ALGEBRAIC GEOMETRY OF LIE BIALGEBRAS DEFINED BY
SOLUTIONS OF THE CLASSICAL YANG-BAXTER EQUATION

RASCHID ABEDIN AND IGOR BURBAN

ABSTRACT. This paper is devoted to algebro-geometric study of infinite dimensional Lie
bialgebras, which arise from solutions of the classical Yang-Baxter equation. We regard
trigonometric solutions of this equation as twists of the standard Lie bialgebra cobracket
on an appropriate affine Lie algebra and work out the corresponding theory of Manin
triples, putting it into an algebro-geometric context. As a consequence of this approach,
we prove that any trigonometric solution of the classical Yang—Baxter equation arises
from an appropriate algebro-geometric datum. The developed theory is illustrated by
some concrete examples.

1. INTRODUCTION

The notion of a Lie bialgebra originates from the concept of a Poisson—Lie group. Let G be
any finite dimensional real Lie group and g, be its Lie algebra. It was shown by Drinfeld
in [21] that Poisson algebra structures on the algebra C*°(G) of smooth functions on G
making the group product G x G — G to a Poisson map correspond, on the Lie algebra
level, to linear maps g, LN A% (g,) satisfying the cocycle and the co-Jacobi identities. Such
a pair (g,,0) is a Lie bialgebra. Conversely, if G is simply connected then any Lie bialgebra
cobracket g, R A%(g,) defines a Poisson bracket on C*°(G) such that G x G — G is a
Poisson map; see [21].
Assuming that g, is a simple Lie algebra, it follows from Whitehead’s Lemma that any
Lie bialgebra cobracket g, LN A%(g,) has the form § = 9, for some tensor t € g, ® g,,
where

o 25 9. ® 0o, a— [a®1+1®a,t]
and t satisfies the classical Yang-Baxter equation for constants (cCYBE):

(1) 126 + £t + £, =0 and t? 4+t =\

Here, v € g, ® g, is the Casimir element with respect to the Killing form g, x g, — R
and A\ € R. For any a,b,c,d € g, we put: [(a@b)lz, (c®d)13] =la,d]®b®d € g@3, which
determines the expression [t'2,t!3]; the two other summands [t'2, 23] and [t'3,£%%] of (1)
are defined in a similar way.

Suppose now that g is a finite dimensional complex simple Lie algebra and g x g — C is
its Killing form. Solutions of cCYBE for A # 0 were classified by Belavin and Drinfeld; see
[8, Chapter 6]. In a work of Stolin [49] it was shown that such solutions stand in bijection
with direct sum decompositions
(2) gxg=c+w,
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where ¢ := {(a,a) |a € g} is the diagonal and w = wy is a Lie subalgebra of g x g which
is Lagrangian with respect to the bilinear form

(3) (axg) x (9x8) = C, ((ar,b1), (az,b)) = rla, az) = (b1, ba).
Such datum ((g X g, F), C, m) is an example of a Manin triple.

Let & = & A be the Kac-Moody Lie algebra, associated with a symmetrizable generalized
Cartan matrlx A It turns out that & possesses a non-degenerate invariant symmetric
bilinear form Q5 «6 2 ¢ and decomposes into a direct sum of root spaces [31] From these

facts one can deduce that Q5 carries a distinguished Lie bialgebra cobracket & 2, A2 (QS)
called standard; see [22].

Especially interesting and important phenomena in this context arise in the case of affine
Lie algebras. Assume that A is a generalized Cartan matrix of affine type. Then the

corresponding affine Lie algebra & = [@5 Q~5] has a one-dimensional center (c¢) and both
B and J, induce the corresponding structures on the Lie algebra & = @ /{c). Namely,
we have a non-degenerate invariant symmetric bilinear form & x & B, € and a Lie

bialgebra cobracket & e, A%(®). According to a theorem of Gabber and Kac (see [31,

Theorem 8.5]), there exists a finite dimensional simple Lie algebra g and an automorphism

o € Autc(g) of finite order m such that & is isomorphic to the twisted loop algebra

£ = £(g,0) == @ gp2" C glz,27!] (where g, are eigenspaces of o). The Lie algebra
keZ

£ is a free module of rank ¢ = dimc(g) over the ring R = (C[t,til], where t = 2™. It

turns out that (up to an appropriate rescaling) the bilinear form £ x £ B, C factorizes

as £x & 5 R ﬂ C, where K is the Killing form of £ (viewed as a Lie algebra over

R) and resy is the re&due map at the zero point with respect to the differential one-form
t
w = —. Moreover, one can show that the standard Lie bialgebra cobracket d, on £ = &

is given by the following formula:

(4) £ A2(L), f(2) — [f@) @ 1+ 1 f(y),re(w,y)],

where 7, (2, y) is the so-called standard trigonometric solution of the classical Yang—Baxter
equation with spectral parameters (CYBE)

[112(z1, @2), 713 (x1, 23) | + [P (21, 23), 12 (w2, 23)] + [r12 (21, 22), 1?3 (32, 23)] =0
r12(zy, 29) = —1r?Y (22, 21),
attached to the pair (g, o), see for instance Corollary 6.6.

Following the approach of Karolinsky and Stolin [35], we study twisted Lie bialgebra
cobrackets 6 = do + Oy on £, where

t€LALC (g®g) [z, 27 y,y ] and 9 (f(2)) = [f(z) ® 1 + 1 ® f(y), t(z,y)].

One can show that (£, d:) is a Lie bialgebra if and only if r¢(x,y) = ro(z,y) + t(z,y) is a
solution of CYBE (see Theorem 6.9). It is not hard to see that (after an appropriate change
of variables) all trigonometric solutions of CYBE (classified by Belavin and Drinfeld in
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[6, Theorem 6.1]) are of the form r¢(x,%) for an appropriate t € A?(£). Conversely, one
can show that any solution of CYBE of the form ry(z,y) is equivalent to a trigonometric
solution of CYBE; see Proposition 6.11. We prove that such Lie bialgebra twists t € A2(£)
are parametrized by Manin triples of the form

(5) gxgh=¢ 49y,
where £ = L(g,o7 ), e={(f. /Y ‘ f € £} (here, (az*)t = az""fora € gand k € Z) and

the symmetric non-degenerate bilinear invariant form (£ x £%) x (£ x £) I Cis given
similarly to (3), but replacing the Killing form « by the standard form B; see Theorem
4.1. This results establishes another analogy between solutions of cCYBE for A # 0 and
trigonometric solutions of CYBE (parallels between both theories were already highlighted
by Belavin and Drinfeld in [8]). We expect (in the light of the works [47, 39]) that the
constructed Manin triples (5) will be useful in the study of symplectic leaves of Poisson—Lie
structures on the affine Kac—-Moody groups and loop groups, associated to trigonometric
solutions of CYBE.

Using results obtained in this paper, Maximov together with the first-named author proved
in [1] that up to R-linear automorphisms of £, the Lie bialgebra twists of the standard
Lie bialgebra cobracket (4) are classified by Belavin-Drinfeld quadruples ((I'1,I'2,7),s),
which parametrize trigonometric solutions of CYBE (see Subsection 6.4 for details).

Based on the work [14], we put the theory of Manin triples of the form (5) into an algebro-
geometric context. We show that for any twist t € A%(£) of the standard Lie bialgebra
structure on £ there exists an acyclic isotropic coherent sheaf of Lie algebras A = Ay
on a plane nodal cubic E = V(y? — 23 — 22) C P? such that I'(U,.A) = £ and such

that the completed Manin triple € x fii =C —i—i)/ﬁt is isomorphic to the Manin triple
A, = T(U, A) + s, where s is the singular point of E, U = E \ {s}, 2, is the completion
of the germ of A at s and 2, is its rational hull. Moreover, £ LN A%(L) C £® £ can be
identified with the Lie bialgebra cobracket

NUA) —T(UA)QTUA) =T(U xU AR A), f(z)— [f(z)@1+1 f(y), p(z,y)],

where p € T'(U x U \ £, AKX A) is the geometric r-matriz attached to the pair (E,.A)
(here, ¥ C U x U is the diagonal); see Theorem 6.9. From this we deduce that any
trigonometric solution of CYBE arises from an appropriate pair (F,.4), completing the
program of geometrization of solutions of CYBE started in [20, 14]. Another proof of this
result was recently obtained by Polishchuk along quite different lines [43].

The theory of twists of the standard Lie bialgebra cobracket on £ = & can be regarded
as an alternative approach to the classification of trigonometric solutions of CYBE. In
particular, it is adaptable for the study of trigonometric solutions of CYBE for arbitrary
real simple Lie algebras, which is of the most interest from the point of view of applications
in the theory of integrable systems (see [3, 45]) as well as for simple Lie algebras over
arbitrary fields of characteristic zero.

For a completeness of exposition, we also discuss in this paper an algebro-geometric view-
point on the theory of Manin triples of the form g((2)) = g[z] +20, which can be associated
to an arbitrary formal solution of CYBE (see Subsection 5.1) as well as of Manin triples
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of the form g((z7!)) = g[z] + 20, which (according to a work of Stolin [48]) parametrize
the rational solutions of CYBE; see Remark 5.8 and Remark 7.8.

The plan of this paper is the following.

In Section 2 we elaborate (following the work of Karolinsky and Stolin [35]) the theory of
twists of a given Lie bialgebra cobracket. The main result of this section is Theorem 2.10,
which describes such twists in the terms of appropriate Manin triples.

Necessary notions and results of the structure theory of affine Lie algebras and twisted
loop algebras are reviewed in Section 3. In particular, we recall the description of the

standard Lie bialgebra cobracket & e, A%(®) for an affine Lie algebra ¢ =2 £. The main
new result of this section is Theorem 3.11 asserting that any bounded Lie subalgebra

O C £, which is coisotropic with respect to the standard bilinear form £ x £ B, C, is
stable under the multiplication with elements of the polynomial algebra C[¢].

In Section 4, we apply the theory of twists of Lie bialgebra cobrackets, developed in Section
2, to the particular case of (£,0,). The main results of this section are Theorem 4.1 and

Proposition 4.5, giving a classification of the twisted Lie bialgebra cobrackets £ LN A2(L)
via appropriate Manin triples.

Section 5 is dedicated to the algebro-geometric theory of CYBE. In Subsection 5.1, we
recall a well-known connection between solutions of CYBE and Manin triples of the form
9((2)) = g[2] + 2. In Subsection 5.2 we give a survey of the algebro-geometric theory of
CYBE developed in [14]. In Subsection 5.3, we study properties of geometric CYBE data
(B, A), where E is a singular Weierstrafl curve. The main result of this section is Theorem
5.7 (see also Remark 5.8), which gives a recipe to compute the geometric r-matrix attached
to a datum (E, A).

In Section 6, we continue the algebro-geometric study of solutions of CYBE, started in
Section 5. In Subsection 6.1, we review the theory of torsion free sheaves on degenerations
of elliptic curves, following the work [9]. Subsections 6.2 and 6.3 are dedicated to the
problem of geometrization of twists of the standard Lie bialgebra structure on £. In
Proposition 6.5, we derive a formula for the standard trigonometric r-matrix, associated
to an arbitrary finite order automorphism o € Autc(g). We give a geometric proof of the

known fact that the standard Lie bialgebra cobracket £ Lo, A%(£) is given by the standard
solution r,(z,y) of CYBE; see Corollary 6.6. After these preparations been established,

we prove in Theorem 6.9 that an arbitrary twist £ e, A%(£) arises from an appropriate
geometric CYBE datum (E, A), where F is a nodal Weierstrafl curve. After reviewing in
Subsection 6.4 the theory of trigonometric solutions of CYBE due to Belavin and Drinfeld
[6, 8], we prove in Proposition 6.11 that any twist 7 (z,y) of the standard solution ro(x,y)
of CYBE is equivalent to a trigonometric solution.

Some explicit computations are performed in Section 7. In particular, we explicitly de-
scribe Manin triples of the form (5) and the corresponding geometric data for the quasi-
constant trigonometric solutions of CYBE (see Theorem 7.7) as well as for a distinguished
class of (quasi-)trigonometric solutions rfz’gd) for the Lie algebra g = sl,(C), which are

attached to a pair of mutually prime natural numbers (c,d) such that ¢ +d = n (see
Theorem 7.1).
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In the final Section 8, we review various constructions of Lie bialgebras arising from
solutions of the classical Yang—Baxter equation.

List of notation. For convenience of the reader we introduce now the most important
notation used in this paper.

— We use Gothic letters as a notation for Lie algebras. In particular, g is a finite di-
mensional complex simple Lie algebra of dimension ¢ and £ = £(g,0) is the twisted loop
algebra associated with an automorphism o € Autc(g) of order m, whereas £ = g [z, z_l]

denotes the full loop algebra. We put t = 2™ and R = C [t, til] and denote by g x g — C

(respectively, £ x £ X, R) the Killing form of g (respectively, of £) and by v € g® g (re-
spectively, x € £®p £) the corresponding Casimir element.

— Unless otherwise stated, by ® we mean the tensor product over the field of definition.
We use + to denote the (inner) direct sum of vector spaces. Given a vector space V over
a field k and vy,...,v, € V, we denote by (v1,...,v,)x the corresponding linear hull. If
V is a Lie algebra then ((v1,...,v,)) is the Lie subalgebra of V' generated by vy, ..., v,.

