(Y') for any crepant resolution Y — Xp
corresponding to a triangulation of P with vertices in A.

Using earlier work of Halpern-Leistner and Spenko-VdB it follows

Theorem

The SKMS conjecture is true in the quasi-symmetric case.
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m The SKMS conjecture has been checked for some
non-quasi-symmetric examples by Kite and Segal.
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The SKMS for Gorenstein affine toric varieties |11

m The SKMS conjecture has been checked for some
non-quasi-symmetric examples by Kite and Segal.

m Various “wall-crossing” results “near infinity” are known
(Balard-Favero-Katzarkov, Halpern-Leistner,
Halpern-Leistner-Shipman, Segal-Kite,...) which are in
particular sufficient to prove the Bondal-Orlov-Kawamata
conjecture in the toric case.

m The SKMS is related to the Bridgeland moduli space of
stability conditions although they are not the same.
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Decategorification: the Gelfand-Kaparanov-Zelevinsky
system

m Let A C PNZF with P = conv(A). Put d = |A|. We think
of A as a k x d-matrix (i.e. the elements of A correspond to
the columns, and the last row of A consists of 1's).
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the columns, and the last row of A consists of 1's).
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corresponding vector fields.
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Decategorification: the Gelfand-Kaparanov-Zelevinsky
system

Let A C PNZF with P = conv(A). Put d = |A|. We think
of A as a k x d-matrix (i.e. the elements of A correspond to
the columns, and the last row of A consists of 1's).

Let (z;)%_, be coordinates on C? and let (9;)%_, be the
corresponding vector fields.

Fori=1,...,k let E; be the “Euler vector field”

Ei = Z?:l aija:jﬁj.

For I € Z% such that Al = 0 write

0= 1oy -T19"

lj>0 lj<0
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Decategorification: the Gelfand-Kaparanov-Zelevinsky
system

Let A C PNZF with P = conv(A). Put d = |A|. We think
of A as a k x d-matrix (i.e. the elements of A correspond to
the columns, and the last row of A consists of 1's).
Let (z;)%_, be coordinates on C? and let (9;)%_, be the
corresponding vector fields.
Fori=1,...,k let E; be the “Euler vector field”
d
Ei = Zj:l aija:jﬁj.
For [ € Z% such that Al = 0 write
0= 1oy -T19"
lj>0 lj<0
The GKZ system is the system of differential equations given
by (E; —b;)(f) =0fori=1,...,k and O;(f) =0 for all I
such that Al = 0.
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The GKZ system for the conifold

In the conifold case we have

A:

= o O

1 01
01 1
1 11
and one find that the GKZ system is given by

(202 + x404)f = by
(303 + 2404) f = b2
(2101 + 2202 + 2303 + 2404) f = b3
(0104 — 03)f =0

One may show that this is equivalent to the hypergeometric system
we have introduced above.
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Decategorification: the GKZ system ||

Assuming the SKMS conjecture, we can add:

Conjecture

The w1 (K 4) action after decategorification corresponds to GKZ
system for a suitable parameter b.

To avoid having to choose a parameter one can work with
equivariant derived categories as explained above for the conifold.
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Decategorification: the GKZ system ||

Assuming the SKMS conjecture, we can add:

Conjecture

The w1 (K 4) action after decategorification corresponds to GKZ
system for a suitable parameter b.

To avoid having to choose a parameter one can work with
equivariant derived categories as explained above for the conifold.

Theorem (Spenko-VdB)

The equivariant version of the conjecture is true in the
quasi-symmetric case for generic parameters.

In the general case “wall-crossing” results “near infinity” are known
(Borisov-Horja, Borisov-Han).
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The toric boundary

Definition

If X is a smooth toric stack for a torus H then X has a unique
dense H-orbit. The complement of this orbit, denoted by 90X, is
called the the toric boundary. It is a normal crossing divisor.
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The toric boundary

Definition

If X is a smooth toric stack for a torus H then X has a unique
dense H-orbit. The complement of this orbit, denoted by 0.X, is
called the the toric boundary. It is a normal crossing divisor.

It turns out that a version of the SKMS conjecture holds for the
toric boundary!

Theorem (Spenko-VdB)

m1(K4) acts on D(9Y') for any crepant resolution Y — Xp
corresponding to a triangulation of P with vertices in A C P N 7ZF
(with conv(A) = P).
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The toric boundary I

We can also describe the decategorification for this action.

Theorem (Spenko-VdB)

Let L be the local system which is the decategorification of the
7(Ka)-action on D°(coh(dY')). Then we have an exact sequence
of local systems

0-CFrSsL—-G—>C—0

where the first and the last local system are constant and where G
is a GKZ system for suitable parameters.

In other words: up to constant local system the decategorification
is given by a GKZ system!
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|dea of proof: homological mirror symmetry

Let f.(x) be the function on (C*)* given by fo(z) =Y, a2®
Let r € C be generic and put F,, := f;1(r).

Note that (C*)* is a symplectic manifold with symplectic form

>~ dwidz; /(x;%;). One shows that F, is a symplectic submanifold
(a Liouville manifold to be more precise)
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Let r € C be generic and put F,, := f;1(r).

Note that (C*)* is a symplectic manifold with symplectic form

>~ dwidz; /(x;%;). One shows that F, is a symplectic submanifold
(a Liouville manifold to be more precise)

Theorem (Gammache-Shende, Zhou)

We have D(9Y) = DFuk(F,) for a suitable choice of ax € C4
where DFuk(Fy,) is the thick closure of the (wrapped) Fukaya
category of F,.
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|dea of proof: homological mirror symmetry

Let f.(x) be the function on (C*)* given by fo(z) =Y, a2®
Let r € C be generic and put F,, := f;1(r).

Note that (C*)* is a symplectic manifold with symplectic form

>~ dwidz; /(x;%;). One shows that F, is a symplectic submanifold
(a Liouville manifold to be more precise)

Theorem (Gammache-Shende, Zhou)

We have D(9Y) = DFuk(F,) for a suitable choice of ax € C4
where DFuk(Fy,) is the thick closure of the (wrapped) Fukaya
category of F,.

The following result yields the existence of the 7 (K 4)-action.

Theorem (Spenko-VdB)
o — DFuk(F,) defines a local system of categories on C4 — V (A).
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Why only the toric boundary?

m The mirror dual of the crepant resolution Y is the
Landau-Ginzurg model ((C*)¥, f,).
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Why only the toric boundary?

m The mirror dual of the crepant resolution Y is the
Landau-Ginzurg model ((C*)¥, f,).

m Gammache and Shende show that for suitable oz € C4 one
may give ((C*)*, f-1(r)) the structure of a stopped Liouville
manifold which may be used to define DFuk((C*)*, f,) by the
work of Ganatra-Pardon-Shende.

m Gammache and Shende show that D(Y') = DFuk(((C*)¥, f,).

m However it is not known to how to define DFuk((C*), f,) for
every «, in such a way that it defines a local system! This
breaks the approach ®

40/41



Alternative approach

m An alternative approach is to try to manipulate the stopped
Liouville manifold ((C*)¥, f-1(r)) directly by “mutating the
stop”.
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Alternative approach

m An alternative approach is to try to manipulate the stopped
Liouville manifold ((C*)¥, f-1(r)) directly by “mutating the
stop”.

m So far this does not work in general. However it has been
carried out by Huang and Zhou in the quasi-symmetric case
using similar combinatorics as before.
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