— We denote by ® an affine Lie algebra and by & its quotient modulo the center. Next,
&x& -2 (respectively, £ x £ B, C) is the standard bilinear form and & Lo, A2(®)
(respectively, £ Lo, A%(£)) is the standard Lie bialgebra cobracket.

— A Weierstraf} curve F is an irreducible projective curve over C of arithmetic genus one.
If E is singular then s denotes its singular point and U = E'\ {s} its regular part. For a
coherent sheaf F on a scheme X and a point p € X, we denote by F !p the fiber of F over
p and by F, the stalk of F at p.

— Next, A denotes a coherent sheaf of Lie algebras on a (singular) Weierstrafl curve E
such that H(E, A) =0 = H'(E, A) and A|_ = g for any = € U (together with a certain
extra condition at the singular point s). Such a pair (E,.A) is called geometric CYBE
datum and p is the corresponding geometric r-matrix.

— Given a geometric CYBE datum (E,.A) and a fixed point p € E, we write O for the
structure sheaf of £ and put E, = E'\ {p} and U, = U\ {p} as wellas R =T'(U,0), R, =
['(Ep, O) and R) = T'(Uy, O). For the corresponding sections of A we write & = I'(U, A),
Ql(p) =TI'(E,, A) and Al = I'(Up, A). The completion of the stalk of O at p is denoted
by Op, while its field of fraction is denoted by Qp Finally, the completion of the stalk of
A at p is denoted by QIP, whereas le = Qp ®O Ql is the corresponding rational hull. If p
is the singular point of E, we omit the 1ndlces p.
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as well as to both anonymous referees for their helpful comments and remarks.
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2. LIE BIALGEBRAS AND LAGRANGIAN DECOMPOSITIONS
In this section k is a field of char(k) # 2

2.1. Generalities on Lie bialgebras. Let R = (9%, —, —]) be a Lie algebra over k.
Recall the following standard notions.
e For any n € N we denote: R = R@R®--- ®R. For any t € R®" and a € R,

n times
we put: aot =ady(t) == [a®1® - @1+ --+1®---®1®a,t]. A tensor
t € R®" is called ad-invariant if aot = 0 for all a € R.
e A linear map R S ReRisa skew-symmetric cocycle if Im(§) € A2(R) and

5([@, b}) =aod(b) —bod(a)

for all a,b € fR.
e For any t € |®? we have a linear map R &, R a>aot. If t € A2R then O
is automatically a skew-symmetric cocycle.
Definition 2.1. A Lie bialgebra is a pair (R, d), where R is a Lie algebra and ¢ is a skew-
symmetric cocycle satisfying the co-Jacobi identity alt((5 ® 11)05) = 0, where R®3 alt, jes
is given by the formula alt(a @ b®c¢) :=aR bR c+cRaRb+ bR c® a for a,b, c € R.
Remark 2.2. Let (R, d) be a Lie bialgebra.
e The Lie cobracket § defines an element in the Lie algebra cohomology H* (9‘{, A2 (9{)) .
For any t € A?(R) we have: [0;] = 0 in H'(R, A%(R)).

e The linear map R* @ R* — (9%@9‘{)* 2 " defines a Lie algebra bracket on
the dual vector space R* of fR. O

Following the work [35], we have the following result.

Proposition 2.3. Let (R,0) be a Lie bialgebra, t € A*(R) and &y := 6+ ;. Then (R, )
is a Lie bialgebra if and only if the tensor (alt((§®1)(t)) —[[t, t]]) € R®? is ad-invariant,
where

feo el o= 612,99 4+ [612, 29 4 [612,229),
In this case, 0y is called a twist of 4.

Proof. Clearly, d; is a skew-symmetric cocycle. Hence, (R,6) is a Lie bialgebra if and
only if alt((dy ® 1) 0 &) (z) = 0 for all € R. Since (R, ) is a Lie bialgebra, we have:
alt((6 ® 1) 0 §) = 0. Next, for any = € R the following formula is true:

alt((9y ® 1) 0 8t ) (z) = —z o [[t, t]],

see [19, Lemma 2.1.3]. If t = Zn: a; ® b; then we have:
i=1
zo(F@1)(t)) = ((w08(ar) ®b; + d(a;) ® [x,bi]).

i=1
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Since (6@ 1)(0e(z) = (@ D[z R@1+1@2,t] =

= Z(é([w,al]) ® b; + 5(CLZ) & [$,bz]) = Z((w o 5(&1) —a; o 5(1})) ® b; + (5(0,1) & [.CU, bz]),
=1

=1

we obtain: (6 ® 1)(0y(z)) =z o ((§® 1)(t)) — i (aiod(z)) @ b;.

i=1

m
Let 6(z) = ) z; ® y;. Then we have:
j=1

m n

Oy @ 1)(0 ZZ xj,az | ®b; RY; +a; ® [acj,bi]@)yj)
Jj=11i=1
and
Z(aioé(x))@)bi:ZZ([%,%’]®yj®bi+$j®[ai7yj]®bi)-
i=1 j=1i=1

n

Since t € A2(R), we have: t = — >_ b; ® a;. It follows that
i=1

m n

ZZ%% ®Y; ® b; —ZZ%, R y; ® aj.

j=1i=1 j=1i=1

As a consequence, we obtain: alt(

||M3

n
Z ® [z, b] ®y; — [25,b;] ® y; ® a;) = 0. Similarly,

since 6(z) € A%(R), we have: Z TjQy; = — Z y; ® ;. Hence,
j=1 j=1

ZZ':UJ a‘hyj ®b _Zzy] xjaa‘l bz

7j=1 =1 7j=11i=1
m n
and as a consequence, alt( > > [zj,a;] @b ®y; —y; ® [z}, a;] @b;) = 0. Putting everything
j=1li=1

together, we finally obtain: alt((6; ® 1) 0 ;) (x) = z o (alt((6 ® 1)(t)) — [[t,t]]), implying
the statement. O

Corollary 2.4. Let (R,0) be a Lie bialgebra and t € A*(R). A sufficient condition for
0y to be a twist of § is provided by the twist equation

(6) alt((0 ® 1)(t)) — [[£, t] =0,
introduced in [35].
Definition 2.5. Let fR be a Lie algebra over k and R x R L kbea symmetric invariant

non-degenerate bilinear form, i.e. F([a,b],c) = F(a, [b, c]) for all a,b,c € R. Next, let
R+ C R be a pair of Lie subalgebras such that

R=NR, +R_ and R C KR,
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where + is the direct sum of vector subspaces. Then ((ER, F), R4, Eﬁ,) = (9{, Ry, i)CL) is
called a Manin triple. We say that a given splitting R = R, +9R_ is a Manin triple, if
(R, R4, R_) is. Two Manin triples ((R, F), R4, R_) and ((5%, F), Ry, 9~CL) are isomorphic
if there exists an isomorphism of Lie algebras R 4, S)NQ, which is a homothety with respect
to the bilinear forms F and F (i.e. there exists A € k* such that F(a,b) = AF(a,b) for all
a,b € R) and such that f(Ri) = Re.

Remark 2.6. If (ER, MRy, M_) is a Manin triple, then we automatically have: Ry = iRi;
see Lemma 2.8 below. O

Definition 2.7. Let (§i4,0) be a Lie bialgebra. We say that the Lie bialgebra cobracket
Ry R A2(Ry) is determined by a Manin triple ((R, F), R4, R_) if

(7) F(é(a), b1 ® b2) = F(CL, [bl, bg])
for all a € R4 and by, b2 € R_.

It is clear that if SR 2, A%(R,) is another Lie bialgebra cobracket which is determined
by the same Manin triple (9%, Ry, M), then § = 6.

2.2. Some basic results on Lagrangian decompositions. Let V be a (possibly infinite
dimensional) vector space over k. Recall that two vector subspaces W/, W"” C V are called

commensurable (which will be denoted W’ < W) if dimy (W' + W")/ (W' nW")) < oc.

Lemma 2.8. Let V =U + W, where U W C V are isotropic subspaces with respect to a

non-degenerate symmetric bilinear form V- x V S k. Then we have:

(a) The linear map U £, W*, u v F(u, —) is injective and both subspaces U and W
are automatically Lagrangian, i.e. V = U + W is a Lagrangian decomposition.
(b) The linear map

U@ U L Homg(W,U), t =Y ai @b — (W25 U, wes Y Fw,ai)by)
i=1 =1
1S tnjective.
(c) For any t € U®? let Wy := {w + fe(w) |w € W}. Then we have:
(1) V=U+W, and W < Ws.
(2) The map W — Wy, w — w + fe(w) is an isomorphism of vector spaces and
Wy = Wy if and only if t = t/.

Proof. (a) Since U C U™t and F is non-degenerate, the linear map F is injective. Let
v € UL. Then there exist uniquely determined v € U and w € W such that v = u + w.
For any v/ € U and w’ € W we have:

F(w, u') = _F(U7 ul) =0 and F(w7 w/) =0.

It follows that w =0 and v = u € U, hence U = U~ is Lagrangian.
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(b) Since U is isotropic and F' is non-degenerate, the linear map U x, W*, u— F(—,u)
is injective. The linear map j coincides with the composition

UoU L2 W* o U s Homy (W, U),

and is therefore injective.

(cl) Let t = > a; ® bj. Then Im(fy) C <bl,...,bn>Ik and dimy (Im(fy)) < n. Since
i=1

W/Ker(fr) = Im(f;), there exists a finite dimensional vector subspace W/ C W such that

W =W’ + Ker(f:). It follows that

Ker(fo) CW NW; €W + Wy C Ker(fy) + (W +Im(fy)).

Hence, W =< W,. It is easy to see that UNW,; = 0 and W C U + W;. It follows that
V=U+W CU+ Wy, hence V = U + W, as asserted.
(c2) The linear map W — W, is by construction surjective. It is also easy to see that it
is injective.
Assume that t,t/ € U®? are such that Wy = Wy.. Then for any w € W there exists
a uniquely determined w’ € W such that w + fe(w) = w' + fu(w'). It follows from
UNW =0 that w = w'. Hence, fy(w) = fu(w) for all w € W. Since 7 is injective, we
have: t = t’. O
Proposition 2.9. Let V = U + W be a Lagrangian decomposition and

V=U+W }

Wt=W and W=W
Then the map AU — LG(V, U; W), t — Wy is a bijection.

Lquwq:{ng

Proof. Let t € U®2. Then W, C V is Lagrangian if and only if
F(fe(w),w') + F(w, fe(w)) =0 forall w,w' € W.

It follows that F(t 4 t21,w @ w') = 0 for all w,w’ € W, where V&2 x V&2 L, I is the
bilinear form induced by F. Since V. = U + W is a Lagrangian decomposition, it follows
that F\(t +t2,v®v) =0forall v,v’ € V. Thus, t +t* =0, i.e. t € A>(U). Lemma 2.8
implies that A2U — LG (V, U; W), t — Wy is a well-defined injective map and it remains
to prove its surjectivity.

Let W € LG (V, U;W). Then for any w € W there exist uniquely determined u € U and

@ € W such that w = @ —u. We define a linear map W Ly by setting u := f(w). Since
W =< W, Ker(f) = WNW C W is a subspace of finite codimension and dimy, (Im(f)) < oc.

We also get an isomorphism W — W,w — W = w+ f(w). Since Wis a Lagrangian
subspace of V', we have: F(f(w),w’) + F(w, f(w')) =0 for all w,w’ € W. It follows that

Ker(f) = (Im(f))L N W. Moreover, we obtain a bilinear pairing

W/Ker(f) x Im(f) 25k, (@,u) — F(w, u).

It is not hard to show that F' is non-degenerate. Let w1, v1, ..., wn, v, € W be such that
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o (f(w1),..., f(wy)) is a basis of Im(f).
o (U1,...,7,) is a basis of W/Ker(f).
e For all 1 <i,j <n we have: F(v;, f(w;)) = 6.

Then we have: f:lF(wj, —f(vi))f(wi) = ﬁ:lF(ﬂwj),Ui)f(wi) = f(wy).

3

Let t := — Y f(v;) ® f(w;) € U®2. Then for any 1 < j < n we have: fi(w;) = f(w;),

hence Im(f) = Im(f). Since Ker(f) = (Im(f))J' NW C Ker(fy), it follows that Ker(f) =
Ker(fy) implying that f = fs. Thus, we have found t € U ©2 guch that W = W. Finally,
the assumption W+ = W implies that t € A2(U), as asserted. O

Theorem 2.10. Let (R, R4, R_) = (R, F), R+, R_) be a Manin triple determining a
Lie bialgebra cobracket Ry 2, AZ(Ry) and

) ] (R, R1,20)is a Manin triple
MT (R, 9%, R_) = {wcm‘ NS .

Let t € A2(Ry). Then the corresponding subspace R = (%_)t C R is a Lie subalgebra
if and only if t satisfies the twist equation (6) and the map

{t c /\2(9%+)‘ alt (5 @ 1)(t)) — [[¢, t] = o} L MT(R, R %)

assigning to a tensor t € A2(M,) the subspace R C R is a bijection. Moreover, the Lie
bialgebra cobracket Ky LR A2(Ry) is determined by the Manin triple R = Ry +R* .

Proof. Let t € A2(:,). Then the corresponding vector subspace :R* C R is Lagrangian,
R =R, +R" and R* < R_. Conversely, any such Lagrangian subspace 20 has the form
20 = R for some uniquely determined t € A? (9{+) see Proposition 2.9.

Since ;R = R, +R* is a Lagrangian decomposition, the subspace :R* C R is closed under
the Lie bracket if and only if F([w1,Ws],w3) = 0 for any w1, ws, w3 € RE.

For any w € R_ let w = w + fi(w) be the corresponding element of R*. The same
computation as in [35, Theorem 7] shows that for all wq, we, w3 € R_ we have:

F(w1 ® we @ ws, [[t, t]] — alt((5 X ]1)(13))) = F([’LZ)l,lZ}Q],UNJg).

This implies that R is a Lie subalgebra of R if and only if alt(((S t, ] =0.

(t) -
Since t € A2 (er) it follows that F(&c( ), w1 ® wg) = F( [wl,ft Wo ] + [ ])
for any a € Ry and wy,ws € R_. A straightforward computation shows that

F(ét(a),ﬂ)l ® u?g) = F(a, [11)1,1172]) for anya € Ry and 0y, Wy € RE,

implying that R D, A2 (%Jr) is determined by the Manin triple R = R, +R". O
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3. REVIEW OF AFFINE LIE ALGEBRAS AND TWISTED LOOP ALGEBRAS
3.1. Basic facts on affine Lie algebras. Let T be an affine Dynkin diagram, |f| =
r+ 1 and A € Mat,1)x(r+1)(Z) be the corresponding generalized Cartan matrix. We
choose a labelling of vertices of [ asin [18, Section 17.1]. The corresponding affine Lie
algebra & = & = G4 is by definition the Lie algebra over C generated by the elements

ef)t, . ,efF, iLo, .. ,iLr subject to the following relations:
[hihj] =0
e ej]=dihi  forall0<ij<r
[hi, e;t] = j:aij e;-t

and

{ ad " (ef) =0 forall 0<izj<r
see [18, 31]. Recall the follovx;ing standard facts.
1. There exist unique vectors k = (ko,...,kr) and [= (lo, - .., 1) in N"*1 such that
ged(ko, ... ky) = 1 =ged(lo, - .-, 1)
and [A = 0 = AK"; sce [18, Section 17.1].
e For any 0 < i < let d; := % Then for any 0 < ¢,j < r we have: a;;d; = a;;d;.

7
In other words, the matrix D~ A is symmetric, where D := diag(do7 e ,dr).

e The center of the Lie algebra & is one-dimensional and generated by the element
¢ :=lohy + -+ + l,hy; see [18, Proposition 17.8].

2. There exists a symmetric invariant bilinear form &x6-2C (called standard form)
given on the generators by the following formulae:

B(hs,x;) =0
B(Bijlj) = djag .

(8) E(eli,ef) — dis, forall0<i,j<r
E(ezi,ef) =0

see [18, Theorem 16.2]. This form is degenerate and its radical is the vector space Cc.

3. The Lie algebra ® carries a so-called standard Lie bialgebra cobracket & 2o A28
(discovered by Drinfeld [22]) given by the formulae

. 1- Lo
bolel) = d—hi A e and §o(h;) = 0 for all 0 < i < 7.
i
4. Consider the Lie algebra & = &/(c). Then we have the induced non-degenerate
symmetric invariant bilinear form & x & B, C, which will be also called standard, as well

as a Lie bialgebra cobracket & Do, A2 &, given by the formulae

1
9) So(ef) = d—hi A e and 8o(h;) = 0 for all 0 <4 < 7,

7
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where h; denotes the image of ﬁi in &.

5. Denote by &1L = <<e(jf, ...,eX) the Lie subalgebra of & generated by the elements

»Er

eg[, . ,eff and put 9 := <h1, cen h”>(C‘ Then we have the triangular decomposition & =
B DHDSG_ as well as the following symmetric non-degenerate invariant bilinear form:
(10) (6 x6) x (6x6) ¢, ((d,V), (V") - Bld, ) — Bla",1").

We identify & with the diagonal {(a, a) ‘ a € Qi} C 6 x & and put

(11) ﬁ’:{(a,—a)‘ae.ﬁ} and 0 = (B x6_)+ 5.

The following result is essentially due to Drinfeld [22, Example 3.2]; see also [19, Example
1.3.8] for a detailed proof.

Theorem 3.1. We have a Manin triple
(12) GxG =060,
which moreover determines the standard Lie bialgebra cobracket & Do, A2

3.2. Basic facts on twisted loop algebras. Let g be a finite dimensional complex

simple Lie algebra of dimension ¢, g x g — C its Killing form, o € Autc(g) an automor-
271

phism of order m and ¢ = exp(—). For any k € Z, let g, := {JJ €g ‘a(x) = ekx}.
m

Then we have a direct sum decomposition g = @Z‘:_Ol g5 First note the following easy and

well-known fact.

Lemma 3.2. For any k,l € Z, the pairing g, X g, — C is non-zero if and only if m|(k+1).
Moreover, the pairing g, X g_;, -, C is non-degenerate for any k € 7.

Proof. Let a € g;, and b € g;. Then we have: r(a,b) = r(o(a),o(b)) = " k(a,b),
implying the first statement. The second statement follows from the first one and non-
degeneracy of the form k. O

Corollary 3.3. The Casimir elementy € g® g (with respect to the Killing form k) admits
m—1

the decomposition v = Y ~y, with components v, € g, @ §_p-
k=0

Let £ = g[z,27!] be the loop algebra of g, where [az",bz!] := [a,b]z" ! for any a,b € g
and k,l € Z. The twisted loop algebra is the following Lie subalgebra of £:

(13) £ =2(g,0) = Pap 2.
kEZ

Let Inn(g) be the group of inner automorphisms of g. It is a normal subgroup of the group
Aut(g) of Lie algebra automorphisms of g. The quotient Out(g) := Aut(g)/Inn(g) can be
identified with the group Aut(T") of automorphisms of the Dynkin diagram I" of g; see e.g.
[41, Chapter 4]. Moreover, given two automorphisms o,0’ € Aut(g) of finite order, the
corresponding twisted loop algebras £(g, o) and £(g,0’) are isomorphic if and only if the
classes of o and ¢ in Out(g) are conjugate; see [31, Chapter 8] or [30, Section X.5].

Let R =Clz,2z71] and R = C[t,t!], where t = 2™.
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Proposition 3.4. The following results are true.
(a) £ is a free module of rank q over R. Moreover, for any A € C, we have an
isomorphism of Lie algebras (R/(t — X)) ®p £ = g.
(b) Consider the symmetric C-bilinear form

(14) exe B, C, B(az* b2') = k(a, b)0k+1,0-

Then B is non-degenerate and invariant. Moreover, the rescaled bilinear form mB
coincides with the composition £ x £ K, p =0 C, where K is the Killing form

of £, w= % and res§ (f) = reso(fw) for any f € R.

(¢) For any n € N, the (n + 1)-fold tensor product 220+ does not contain any
non-zero ad-invariant elements.
m—1 .
Proof. (a) Let (f1,..., fy) be any basis of the vector space € g;2’. Then for any f € £
§=0
there exist unique p1,...,py € R such that f = pifi + - - + pgfq. Hence, £ is a free
R-module of rank q.

. = s =y . =Y . . . .
The canonical map R ®r £ —— £,2" @ az® — az"t* is an R-linear surjective morphism

of Lie algebras. Since R ®x £ and £ are both free R-modules of the same rank, 7 is
an isomorphism. Finally, the extension R C R is unramified, hence for any u € C* the
following canonical linear maps

R/(t—p™)®rL— R/(z—p)@r & — R/(z =) @g RO L = R/(z — ) @5 £ — g
are isomorphisms of Lie algebras.
(b) Let £x £ K, R be the Killing form of €. Then we have: K (az",bz!) = r(a,b)zF .

The isomorphism of Lie algebras R ®p £ = £ as well as invariance of the Killing form
under automorphisms imply that the following diagram is commutative:

exe—— K g

Exe—" SR

) dt dz
Since w = ria m—, we get the second statement.
z

(¢) Assume that t € £2" 1 is such that

(15) [t®1®- @1+ - +1®---®1®z,t] =0

for all z € £. Let (bg)ren be an orthonormal basis of £ with respect to the form B. Then

We can express t as a sum t = i X aj,..j, ®bj, ®---®@0bj,. Consider the vector space
J1seensdn=

J={aj..j, | 1< g1,y jn < 8)c C L Forany 1 <iy,...,i, <s, we apply the map

le ® B(b;,, —) ® - @ B(b;,,—) : £20F) — g



14 RASCHID ABEDIN AND IGOR BURBAN

to the identity (15). It follows that [:U,ail,,,in] € J for any z € £, implying that J is an
ideal in £. However, £ does not contain any non-zero finite-dimensional ideals; see [31,
Lemma 8.6]. Hence, t = 0, as asserted. ]

A proof of the following key result can be found in [31, Lemma 8.1].
Proposition 3.5. The algebra g, = {a €y ‘J(a) = a} 15 non-zero and reductive.

Remark 3.6. In what follows, we choose a Cartan subalgebra h C go. Let Ag be the
root system of (gg,h). We fix a polarization Ag = A U Ay, which gives a triangular
decomposition gy = g3 ®h @ gy . One can show that h = {a €y Ha, h] =0 for all h € b}
is a Cartan subalgebra of g; see [31, Lemma 8.1]. However, in general b # 0. The algebra
g is simple if o is a so-called diagram automorphism of g; see [31, Chapter §]. O

Now we review the structure theory of twisted loop algebras as well as their relations with
affine Lie algebras. For that we need the following notions, notation and facts.

1. For any j € Z we put: £; = g; 2J C £. Since [go,gj] C g;, it follows that [go,ﬂj] C £,
too. A pair (a,j) € h* X Z is a root of (£,h) if

Llaj) = {x €L ‘ [h,z] = a(h)x for all h € f)} #0.

In our convention, (0,0) is a root of (£, h). Note that £y := b.

Let ® be the set of all roots of (£,h). It is clear that (—«,—j), (e, 5 + km) € & for all
k€ Z and (o, j) € ®.

2. For any (v, 7),(c/,j") € b* XZ we put: (a,j) + (/,j') = (a+ ', j+ j'). We have:

(L) Lori)] S Llarar jrir) -

A root (a, j) is called real if & # 0 and imaginary otherwise. There exists m'|m such that
any imaginary root has the form (0, km’) for some k € Z. For any real root («,j) € ® we
have: dimc(£,,)) = 1 (see e.g. [30, Lemma X.5.4]). A formula for dimc (£ ) can
be found in [31, Corollary 8.3].

Since g, is a reductive Lie algebra, we have a direct sum decomposition £ = @( a,j)ed Liaj) -
The sets of positive and negative roots of (£,h) are defined as follows:

(16) Pyi={(a,j) €®| £j>0}U{(x,0) € ®| £a €A},

where Af is the set positive roots of (gg,h). We have: ® = &, U ®_ U {(0,0)} and
‘I)_ - —¢+.

3. Since the bilinear form £ x £ -2+ C is invariant and non-degenerate, analogously to
Lemma 3.2 we obtain the following results:

e The pairing £, jy X £(ar ;) L, C is zero unless (o, 5)+ (o, ") = (0,0).

ahj

e For any (a,j) € ®, the pairing £, j) X £_a,—j) Bocis non-degenerate.

a?-])
e In particular, since B’h xh = K|y x b, the pairing h x b -, C is non-degenerate.
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4. The set II of simple roots of (£, h) is defined as follows:

(17) IT:= {(o,j) € D4 | (v — B,j — i) ¢ Py for all (B,i) € D4 }.

All elements of II are real roots and we have: |[II| = r + 1; see [30, Lemma X.5.7 and
Lemma X.5.9]. We use the following notation:

(18) II = {(ao,so),...,(ar,sr)}.

5. Since the pairing h x h — C is non-degenerate, we get the induced isomorphism of

vector spaces h — h*. Abusing the notation, let h* x h* —= C be the transfer of the
Killing form s under the isomorphism &.
2

e For any 0 < i < r we put: y; := 7(%)71(%) €h.
k(g o)
e For any 0 <i4,5 < r we set:
k(o, o)
19 = oA y]
( ) Qij ﬁ(ai,al)

It turns out that a;; € Z and A = (a;j) € Mat(,41)x(r41)(Z) is a generalized Cartan
matrix of affine type; see [30, Lemma X.5.6 and Lemma X.5.11]. In particular, we
have: rk(A) =r.
e For every 0 < ¢ < r one can choose xf € £4 (a;,5,) such that the following relations
are satisfied for all 0 < 4,5 < r:
[yi,y5] =0
[, 23] = dij i
+

[yl,xj[] = ta;j ;.

Moreover, for any 0 < i # j < r we have:

1—a;;

7

and the elements :coi, .. ,xf, Yo, - - -, Yr generate £; see [30, Section X.5].
o Let & =64. A theorem of Gabber and Kac asserts that the linear map

(20) & 58 e ot iy

is an isomorphism of Lie algebras, which identifies both standard forms on & and
on £ (up to an appropriate rescaling); see [31, Theorem 8.5].

Corollary 3.7. We have a Lie bialgebra cobracket £ Doy A2¢ (also called standard),
given by the formulae
k(ov, o)

(21) So(zh) = 22y Aot

; 5 7 oand So(y;)) =0 forall 0 <i<r.

This cobracket is determined by the Manin triple, which is isomorphic to (12).
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3.3. Bounded Lie subalgebras of twisted loop algebras. For any 0 < ¢ < r, the
corresponding (positive) maximal parabolic Lie subalgebras B, C £ is defined as follows:

Bi = (hoy -y hey oo Ty T ).
A similar argument to [32, Lemma 1.5] implies that
(22) Pi = B4+ &(B4 jyear L))

o0
where @ := ®_ N (ap,...,d,.. "O‘T>N* and B, = (g7 ®h) & (D g5 2") is a positive
0 k=1
Borel subalgebra of £.

Lemma 3.8. For any 0 < ¢ < r we have: t53; C (‘Bi)J', where the orthogonal space is
taken with respect to the bilinear form B, given by the formula (14).

Proof. Since the roots ag, ..., d,, ..., q, are linearly independent elements of §*, it follows
that (0, —km’) ¢ @, for all k € N. Let ®; := &, LU{(0,0)} U®; . Then we have:

Pi= P Leopn ad = P Leprm:

(avj)ect‘i (ﬁvk)eq>z
Let (a,7),(8,k) € ®;, v € £(45) and y € £g 44 are such that B(z,y) # 0. Then we
have: o = —f and j = —k — m.

Case 1. Assume that a = 0. Then (a, j) € @, U {(0,0)} and (5,k) = (0,—j —m) € ®; is
a negative imaginary root. Contradiction.

Case 2. Assume that (a,j) is a real root. Then there exist x € £, ;) and y € £(g j4m)
such that [z,y] # 0; see [30, Lemma X.5.5"]. Hence, £ ) N*P; # 0. It follows from the
decomposition (22) that (0, —m) € ®; . Contradiction.

We have shown that the pairing ¢93; x 3, Bocis zero, what implies the claim. ([l

For any n € Z we put: £, :=t" £>0, where £>0 := € £;. Note that for any n € N we
Jj=0

have: (,SZn)L C L _p.

Definition 3.9. A Lie subalgebra © C £ is bounded if £>,, CO C £>_,, for some n € N.

Let £ = £4Cc be a central extension of £ with the Lie bracket given by the formulae
(23) [az®, 02" := [a, b] 2" + kS y10k(a,b) ¢ and  [azF ] =0

for all k,l € Z, a € g, and b € g;. Let A € Mat(,41)x(r+1)(Z) be the generalized Cartan
matrix of affine type, given by (19) and % = é A be the corresponding affine Kac—-Moody
Lie algebra. Then é has one-dimensional center 3, & = [%,(’:5] and & = & /3. The
Gabber—Kac isomorphism & SNy given by (20) extends to an isomorphism of Lie algebras

® -2 €. The entire picture can be summarized in the following commutative diagram of
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Lie algebras and Lie algebra homomorphisms:

6B +—
(24) :

o

Bl G
B—a
: A

—

For 0 <7 < r, let 55+ C ‘I?Z =P, +Cc C é be the corresponding maximal parabolic Lie
subalgebra.

Proposition 3.10. Let O C £ be a bounded Lie subalgebra. Then there exists an R-linear
automorphism ¢ of £ and 0 < i < r such that O C qb(‘l?i).

Proof. Let n € N be such that £5, C O C £5_, and J := t>"*1 O. Obviously, J is a Lie
J

ideal in O and £>(3,41) €T C £5(p41) - We can view J and £ as vector subspaces in £.

Let © := O+Ce. Since 3 C L>mg1) and O C £5_,, the relations (23) imply that
[x, y]s = [:c, y]E forallz € Jand y € O. Hence, J C O is a Lie ideal with respect to the Lie
bracket [—, —}E. Embedding £ into & via p, we see that J C év5+ and dim¢ (Q~5+/ 3) < 00.

By [32, Proposition 2.8], there exists an inner automorphism ¥ of ® and 0 < i < r such

that [‘ﬁl,i(ﬂ)] - ‘i?l According to [32, Lemma 1.5], for any Lie subalgebra BC&

containing %Jr, there exists 0 < ¢ < 7 such that ‘i? C ‘531 Since the only proper ideals of
® are & and 3 (see e.g. [32, Section 1.2]), we deduce from maximality of J; that

(25) Ny (‘Bl) = {z € ® | [z,y] € P, for ally € ‘iz} =B,
It follows that
(26) P(D) € N (F;) = Bs-

Consider the automorphism & Ni> & induced by 1/; Since vf) is inner, 1 is R-linear.
Applying to (26) the projection & — & and identifying & with £, we finally end up with
an inclusion O C gﬁ(‘l?i), where ¢ =171, g

Theorem 3.11. Let O C £ be a bounded coisotropic Lie subalgebra of £. Then we have:
tO C Ot i.e. O is stable under the multiplication with the elements of Clt].

Proof. According to Proposition 3.10, there exists 0 < i < r and ¢ € Autr(£) such that
O C ¢(PB;). Since B((Z)(f), gzﬁ(g)) = B(f,g) for all f,g € £, we get (applying Lemma 3.8):

tO Cto(P;) = ¢(¢B;) C o(BiH) = (4(B,)) "~ C O+ C O,

as asserted. OJ
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4. TWISTS OF THE STANDARD LIE BIALGEBRA STRUCTURE ON A TWISTED LOOP
ALGEBRA
Recall our notation: g is a simple complex Lie algebra of dimension ¢, o € Autc(g) is an

27
automorphism of order m and € = exp(l) For any k € Z we denote:
m

O = {a €glofa)= 6ka} and gi = {a €gloa)= s_ka}.

Let £ =2(g,0) = @ g, 2" and & = (g, 07") = P gi 2¥ be the corresponding twisted
kezZ k€Z

1
loop algebras and £ x £ B, C, respectively gty ot B C, be the corresponding standard
bilinear forms. Note that the linear map

(27) g—gh ek e (azk)I = az ¥ for anyk € Z anda € 9

is an isomorphism of Lie algebras as well as an isometry with respect to the bilinear forms

B and BT. Let us denote £, = P g;, 2% and £_ = P gi 2* . Then we put:
keZ keZ

D=L, x £ =2exgel
Note that we have a non-degenerate invariant symmetric bilinear form
F
(28) DxD — C? ((f+’ f*)a (g+ag*)) = B(f+ag+) - Bi(f*vg*)

We fix a triangular decomposition gy, = ga“ Shdg, = gé and denote:
By 90 ©h) @ @gkz+ and B_:= (g, ©h) d @gk

Let B, = h be the canonical projections. Then we put:

(20) W° = {(fof2) € By x B_ |me(fa) +7_(f2) = 0} and €= {(f, /)| f € £}.
Similarly to Theorem 3.1, we have a Manin triple

(30) D =C+u°.

Let £ 2% €A £ be the standard Lie bialgebra cobracket on £. According to Theorem 3.1,
8o is determined by (30), where we use the identification £ — &, f — (f, f})

n n

For t = Y a; ® b; € €%2 let ° F, ¢, w— > F(w,a;)b; be the corresponding linear
i=1 =1

map, 0y = 0o + 0 and 2 = {w + fe(w) |w € QBO}.

Theorem 4.1. For t € N2€ = A2€, the corresponding subspace Wy C D is a Lie
subalgebra if and only (£,0v) is a Lie bialgebra. Moreover, the corresponding map

{te/\2£

(£,6:)is a Lie bz’algebm} — MT(D, ¢;20°)

s a bijection and £ D, @AL s determined by the Manin triple ® = €+ 20;.
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Proof. By Proposition 3.4, £9% does not contain any non-zero ad-invariant elements. Ac-
cording to Proposition 2.3, (£,d;) is a Lie bialgebra if and only if t satisfies the twist
equation (6). Hence, the result follows from Theorem 2.10. O

Let 20 C © be a Lie subalgebra as in Theorem 4.1 and 20 C £ be its image under the
projections ® —» £1. Starting with the embedding 20 C 27, x W _, we get:

W x Wk = (W, x W_)= CWH = C W, xW_.

It follows that 201 C 204, 2+ x{0} C 2V and {0} x 20+ C 20.

The assumption 20 = 25° implies that there exists n € N such that (2+) > X (2—) > & W
Hence, we obtain: = 2

(84),, x ()., com=atc ((e4),, x (£).,) S (84)u, x (2).

It follows that (Si) o C W, C (Si) N N ) 20, are bounded coisotropic Lie subalgebras
of the twisted loop algebra £ . B

Remark 4.2. Since the linear map (27) is an isomorphism of Lie algebras, compatible
with the standard bilinear forms, one can equally parametrize twists of the standard Lie

bialgebra cobracket £ L, A%(£) via Manin triples
LxL=C+W, W=W’

where € = {(f, f) } f €L} and 20" is given by (11). The usage of such Manin triples would
be quite in the spirit of the conventional notation [22, 19] of Theorem 3.1. However, as
we shall see later on, Manin triples from Theorem 4.1 are more natural from the algebro-
geometric viewpoint. O

We put: R = C[t,t7'], Ry = Clty,t:'] D Ly = C[ty], where t = 2™ and ty = 2. We
shall use the identifications R — Ri,t— tf. Theorem 3.11 implies that

(31) ty Wy C WL C W, .

Lemma 4.3. The following results are true.

(a) The Lie algebra Wy is a free module of rank q over Li. Moreover, the canonical
map Ry ®r,. Wy — L4 is an isomorphism of Lie algebras.

(b) We have: (t4,t_) 0 =t W, xt_W_ C W, where (t4,t_) is the ideal in R4 X R_
generated byt and t_. In particular, 0 is a finitely generated torsion free module
over the algebra O := Clty,t_]/(t+t-).

(¢) The linear map W /(t4,t-)W — (W, /t4 W) x (W_ /t_W_) is an injective
morphism of Lie algebras, whereas both maps 2 /(t4,t_) W — Wy /t+ Wy are
surjective morphisms of Lie algebras.

Proof. (a) We get from (31) that 204 is a Li-submodule of £1. It follows from 204 =<
205 = B that the canonical map Ry ®r, Wy — £4 is an isomorphism of Lie algebras
as well as that 204 is a free module of rank q over L.
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(b) It follows from the embedding 20 C 25, x W _ that (t4,t-)2 C t4 W, xt_W_. On
the other hand, it follows from the inclusions (31) that

ty Wy xt_W_ C Wy x WL C W =920,
Abusing the notation, we can view O as the subalgebra of Ry x R_ generated by the
elements t; = (t4,0) and t— = (0,t_). It follows from the assumption 20 < 20° and
the fact that 20° is finitely generated over O that 20 is a finitely generated torsion free
O-module, as asserted.
(¢) Both results follow from the definition of 20+ and the previous statement. 0

Lemma 4.4. Let Uy be the preimage of W4 under the isomorphism £ — £4 and (abusing
the notation) Ly = C[t*']. Then the following results are true:
(a) £=U, +T_;
(b) the linear map V4 NV_ — (W, x W_) /W, f + (f, f}) is an isomorphism;
(c) V4 is a free module of rank q over Ly and both canonical maps R ®p, Vi — £
are isomorphisms of Lie algebras.

Proof. (a) Take any f € £. It follows from the direct sum decomposition © = € 4 20 that
there exist g € £ and (w,,w_) € W such that (f,0) = (g,9%) + (wy,w_). Let vy € Y be
the elements corresponding to wy € 2+ under the isomorphisms £ — £4. It follows that
f=vy—v_ €Y +U_, as asserted.

(b) Let v € Wy NY_ be such that (v,v¥) =0 in (W4 x W_)/2W. It follows that (v, vt) €
¢€NYW = 0, hence v = 0, what implies injectivity of 1.

Consider an arbitrary element (w4,w-) € 204 xW_. Then there exist w € £ and
(w'y,w’) € Wsuch that (wy,w_) = (w,w?)+(w ,w" ). It follows that w = w—w!, € W
and wf = w_ —w’_ € W_, thus (wi,w_) = (w,wt) € (W4 x W_)/W. We conclude that
1 is surjective, hence an isomorphism.

(c) This statement is a translation of the corresponding result from Lemma 4.3. O

Let L = C((t)) and € := L ®x & We identify clements of £ with formal power series

S apz® (where ay, € gy for all k € Z). Obviously, we have an embedding of Lie algebras
k>—o00

€< £ We extend the standard form £x £ -2 C to a bilinear form £x & -2 C, defining

it by the same formula (14). Next, we put: D=L x Ei and denote by D xD L5 C the
bilinear form given by the same recipe as in (28). Note that £ — @, f +— (f, f}) is an

~

embedding of Lie algebras, whose image is an isotropic subspace with respect to F'.

Let B, := (gf @ b) & (kH g 2%) and B_ = (g5 &h) @ (kH gi zk). We put:
=1 =1

T = {(frf )€ Be x B |mi(fe)+ 7 (f) =0} and €= {(f,/%)| €2}
Analogously to (30), we have a Manin triple

(32) D=0 1.

Our next goal is to reformulate the theory of twists of the standard Lie bialgebra structure
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on £ in the terms of completed Manin triples.

For any n € N, we define the linear map £ 2", ¢ as the composition
n [e.e] n
A k k k
£ —» @ gp 2 — L, Z apz” Z apz”.
k>—o0 k>—o00 k>—o0

Next, for any f,g € € there exists ng € N such that for all n > ng we have:

(33) B(f.9) = B(u(f), 3n(9))-

Let ® = €420 be a Manin triple from Theorem 4.1. According to Lemma 4.3, 20 is a
finitely generated O-module. We can definite the completed Lie algebra 27 as follows:

(34) 2 = lim (20 /m*20) = 0 ©0 W C (L x L) ©0 W=D,
where m = (t;,t_), Ly = C((t+)) and O = limO/m* = C[ty,t_]/(tst-) C Ly x L_. Tt

follows from 20 = 20° that 0 = 99 +m*_ for all sufficiently large k € N, which can
serve as an alternative definition of 20.

Proposition 4.5. We have the following commutative diagram of bijections:

{t € N? S‘ (£,6:) is a Lie bialgebm}

(33) / T

MT (D, ¢; 20°) MT(D,¢; )

Here, the left diagonal arrow is given in Theorem 4.1 and the horizontal arrow is given by
200 — . Moreover, if 8 is a Lie bialgebra cobracket for some t € A2 £, it is determined
by the Manin triple ® = € + 2.

Proof. We first show that the Manin triple D = ¢+ determines 0o. By abuse of
notation, we write J((f,9)) = (n(F)1n(9)F) € D for any (f,g%) € D, where gi(z) =

9(=7") € ¢ and fig € & Let fe€andg,g" €2 . Then for all n € N we have:
]n(g/)ajn(g”) € 20° and

F(6.(£),d ®d") = F(6:(f),3a(g") @ 3m(g")) = F(f, [3n(d), 3n(d")]),

where the last equality follows from Theorem 4.1. Taking n sufficiently large, we continue:

F(f, [1n(d)san(dM]) = F(f,0[d,d"]) = F(£,[d', ")),
what implies that ﬁ(éo(f),g’ ®g") = ﬁ(f, [g,g"]), as asserted.

By Proposition 3.4, £2% does not contain any non-zero ad-invariant elements, hence ac-
cording to Proposition 2.3, (£,d;) is a Lie bialgebra if and only if t satisfies the twist
equation (6) and we obtain the right diagonal bijection using Theorem 2.10. It remains
to show that the diagram is commutative.
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Next, for any tensor t =Y " | a; ® b; there exists k € N such that for all w € 2~ we have
fe(w) ==Y F(w,ai)bi = > F(g(w), a;)b;.
i=1 i=1

Since F extends F, we obtain: 20, = {w+ ]?t(w) | we W}, As a consequence,
{w + ﬁ(w)‘w € @O} = W, +mF W = 2,
showing that the diagram (35) is indeed commutative. O
5. ON ALGEBRAIC GEOMETRY OF THE CLASSICAL YANG—BAXTER EQUATION

Let g be a finite dimensional simple Lie algebra over C of dimension ¢, g X g — C be its
Killing form and v € g ® g the Casimir element.

5.1. Classical Yang—Baxter equation and associated Lie subalgebras of g((z)).
Recall that the germ of a tensor-valued meromorphic function ((CQ, O) - g®g is a skew-
symmetric solution of the classical Yang-Baxter equation (CYBE) if

[rl2(az,y),r13(w,z)] + [7“13(3;,2),7“23(7;,2)} + [TIQ(:U,y),TQ?’(y,z)} =0
EOIR B

The Killing form g x g — C induces an isomorphism of vector spaces

(37) g9 —> Endc(g), a®bi (¢ klac)-b).
A solution r of (36) is called non-degenerate, if for a generic point (2, z5) in the domain
of definition of 7, the linear map & (r(z},z3)) € Endc(g) is an isomorphism.
One can perform the following transformations with solutions of (36).
e Gauge transformations. For any holomorphic germ (C,0) 2, Autc(g), the func-
tion
(38) (z,y) = ((x) ® d(y))r(z,y).
is again a solution of (36).

e Change of variables. Let (C,0) — (C,0) be a non-constant map of germs. Then

(z,y) :=r(n(x),n(y)).

=

(39)
is again a solution of (36).

It is clear that both transformations (38) and (39) map non-degenerate solutions of (36)
into non-degenerate ones.

Belavin and Drinfeld proved in [7] that any non-degenerate solution of (36) can be trans-
formed by above transformations to a solution of the form

(10) rla) = o he), bla) =~ (0.0)

where ((CQ,O) h, g®g is the germ of a holomorphic function. Moreover, they showed
that one can always find a gauge transformation ¢ and a change of variables n such that
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(¢(z) ® ¢(y))r(n(z),n(y)) = o(z — y) for some meromorphic (C,0) -2, g®g. In other
words, (36) reduces to the equation

(41) [0 (x), 0" (z + y)] + [0 (2), 0 ()] + [0 (z + ), 0®(y)] =0

(the so-called CYBE with one spectral parameter). Belavin and Drinfeld proved in [6]
that any non—degenerate solution of (41) is automatically skew-symmetric, has a simple
pole at 0 with residue equal to a multiple of the Casimir element v € g®g. Moreover,
0 can be meromorphically extended on the entire plane C and its poles form an additive
subgroup A C C such that rk(A) < 2; see [6, Theorem 1.1].

e If rk(A) = 2 than the corresponding solution g is elliptic. Elliptic solutions exist
only for g = sl,,(C). A full list of them is given in [6, Section 5].

e Ifrk(A) = 1 than the corresponding solution p is trigonometric. A full classification
of these solutions is given in [6, Section 6], see also [8, Chapter 7].

e If A = 0 then p is a rational solution, i.e. o(x) = Ty &(z), where £ € (g® g)[z].
T

The problem of classification of all rational solutions for g = sl,,(C) contains a

representation-wild problem of classification of pairs of matrices a,b € g such that

[a,b] = 0, see Remark 7.5 below. Nonetheless, the structure theory of rational
solutions was developed by Stolin in [48].

Among various constructions which attach to a solution of (36) a Lie bialgebra there is
the following universal one, which dates back to the works [26, 44].

Consider the Lie algebra of formal Laurent series R := g((z)). It is equipped with a
symmetric non-degenerate invariant form

(42) R x R~ C, (a2",02") = Gpay10 K, D).
Let r be a solution of (36) having the form (40). We write its formal power series expansion
1 oFr
(43) Zm o € (e gl where ni(@) = 55|
Foranyk:ENoletQBk—<1®)\rk ‘)\eg>CC§ﬁ Then we put:
(44) W= > W CR.
keNy
More concretely, let (g1,...,94) be an orthonormal basis of g with respect of k. Then

Y=01® g1+ + gq ® g4 and the power series expansion (43) can be written as

(45) ZZ Wik @ gi) ¥ € (R g)yl,
k=0 i=1
where wy;, ;) = giz R4 vy,; for some vy ; € g[x]. We have:
N = <w(kﬂ-)}1 <i<gqk €N0>(C CR.
Let T = {(k,z) ‘ keNpl1<i< q} and g4 = giz® for any (k,i) € Y. Then we have:
(46) F(w(k/’i/),g(ku’iu)) = 6k’7k”5i’,i” for all (k,, /) (k” H) eT.
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Let (C2,0) —— g®g be of the form (40). Then (36) can be rewritten as the system of the
following constraints on the coefficients r(z) € R of the series 7(x;y):

(47) (713 (21) + 773 (w2), 712 (21, 22)] = Z [ri(z1), 0 (22)]  for all k € Ny.

k/,k”ZO
Kk =k

In more concrete terms, (47) can be rewritten as the following equality:

q
(48) D [wiiy (1) ® 1+ 1@ wipey(w2), (w1, 22)] @ g; =
=1

Z Wi 1y (T1) @ Wi g1y (22) @ [gir, gir]
(K'i)er
(k”,i”)GT
K +k"=k
in the vector space ((g ® g)((z1, z2))) ®g, where the right-hand side of (48) is embedded into

((g ®g)(x1, .’Eg))) ® g via the canonical linear map g((z1)) ® g((z2)) — (g®g)(x1,x2)) (it
follows from (40) that the left-hand side belongs to g((z1)) ® g((z2)) ® g as well). Therefore,
we have a linear map

(49) DN WRW, w(z) — [wz) @1+ 10 w(ws),r(z1,22)].

The system of constraints (47) can be stated for any expression r(x,y) of the form (40)
with h(z,y) € (g® g)[z,y] (without requiring the convergence of h(x,y) and even passing
from C to an arbitrary field k), so one may speak on formal solutions of CYBE.

We have the following result, see e.g. [24, Subsection 6.3.3]) for a proof.

1
Theorem 5.1. Let r = ——~ + h(x,y) be any formal solution of CYBE. Then the
-y
corresponding vector subspace W C R, given by (44), is a Lagrangian Lie subalgebra
with respect to the bilinear form (42). Moreover, we have a direct sum decomposition
R = g[z] +2W and the map W 2, W, given by (49), is a Lie bialgebra cobracket.

Conversely, let R = g[z] + 20 be a Manin triple. Then the linear map g[x] L9 is an
isomorphism and there exists a uniquely determined family (w ;)) (ki) @)ex of elements of
0 such that wy, ;) = giz Pl 4 V(k,iy for some v, ;) € glx]. This family forms a basis of
20, which is dual to the topological basis (ki) (k,iyex of 8[z] and the formal power series
(45) is a formal solution of CYBE.

In the notation of Theorem 5.1, we have the following result.

Proposition 5.2. The Lie bialgebra cobracket 203 R W W is determined by the corre-
sponding Manin triple R = g[x] + 2.

Proof. We have to show the following identity for any w € 20 and fi, fo € g[z]:
(50) F([w(z1) ® 1+ 1@ w(zs),r(21,22)], fi(z1) ® fa(z2)) = F(w(@), [f1(z), f2(2)]).
Note that for any w € 27 there exists n € N such that

F(6(w), /1 ® f2) = 0= F(w, [f1, f2]),
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provided f1 € 2™ g[z] or fo € ™ g[x]. Therefore, it is sufficient to prove that
F(6(wa), 9 ) @ 9w imy) = F(wigys (900,00 9]

for all (I, 1), (K, ), (K",i") € T.

First note that we have a finite sum: [g(k,’i,),g(k”’iu)] = > )\glg fZ),(k” i)k, where

(k3)er
/\Ek Z).) (ki) € C. Tt is clear that )\Ek Z? ) (k) # 0 only if k = k' + k”. In particular, for
any (k,i) € T there exist only finitely many (k’, i'), (K",i") € T such that )\EZ}ig/) (ke i) # 0.

Next, we can rewrite the classical Yang-Baxter equation (48) as

Z 5 ®g(k: i) — Z w(k/ﬂ-/) &® w(k//vi//) [g(k’ i) (k” //)]
(ki)ex (K i"eYx
(K" i")eT
implying that 5(w(k7i)) = (k/Z/;GT )‘Ek’,3’),(k”,i”)w(k'7i') ® w - Applying (46) we get
(k//:i//)e’r

F(é(w(m)),g(,{/’i/) ®g(k”,i”)> = )\Ez,j,)i,)’(k,,’i,,) = F(w(l,j) [g(k/ -/) (k” //)]), as asserted. O

5.2. Geometric CYBE datum. Now we make a quick review of the algebro-geometric
theory of the classical Yang-Baxter equation (36), following the work [14].

A Weierstrafi curve is an irreducible projective curve over C of arithmetic genus one.
For g2,93 € C, let Eg, 4, = V(u? — 403 + gov + g3) C P2 It is well-known that any
Weierstrall curve E is isomorphic to E,, ;) for some ga, 935 € C. Moreover, E(,, . is
smooth if and only if g5 # 27¢3. If g3 = 27¢3 then E(g,.45) has a unique singular point s,
which is a nodal singularity if (g2, g3) # (0,0) and a cuspidal singularity if (g2, g3) = (0, 0).
We have: T'(E, Q) = C, where ) is the sheaf of regular differential one-forms on F, taken
in the Rosenlicht sense if E is singular; see e.g. [4, Section IL.6].

Assume that A is a coherent sheaf of Lie algebras on F such that:

(1) A is acyclic, i.e. HY(E, A) =0 = HY(E, A);

(2) A is weakly g-locally free on the regular part U of E, i.e. A‘x >gforall zeU.
From the first assumption it follows that the sheaf A is torsion free. The second assumption
on A implies that the canonical isomorphism of Op-modules A‘U ® A‘U — Endy(A),
induced by the Killing forms of the Lie algebras of local sections of A, is an isomorphism.
As a consequence, the space 2l of global sections of the rational envelope of A is a simple
Lie algebra over the field K of meromorphic functions on F.

Choosing a global regular one-form 0 # w € T'(E,(2), we get the so-called residue short
exact sequence:

resE

(51) 0 — Opxv — Opxy(X) — Oy, — 0,

where ¥ C E x U denotes the diagonal, see [14, Section 3.1]. Tensoring (51) with A@A‘U
and then applying the functor I'(E x U, — ), we obtain a C-linear map

Endy(A) 25 T(U x U\ %, AR A),
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making the following diagram

I(U,A® A) T (E x U, AR Alp(%))

SR f

Endy(A) —= S T(U x U\ 3, AR A)

commutative. In this way, we get a distinguished section
(53) p=T,(1) eT(UxU\S,AKA),
called a geometric r—matriz attached to a pair (E,.A) as above.

If the curve F is singular, we additionally require that

(3) A is isotropic at s, i.e. the germ 2 of the sheaf A at the singular point s is an
isotropic Lie subalgebra of 2k with respect to the pairing

W
resy

FY: Ak x Ax K =% ¢,
where K is the Killing form of Ak and res?(f) = ress(fw) for f € K (taken in the
Rosenlicht sense).
A pair (E, A) satisfying the properties (1)—(3) above will be called geometric CYBE datum.
We have the following result; see [14, Theorem 4.3].

Theorem 5.3. Let (E,.A) be a geometric CYBE datum. Then we have:

1. The geometric r-matriz p satisfies the following sheaf-theoretic version of the classical
Yang—Baxter equation:

(54) [p12’p13] + [p12,p23] i [,013,,023] —0,
where both sides of the above equality are viewed as meromorphic sections of AK AKX A
over the triple product U x U x U.

2. Moreover, p is skew-symmetric and non-degenerate 1.e.
(55)  p(x1,22)"? = —p(a2,21)*! € (AK A)‘( = “4‘351 ® A‘:Dg for any 1 # x5 € U

T1,%2)
and there exists an open subset U' C U such that for any x1 # xo € U’, the tensor
p(z1,x2) € A‘xl ® A}xz is non-degenerate.

In what follows, we write O = Op. Let V C U be an open affine subset, Ry = I'(V, O)
and 2y :=T'(V, A). Assume that V is sufficiently small so that 20y is free as Ry-module.
Since 2 is weakly g-locally free, the Killing form 2y x 2y, — Ry is non-degenerate. Let
(c1,...,¢q) be a basis of Ay over Ry and (cj,...,c;) be the dual basis. Then x :=
ci®ca+ - +c;®cq €Ay g, Ay is the canonical Casimir element. Let X:=¢ ®c+
ot g ®cq € Ay @c Uy, Then  is a (non-canonical) lift of x under the canonical map
Ay @c Ay — Ay @p,, Ay. Choosing coordinates (u,v) on V' x V, we may write:

f()

= X+h

(56) ’(VXV)\E u—o* + A, v)

for some h(u,v) € Ay @c Ay, where w‘v = fcév) for some invertible element f € Ry .
v
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There are two consistent ways to proceed from the abstract geometric r-matrix p attached
o (E,A) to a concrete solution of (36), respectively (47).

1. Let us view FE as a complex-analytic variety and A as a sheaf of Lie algebras in the
euclidean topology. As in [37, Lemma 2.1] one can show that for any p € U there exists
an open neighbourhood p € V' C U together with a I'(V, O")-linear isomorphism of Lie

algebras T'(V, A) LN g®CF(V, Oan). Then the trivialized section p¢ can be viewed as a

meromorphic tensor-valued function V- x V' Il g®g. It follows from (54) and (55) that
after a choice of a local coordinate on V', we get a non-degenerate solution of (36). Another
choice of a trivialization £ and a local coordinate on V' leads to an equivalent solution (in
the sense of (38) and (39)). O

2. Let p € E be an arbitrary point, 6p (respectively ﬁp) be the completion of the stalk
of the structure sheaf O (respectively, of A) at p, @, be the total ring of fractions of
OP ) Ep =L \ {p} Up =U \ {p} Rp - P(EP7O) RZ = F(UP70)7 91(1,) = F(EpaA)7

(p) = F(Up, .A) and le — Qp ®O p = Qp ®Rp Ql( ) .

w

~ ~ F
From now on suppose that p € U. Then we have the bilinear form 2, x 2, — C given
as the composition

(57) A, x Ay @p 5 C
where f(p denotes the Killing form of §lp. Since the differential form w is non-vanishing at

p, there exists a unique isomorphism 5p 2, C[y] identifying @, with the differential form
dy. Moreover, the assumption that A is g-weakly locally free implies that there exists a

6pr[[y]]fequivariant isomorphism of Lie algebras é\[p <, g[ly]; see [28]. This isomorphism
induces a @pf(C((y))fequivariant isomorphism of Lie algebras 2, <, 9((y)). In this way,
we identify the bilinear form F with the bilinear form F' given by (42).

The following sequence of vector spaces and linear maps
(58) 0 — HYE, A) — A @A — A, — HYE, A) — 0

is exact, see e.g. [42, Proposition 3] (it is a version of the Mayer—Vietoris exact sequence).
Since HO(E, A) = 0= H(E, A), it follows that 2A(p) ﬂle =0 and 24 —l—le = le, where
we identify the Lie algebras 2,) and Ql with their images in Ql under the corresponding
canonical embeddings It follows from the isotropy assumption (3) on the sheaf A that
Ql(p) and 2[ are isotropic Lie subalgebras of Ql with respect to the bilinear form F“7 ie.
A, = Ql + Ry is a Manin triple. Identifying 2, with 9, 91 with g[y] and 24, with its
image QH in A, we end up with a Manin triple ER ally] + QB as in Theorem 5.1.

We have a family of compatible linear maps I'((E x U) \ £, AR A) =% W g[y]/(y")
given as the composition

T((E X U)\ S, ABLA) 22 20 @2, /mndl,) < W@ glyl/ (™).
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Here, ¢, is induced by the trivializations ¢ and ¢ and v, := (i X 1,)*, where the morphism

Spec(ap/m”) ", E maps the unique closed point of Spec(ap/m”) to p and E, S Eis
the canonical inclusion. Taking the projective limit of (vy,)nen, we get a linear map

T(ExU)\L, AR A) — (W g)[y].
In [14, Theorem 6.4] it was shown that
© /4
7 (z;y) = v Z <Zw ki) (%) ® gz) =7, Z <Z U(k,i) (T) ® gz‘) v*,
k=0 =0 \i=1

where w, ;) = giz P+ V(k,i) € 2 are such that vy, ;) € g[x] for all (k,i) € T. It follows
from Theorem 5.1 that 7 (z;y) is a formal skew-symmetric solution of CYBE (47). O

Remark 5.4. According to Theorem 5.1, 2, is a Lie bialgebra. Now we give a sheaf-
6,
theoretic description of the corresponding Lie bialgebra cobracket 2, = ) @A)

Let 0 € I‘(E x U, AK A(E)) the preimage of p under the canonical restriction map (it
follows from (52) that such preimage exists and is unique). Then we have a linear map

(1)
(59) Ay o T(By x Uy (ARAND)), [ [fe1+10 frol, 0]

Analogously, we have a distinguished section of € F(U x B, AKX A(Z)) such that

21
= cA
(z,y) <Q‘(y,z)> T

Consider the linear map

i

0 ®A’ for all x # y € U.
y

(r)
60) Uy T (U % By (ABAE), [ [fo1418f ¢, 0]

It follows from the skew-symmetry of p that both maps 615,1) and 51(;) can be glued to a
5® 3
linear map 2, —— I'(E, x Ep, (AR A)(X)). Let 51(,t) be the composition

(%)

Ay 2o T (B, x By, (AR A) (D)) — T((E, x B,)\ 3, AR A).

Consider the linear map

5(P)

A, o T((Up x U\ S, AR A), f o [fol+10 fp], ],
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For any f € QKE’,p) the section 51(;’) )( f) has no pole along the diagonal; see [14, Proposition
4.12]. Tt follows from the commutative diagram

50
) —— D((Ep x Ep) \ , AK A)

|, |

(61) A ——T((Up x Up) \ B, AR A)

515)/))
I'(Up x Uy, AK A)

that 51(3t) can be extended to a linear map 2, Lo, L((Epx Ep)\{(s,s)}, AKA). It remains
to note that R, ®c R, is a reduced Cohen-Macaulay C-algebra of Krull dimension two
and 2(,) @c A, is a maximal Cohen-Macaulay (Rp, ®@c Rp)-module. As a consequence,
the canonical restriction map

Ay @Ay Z=T(Ey x By, ARA) — T((Ep x Ep) \ {(s,5)}, AR A)

is an isomorphism; see e.g. [13, Section 3]. It follows that §, can be extended to a linear
(P)
map A, SN 2y ®RA(p). According to [14, Proposition 4.12], Ql‘g ) 2 Ql(p) ® Ql((’p) is a Lie

bialgebra cobracket. It follows that (2, d,) is a Lie bialgebra, too. Moreover, identifying

the Manin triples glp = ﬁp + 2,y and R = g[y] + 2, the cobracket &, gets identified with
the cobracket (49) on the Lie algebra 20. O

Proposition 5.5. Let (E, A) be a geometric CYBE datum and p € U. Then the Lie
bialgebra cobracket A, e, ) @A) is determined by the Manin triple §lp = §lp —i—Ql(p).

Proof. It is a consequence of Proposition 5.2. O

5.3. Manin triples and geometric CYBE data on singular Weierstrafl curves.
Let (E,A) be a geometric CYBE datum, where E is a singular Weierstrafl curve. As in
the previous subsection, let s be the smgular point of £ and U = E \ {s} To simplify

the notation, we denote: O = OS, Q QS and R = R, as well as A= le, 2 =2, and
A = Ql Moreover, let P! - E be the normalization map.

Apart of Remark 5.8, we assume in this subsection that F is nodal. Let s+ € P! be
S/l\lch that v(sy) = s. Nex:c\, let O+ be the completion of the stalk of Op1 at si and
@+ be the fraction field of Oy. Then we have an injective homomorphism of C—algebras

*

0 6+ X 5,, which induces an isomorphism of the corresponding total rings of fractions

Q- Qi x Q-

We choose homogeneous coordinates (w, : w_) on P! so that s; = (0:1) and s_ = (1:0).
. . w4 w—

Then the rational functions v = uy := — and u_ := — are local parameters at the
w-— W4
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points s; and s_, respectively. In these terms we have an algebra isomorphism
R=T(U,0) 5T (v (U),0p) = Clu,u]

as well as O1 = Cu+], Q+ = C((us)), Q = C((uy) x C((u_)) and O = Cllug, u_]/(upu_).
We shall view the following rational differential one-form on P!

_du-

u U u_

_ du_ duy

w

as a generator of I'(E, Q). It follows from the assumption that A is weakly g-locally free
that the Killing form 2f x 2 X, @ is non-degenerate. Hence, the Killing form Ax A L @

is non-degenerate, too. Recall that the Rosenlicht residue map @ ™, C with respect to
the form w is given by the formula

(62) res?’(f) = res,, (fyw) + res,_ (f-w) = resy <f+du+> ~ resg <f_du_> ’
U4 u—

where we use the identifications f = (fy,f-) € Q = Q4 x Q_ = C((us)) x C((u_)).

Similarly to (57), we get an invariant symmetric bilinear form A x A £, C given by
(63) Ax AL 0" ¢,

It is easy to see that ﬁ;’ is non-degenerate.

It can be shown that the Mayer—Vietoris sequence (58) is exact at the singular point s as
well; see e.g. [25, Theorem 3.1]. It follows from the cohomology vanishing H(E, A) =0 =
H'(E, A) that we have a Manin triple 2 = 21 + 2(. According to [14, Proposition 4.12]

(64) AL AY, f o [fR1+10 f,p]
is a Lie bialgebra cobracket, where p € I'((U x U) \ &, AKX A) is the geometric r-matrix.
Theorem 5.6. Let (E, A) be a geometric CYBE datum, where E is a nodal Weierstrafs
curve. Then the Lie bialgebra cobracket (64) is determined by the Manin triple 2 = A +2L.
Proof. For any k € N we put:

o PF) .= O/m* @¢ R, Ej([k) = 6i/m~i ®c R an~d Pk) = E(rk)f %,

o XM := Spec(P®)), XM .= Spec(P¥) and X®) := XF [ XP,
Then we set: P := @(P(k)), Py = @(Nj([k)), P =P, x P_, X := Spec(P), Xy :=
S~pec(]5i) and X := Spec(P) = X, U X_. Note that P = C[v,v Jus, u_]/(uru_) and
Py = Clv,v '|[ut]. Finally, let D := Clu,u™',v,07 ], Sy := Clv,o|(us)), Y3 =
Spec(Sy), S: =S4y x S_ and Y := Y, UY_. Consider the algebra homomorphism

D% S, u— (uy,u”t), v (v,0).

[e.°] [e.°]
The formulae (uy —v) kzov_k_lu’i = —land (u='—v) kzo vFuF 1l = 1 imply that o (u—wv)
is a unit in S. As a gonsequence, 1 can be extended to the algebra homomorphism
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1 _
C |lu,u v, v, ] ¥, S Note that
UuU—v

Next, we have a family of morphisms of schemes <X (k) Sk, (ExU)\ E)k . Taking the
€

corresponding direct limit, we get a morphism X = (ExU)\ Z. In a similar way,

we have a family of morphisms (X (k) 2k, (P x U) \ Z) o as well as the corresponding

direct limit X —— (P! x U) \ ¥. Summing up, we get the following commutative diagram
in the category of schemes:

(ExU)\S+2— (P x U)\ £ U x U)\S—— U x U

(66) / j(: 6{10\
NI

X n

Y

where v is the restriction of v x id on (IP’l x U)\ ¥ and vy, v, , 7 and 7 are morphisms of
affine schemes corresponding to the algebra embeddings Pk s pk) Py, P P’ S 9
and v, respectively.

Since A is torsion free, we get an injective map
T((ExU)\Z,ARA) <= A@c A = lim (ﬁ/mkﬁ ®c 91) = T(X, e (AR Al 5)-

Let YT be a countable set and (a;);ey be a basis of 2 over C. Then there exists a uniquely
determined family (b;);ey of elements of 2 such that for any k& € N there exists a finite
subset T; C T satisfying the following properties:

e the class bl(k) of b; in é\l/mkﬁ is zero for all [ ¢ Ty, (i.e. by € mk2 for | ¢ Yj) and

° 82(@) = Z bl(k) ® ay.
€Yy

In these terms we may informally write: €*(0) = Y. by ® a; € 2 ®c 2.
leY

Let T = {(k:,z) } keZ,1<i< q}, (c1,...,¢q) be a basis of 2 viewed as module over
R =C[v,v™!] and (ki) = civ® for (k,i) € Y. Then (k) (k,i)ex 18 a basis of 21 viewed
as a vector space over C. From what was said above it follows that there exists a uniquely
determined family of elements (b(kﬂ-))(k’i)er of 2 such that

(67) = ) by @ ag
(kji)er
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Let (cj, ..., q) be the dual basis of 2l with respect to the Killing form 20 x 24 X, R. Then
the tensor ¢f ® ¢ + -+ + ¢ ® ¢g € A@¢ 2 is mapped to the Casimir element of 2 under

dv
the canonical projection A®c2A — ARrA. Since w} y = —» the geometric r-matrix p
v

has the following presentation:

(68) p= Zc@cZ—I—h(uv)eF((UxU)\Z AKX A),

u—"v

where h € A ®c 2; see (56). It follows from (65) that we have the following expansion

)-
T() =) (W + hie) ® o,
(k3)eT

where h ;) € A C A = §1+ x A_ are determined by the expression h = > hg i) @ap)
(kji)eY
(which is a finite sum in A ®¢ 2A) and

(69) A xA_ > Wk, i)

Oukc* if k>1
u+c if k<O0.
T

It follows from (66) that (7n)*(¢*(0)) = J*(p ) Hence, for any (k,i) € T we have:

(70) 2A E) b(kﬂ-) = W(ki) T h(]m-) eA= Ql+ x A

Since all Ay ;) but finitely many are zero, b, ;) = w4 for all but finitely many (k,i) € T.

As 2 is an isotropic subalgebra of §l, we deduce from (69) the following relation:

(71) F(b(k’,i’), a(k//ﬂw)) = F(w(k/,i/), a(k”,i”)) = F(w(k/,i/), (uﬁ_nci//’ u:k//Ci//)>
= _5k"k”(5z’z”

where F = F ¢ is the form given by (63). This formula in particular implies that the ele-
ments (b ;))(k,i)ex are linearly independent. It follows from the direct sum decomposition
2A = A + A that (b(k,i)) (k,i)ex 1s in fact a topological basis of 2A.

After establishing these preparatory results, we can proceed to theA proof of the actual
statement: F(0(a),t’ @ V") = F(a, [V/,0"]) for all a € A and ', b” € A. Arguing as in the
proof of Proposition 5.2, we conclude that it is sufficient to prove the formula

(72) F(8(a), by iy ® b im) = F(a, [beas irys b im)])

for any (k',4'), (k”,i") € Y. In order to use the expansion (67), we embed A ® 2 into a
larger vector space m defined as follows.

Let T := C((vy)(ux)), Tk := C(v_)(ux)), Ty := T x T and T := T, x T_. Clearly,
we have injective algebra homomorphisms SL — T, uy — us,v — (v+,1j:1) which

define the embedding S —— T. Summing up, we have two chains of algebra embeddings

PesPesSe-T and D—s ST
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Now we put: AR A = T Qp (2[@@2() and AR A = S Qp (§l®2l) It is clear tha

A @A T®g (évl ® Ql) Moreover, we have canonical injective linear maps ARA — AR A

and AR A — A® 5[, which are moreover morphisms of 2-modules with respect to the
adjoint action of .

Consider the following residue map:

r dv
(73) C(N) = €, T oyt o res (o))
k>—o00
The Killing form 2 x 2 KR together with the linear map T — C defined by (73)
define the bilinear form 2 ® 2 x 2 ® 2 £, C, which extends (évl ® ﬁl) X (5[ ® ﬁl) . c.
Using the power series expansion (67), we can write d(a) = [a® 1+ 1R a,p] € ARA as

d(a) = Z [a, bk, @ ag sy + Z by ® [a,aep] € AR A,
(k3)eT (kji)eY

Since 20 is an isotropic subspace of 2, it follows that F (t, 0/ @ b") =0 for any t € A @A
and V', b” € 2. As a consequence, we have:

F(CS(CL), b(klﬂ:l) ® b(k”,i”)) =F Z [CL, b(k,z)] & A(k,3)> b(k’,i’) ® b(k”,i”)
(k,i)eY

Taking into account the orthogonality relation (71) as well as invariance of the form F,
we finally get:

F((S(CL), b(k’,i’) ® b(k:”,i”)) = —F([(I, b(k",i")]? b(k",i’)) = F((I, [b(k”,i’)7 b(k‘”,i”)])’
as asserted. O

Note that in the course of the proof of Theorem 5.6 we have shown the following result.

Theorem 5.7. Let (E,A) be as in Theorem 5.6, (c1,...,¢q) be a basis of A viewed as

module over R, (cf,.. .,c;) be its dual basis with respect to the Killing form A x 2 X,

R, T := {(k,z) ‘ keZ,1<i< q}, Qi) = co® for (ki) € Y and (b(kvi))(ki)GT be the

topological basis 0f§l dual to (—a(q))(kiyer- Then for any (k,i) € T we have: by, ;) =
Wk + k), where w ;) are given by the formula (69), h( ;) € 2A and all but finitely
many elements h, ;) are zero. Moreover, the geometric r-matriz corresponding to (E,A)
s given by the following expression:

q
v k
(74) p= p— E c Q¢+ E h(kﬂ) (u) ® ’UkCi.
i=1 (ki)ET

Remark 5.8. Let (E,.A) be a geometric CYBE datum, where E is a cuspidal plane cubic
curve. Then the cobracket 2 —2 2 ® 2 is determined by the Manin triple A=A+ A

Fix an isomorphism R = I'(U, Og) = C[v]. Then w = dv is a generator of I'(E, Qg). Let
(c1,...,¢cq) be abasis of A and (c7, ..., ;) be the dual basis of 2 with respect to the Killing
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form 2A x A 25 R. Now we put: T = {(k,z) ‘ keNg1<i< q}. Then a ;) = ¢;vF for
(k,i) € T form a basis of 2 over C. Let (b(k,i)) (k)T be the topological basis of A dual to
(a(kﬂ'))(k,z’)e? Then for any (k,i) € T we have a decomposition bir,i) = c;3‘1)_k_1 + ) for
some uniquely determined Ay ;) € 2(. Again, all but finitely many elements % ;) are zero.
The geometric r-matrix corresponding to (F,.A) is given by the following expression:

1 K,
(75) p=— Z Qe+ Z hgiy(u) @ vPe;.
i=1 (ki)eY

The corresponding proofs are completely analogous to the ones of Proposition 5.2 and
Theorem 5.6 and therefore are left to an interested reader. O

Remark 5.9. Let (F, A) be a geometric CYBE datum, where E is an arbitrary Weierstrafl
curve. There are also other natural ways to attach to (E,.A) Lie bialgebras and Manin
triples. For example, let p; # p_ € FE be any pair of points such that s € {p+,p_}
provided E is singular, R, , :=T'(E\ {p4,p-},O) and Ay p) = L(E\{p+,p-}, A).
Then we have a Manin triple 2, , ) = 2. + (,_), where the underlying bilinear

form A, , ) XA, p_) — Cis given by the composition

K res]‘;’
Ql(p%pf) XA py — Rp,p_ — C.

Here, as usual, K is the Killing form of 2/ , viewed as a Lie algebra over R, , . ¢

D+,P—)

6. GEOMETRIZATION OF TWISTS OF THE STANDARD LIE BIALGEBRA STRUCTURE ON
LOOP ALGEBRAS AND TRIGONOMETRIC SOLUTIONS OF CYBE

6.1. Some basic facts on torsion free sheaves on a nodal Weierstrafl curve. Let
E be a nodal Weierstra8 curve, s be its singular point, P* > E be a normalization
morphism and v~!(s) = {s;,s_}. Then the following diagram in the category of schemes

{s4,5- }C—ﬁ> P!
(76) o] g
(s}~ —E

is bicartesian, i.e. it it both pullback and pushout diagram. For any torsion free coherent

sheaf F on E, we get the locally free sheaf F := v*F /t(v*F) on P!, where t(v*F) denotes
the torsion part of v*F. It is not hard to show that

—F| oF
s EE
e the canonical morphism of (C x C)-modules 0 given as the composition

e the canonical linear map F is injective.

S—

) — i WF) — i (F)=F| oF

s+

v (F

S S—

is surjective;



ALGEBRAIC GEOMETRY OF LIE BIALGEBRAS 35

e the following diagram in the category Coh(E) of coherent sheaves on FE
F—F
l S

V*(jF)‘AAAH'jE @)j;
+

S S

is a pullback diagram, where all morphisms are the canonical ones and skyscraper
sheaves supported at s are identified with their stalks.

Consider the comma category Tri(E) associated with a pair of functors
VB(P!) (C x C) — mod <% C—mod,

where F(G) := G

@G| forany G € VB(P!) and G = (C x C) ®c —. By definition,
sy S—
any object of Tri(E) is a triple (g ,V, 0), where G is a locally free coherent sheaf on P!, V
is a finite dimensional vector space over C and G(V') 2, F(G) is given by a pair of linear

. The definition of morphisms in Tri(E) is straightforward.

0
maps V — G
s+
The following result is a special case of [9, Theorem 16]; see also [11, Theorem 3.2].

Theorem 6.1. The functor TF(E) — Ti(E), F — (F,F|_,07) is fully faithful. The
essential image Tri(E) of TF(E) consists of those triples (G,V,0), for which both linear
maps 0+ are surjective and the linear map 0 = ( er > :V—4G &g
— S+

whereas the essential image of the category VB(E) consists of those triples (g, V,H), for

18 1njective,
S_

which 6 is an isomorphism. In other words, the functor TF(E) £, Tri(E) is an equivalence
of categories. Conversely, given an object T = (Q,V,G) of Tri(E), consider the torsion
free sheaf F on E defined as a pullback

Fe—V

(77) l l

vi(G) — G| ©§
+

S S

in the category Coh(E). Then we have: E(F) = T.

Remark 6.2. Let (B, a,0) be an object of Tri(E), for which B is a sheaf of Lie algebras on
P!, a is a Lie algebra and 6 is a morphism of Lie algebras. Then the torsion free coherent
sheaf A defined by the pullback diagram (77) corresponding to (B, a,8) is a sheaf of Lie
algebras on E. It follows from (77) that the following sequences of vector spaces is exact:

evy 9+
ev_ 0_
(78) 0— 11(127“4) - Ij(HDIaZS)EB a _g—_——_—_—zﬁ B ®B - 111(137“4) - }{1(HD1’23) — 0,

s+

S—
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where I'(P!, B) =% B|  denotes the canonical evaluation map at the point si. O
s+

6.2. Geometrization of twists of the standard Lie bialgebra structure on twisted

loop algebras. Now we return to the setting of Section 3. Let © = €+ 20 be a Manin

triple as in Theorem 4.1. Let Uy C £ be Lie subalgebras from Lemma 4.4. Recall that

04 is a free module of rank g over Ly = (C[ti] CR= (C[t, tfl], where t. = t*1. In what

follows, we shall view the projective line P! as the pullback of the pair of morphisms
Spec(L;) — Spec(R) «— Spec(L_),
identifying Spec(L.) with open subsets Uy C P! and Spec(R) with U := U, NU_. Let

s+ € Uy be the point corresponding to the maximal ideal (t1+) C L4, then t4 is a local
parameter at s4.

Proposition 6.3. There exists a unique coherent sheaf of Lie algebras B on P! such that
I'(V,B) C C(t) ®r £ for any open subset V. C P and such that the following diagram of
Lie algebras

I'(U,, B}~ I(U, B) «+——T(U_, B)

T

DI Iy Y

is commutative. We have:
(80) I(PL,B) =V, NY_ and HY(P,B)=0.

The completion of the stalk of B at s+ is naturally isomorphic to @i as a Lie algebra
over Li = C[t+], where W is the Lie algebra from Lemma 4.4. In particular, we can

identify the fiber B‘ with the Lie algebra to4 := Qﬁi/timi

s+
Proof. Existence and uniqueness of B characterized by (79) is clear. We have the Mayer—
Vietoris exact sequence

0 — I'(P,B) —TI'(U,,B)oT(U_,B) — I'(U,B) — H'\(P',B) — 0.

According to Lemma 4.4, we have: £ =0, +_. If follows from (79) that the formulae
(80) are true. The remaining statements are obvious. U

Next, we can define E via the pushout diagram (76). It follows that E is a nodal Weierstrafl
curve. Let Oi be the completlon of the stalk of Op:1 at S+, O be the completlon of the
stalk of O at s and Q be the total ring of quotients of O. Then we have: O = Clt+],
O = C[ts, t:ﬂ/(tth_) and Q = C((t+)) x C((t-)). According to Lemma 4.3, the completed

Lie algebra 27 is an O—module. We put:
= /(t,,t_ )W C W, /£, W, x W, /t,.W_ =ty xto_.
Again, according to Lemma 4.3, the morphism of Lie algebras tv b, .y defined as the

composition v < w4 X w_ —» toy is surjective. It follows that (8,1, 0) is an object of
the category Tri(E) from Theorem 6.1.
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Proposition 6.4. Let A be the sheaf of Lie algebras on E, corresponding to the triple
(B,1,0). Then (E,A) is a geometric CYBE datum.

Proof. We keep the notation of Subsection 5.3. First observe that the canonical map
A =T(U,A) — T'(U,v(B)) = £ is an isomorphism of Lie algebras. This implies that A
is g—weakly locally free; see Proposition 3.4. Next, by Lemma 4.4, the linear map

ev 9+
ev_ 0_
_

is an isomorphism. Since H'(P!, B) = 0, the exact sequence (78) implies that H(E, A) =
0 = HY(E, A). Moreover, it follows from the construction of A that the canonical mor-

(V4NV_) e =T(P,B)®w B

§¥\U+<9YU_
S4 —

phism of Lie algebras Ql A R B X g = @.l'_ x W_ is injective and its image is the
Lie algebra 2. Hence, A Q Rp A can be identified with the Lie algebra D.

dt
It follows from the construction of E that the differential form w = - is a generator
of I'(E,QE). The following observation is crucial: under the isomorphism A — D the
~ ~ Fw
bilinear form A x A — C given by (63) gets identified (up to an appropriate rescaling)

with the bilinear form D x D — C, given by (28)‘ Summing up, A = A + 2 is a Manin
triple, isomorphic to the Manin triple D= + €. In particular, A is an isotropic Lie
subalgebra of 2A.

All together, we have proven that A is an acyclic, g—weakly locally free isotropic coherent
sheaf of Lie algebras on F, as asserted. O

Let (E, A) be a geometric datum as in Proposition 6.4 above and p € T'(U x U \ £, AK A)
the corresponding geometric r—matrix. Recall that the construction of A also provides an
isomorphism of Lie algebras 2 — €. Let U = Spec(R) —— U = Spec(R) be the étale
covering corresponding to the algebra extension R C R. By Proposition 3.4, we have an
isomorphism of Lie algebras F((NJ ,m(A)) 2 R@p £ = £. The pullback

(81) pi=(mxm)*(p) €ET(U x U\ %, 7" (A) R7*(A))

satisfies the equalities (54) and (55), where © = (7 x )~ (X). Trivializing 7*(A) as
above, we get from p a genuine skew-symmetric non-degenerate solution of the classical
Yang—Baxter equation (36). Our next goal is to compute this solution explicitly.

6.3. Geometric r—matrix corresponding to twists of the standard Lie bialgebra
structure of a twisted loop algebra. Recall our notation: g is a finite dimensional
complex simple Lie algebra of dimension ¢, ¢ € Autc(g) is an automorphism of order

m, g = @ZL:_Ol g5 the corresponding decomposition of g into a direct sum of eigenspaces
m—1

of o, v = > 7 the decomposition of the Casimir element v € g® g with components
k=0

Vi € 9, @9_y. Let gg = gaL ®hdg, be a triangular decomposition as in Remark 3.6. We
denote by 78 and ’yg[ the projections of 79 on h ® h and g§ ® g , respectively.
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Proposition 6.5. Let © = €+ 20° be the Manin triple (30), corresponding to the standard

Lie bialgebra cobracket £ o, A2(£) and (E, A,) be the corresponding geometric CYBE
datum defined in Proposition 6.4. Then the trivialization of the corresponding geometric
r-matriz (81) gives the following solution of (36):

m m—1 k
’Yo Y -
82 ro(2,y =< + >+ <>
(52) e = (5+5) w2
(1) (Qk))

Proof. Let q;. = dim¢ (gk) for k € Z. By Lemma 3.2, we can choose a basis (gk RN
of g;, such that m(g,(j),g(j,)g) = 0;5 for all 1 <4,j < qi. For k = 0 we make an additional

choice: let (hy,...,h,) be a basis of h and (&5, ..., p) a basis of gi such that
ki(hyy hy) = 6,y for all 1 <2,5 <rand k(e e;) =, for all 1 < 1,7 < p.

Then we have the following basis of £ = @ gy, 2* viewed as a module over R = C[t,t7!]:
keZ

_ G 1 _ m _
(83) (ef,..., p,hl,...,hr,el,...,ep,g§ )z,...,ggql)z,...,g;llzm 1,...,97(3 ll)zm 1)

where t = 2™ As usual, let £x £ X, R be the Killing form. For any A € C*, let

(R/(t—N)) ®R£ =2, g be the Lie algebra isomorphism from Proposition 3.4 and R =2 e C
be the evaluation map. Then the diagram

exge-EoR

EAXE,\J levk

gxg——C

is commutative and

_ 1 1 _ - _
(el, NN h,ef,...,p,g(l)z ,...,ggh) 1,...,g§)m1m,...,ggqml)zl m)

is the basis of £ over R which is dual to (83) with respect to the Killing form K. Hence,

P r m—1 gk ) )
X = (Z(ej ®e, +e & ef) + Zhl X hl> + Z Zg,(j)zk ®99,1sz €ELRrL
=1 =1 k=1 j=1

is the canonical Casimir element of £ (viewed as a Lie algebra over R).

We identify p with p € F(ﬁ x U\ 3,7 (A) K 7*(A)). To proceed with computations,
we make the following choices: let (u,v) be coordinates on C* x C* 2 U x U and (z,y)

be coordinates on the étale covering C* x C* = U x U. We have: v = 2™ and v = ym.
Consider the following expression:

m—1 k
=3 (;) €LactC(geg)[za yy ]
k=0

It is easy to see that X is mapped to x under the canonical linear map £®c £ — L®pg £.
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Recall that the geometric r-matrix p corresponding to (E,.A) is given by the formula (74).
For any (k,7) € T we have w, ;) € D, given by the formula (69) with respect to the R-basis
of £ fixed above. Then there exist uniquely determined b ;) € W and higyy € £=C
such that b, ;) = Wk, i) + hk,q)- It is not hard to see that h, ;) = 0 for all k£ # 0. For
k = 0, we have the following decompositions:

N (0761_) = (_ez 70) + (ez_ﬂez_)
W s (—er,0) = (—er,0)+(0,0)
(=gl zh) = (=h,0) + (3hi, 37)

All together, taking into account the formulae (69), (70) and (71), we obtain from (74)
the following explicit expression:

p r
ro(z,y) = —m mz< ) 7’“+<Z€%®6%++Z;hl®hl>’
=1

1=1

which coincides with the formula (82), as asserted. O

We get the following corollary, which seems to be well-known to the experts (another,
more direct proof, can be found in [1]).

Corollary 6.6. We have the following formula for the standard Lie bialgebra cobracket:

L5 ENE, f(2) [f@) @1+18 f(y)ro(e,y)],
where ro(x,y) is the standard r-matriz given by (82).

Remark 6.7. Let g = nt 4+h + n~ be a fixed triangular decomposition of the finite
dimensional simple complex Lie algebra g corresponding to a Dynkin diagram I'. Then
any ¢ € Aut(T') defines an automorphism ¢ € Autc(g). Let o € Autc(g) be a Cozeter
automorphism corresponding to ¢ and m be the order of o; see [6, Section 6] for an
explicit description of o. Then we have: £ := £(g,0) = £(g, ¢); see [31, Proposition 8.1].
An advantage to use the Coxeter automorphism o to define twisted loop algebra is due to
the fact that the fixed point Lie algebra {a €g ‘ o(a) = a} is abelian. In particular, the
standard r-matrix (82) takes the following shape:

7 ym m—1 z k 5 m—1
0 0,
84 _ — = = ;
(84)  rolz,y) = 5 +xm—ymz<y) %= 5 T o) =1 exp< )%7
k=0 k=0
where exp <E> = E. For ¢ = id, this solution was discovered for the first time by Kulish
m Y

(see [38, formula (38)]) and generalized by Belavin and Drinfeld (see [6, Proposition 6.1])
for an arbitrary ¢.

Remark 6.8. Let g = n* +h+n be again a fixed triangular decomposition of g, &
be the set of positive roots of (g,h) and ¢ = id. Then £ = £(g,0) = g[z,27'] and the
standard r-matrix (82) takes the following form:

(85) ro(,y) = 2(“"’“’“’ £ Y cahea),

T —
Yy acd
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which can be for instance found in [36]. It can be shown that the solution (85) is equivalent
(in the sense of (38) and (39)) to the solution (84) (for the identity automorphism of the
Dynkin diagram of g); see for instance [1] for details. O

Theorem 6.9. For any skew-symmetric tensor t € A2 £ C (g®g) [:J:,xfl,y,yfl} we put:
(86) Ot =00+ 0 and ri(z,y) =ro(z,y) + t(z,9).

Then £ 25 @A L is a Lie bialgebra cobracket if and only if r¢(x,y) is a solution of the
classical Yang-Bazter equation (36). In this case, let ® = Wy + € be the corresponding
Manin triple (see Theorem 4.1) and (E,At) be the corresponding geometric CYBE datum
(see Proposition 6.4). Then the geometric r-matriz py of (E,Ay) with respect to the
trivialization, described at the end of Subsection 6.2, coincides with ry(z,y).

Proof. By Proposition 3.4, £23 does not have any non-zero ad-invariant elements. Hence,
Proposition 2.3 implies that J; is a Lie bialgebra cobracket if and only if t satisfies the
twist equation (6). On the other hand, since r, solves the CYBE, we can rewrite the
CYBE for r; as

([t t]] + [7%2’1_‘13 +t23] + [rig,t% —|—t21] + [7“23,1:21 ~|—t31] —0.

We have: [ri?,£13 + £%] = —(6, ® 1)(t). It follows that ry solves the CYBE if and only
if alt((d, ® 1)(t)) = [[t, t]], implying the first statement.

As it was explained in the proof of Proposition 6.4, the Manin triple D = Q/ﬁt + ¢ is
isomorphic to the geometric Manin triple 20 = 2, + 2. Let 7 (z,y) be the trivialization of

the geometric r-matrix p, with respect to the trivialization 2l = £ introduced at the end
of Subsection 6.2. Then we get the geometric Lie bialgebra cobracket

£ EAL, f(z) = [f(2) ©1+18 f(y), (e, y)].
On the other hand, Corollary 6.6 implies that
0c(f) == 0o(f) + [f(@) @ 1+ 1@ f(y), t(z,y)] = [f(z) @1 +1® f(y),ro(z,y) + t(z,y)].
According to Proposition 4.5 and Theorem 5.6, both Lie bialgebra cobrackets § and &y
are determined by the same Manin triple ©® = 20, + €. It follows that § = d;. Since £92

has no non-zero ad-invariant elements (see Proposition 3.4), we conclude that 7 (x,y) =
ro(x,y) + t(x,y) = re(z,y), as asserted. d

6.4. On the theory of trigonometric solutions of CYBE. Consider the setting of
Remark 6.7. Let g = nt +h + n~ be a triangular decomposition of g, I" be the Dynkin
diagram of g and ¢ € Aut(I"). Let o € Autc(g) be a Cozeter automorphism corresponding
to ¢, m be the order of o and £ := £(g,0). Recall that g, = b is an abelian Lie algebra.
For 1 <k <m-—1and aechbh” let g} := {x € gi ‘ [h,x] = a(h)x for all h € f)}. We put

Ak::{aéf)* |gg7§0} and Z:= {(a,k)‘lgk:gm—landaEAk}.
Then we have a direct sum decomposition
(87) g=bo P o,

(a,k)e=

and the vector space gf is one-dimensional for any («, k) € Z.
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The main advantage to define the twisted loop algebra £ corresponding to v € Aut(T")
using a Coxeter automorphism (even for ¢ = id) is due to the following special structure
of the set II of positive simple roots of (£,h): II = {(a, 1) } a € Al}. In particular, we
have: ’Al‘ =r+1 = dimc(h)+1 and the elements of A; are in a bijection with the vertices

of the affine Dynkin diagram T such that & = &4 via the Gabber-Kac isomorphism (20).

Recall that a Belavin—Drinfeld triple is a tuple (I‘l,Fg, 7'), where T'; ; Ay for i = 1,2 are
subsets and I'; —— T'5 is a bijection satisfying the following conditions:

e k(1(a),7(B)) = k(a, B) for all o, B € T'y;
e for any a € Ty there exists | = I(a) € N such that a,...,7'"1(a) € Ty but
() ¢ Ty.

For i = 1,2, let n; be the Lie subalgebra of g generated by the vector subspace ©qcr; 97 -
Then n; is isomorphic to the positive part of the semisimple Lie algebra defined by the
Dynkin diagram I'; and we have a direct sum decomposition

(88) n= P o
(Ot,k‘)EEi
for an appropriate subset =; C E. Fixing non-zero elements in (g{) ach,» One can extend

the bijection I'j — T’y to an isomorphism of Lie algebras n; — no.

Let g 2, g be a linear map defined as the composition g — ny 7, ny —— g, where m
and ¢ are the canonical projection and embedding with respect to the direct sum decom-
positions (87) and (88). Then ¢ is nilpotent and J(g;) C g;, for all 1 < k < m — 1. Let

9 00
)= 15 S 9L Tt follows that ¥(g,) C gy, for all 1 <k < m — 1 as well.
- =1

For any Belavin—Drinfeld triple (Fl, T, 7'), the system of linear equations
(89) (T(a)®ﬂ+ﬂ®a)<s+%):0 for all a € Ty

for s € h A b is consistent; see [6, Lemma 6.8]. According to [6, Theorem 6.1], trigonometric
solutions of (41) are parametrized by Belavin—Drinfeld quadruples Q@ = ((Fl,FQ,T),S),
where (T'1,T'2,7) is a Belavin-Drinfeld triple and s € h A b satisfies (89). The solution of
(41) corresponding to @ is given by the following formula:

(90)  oq(w) = os(w) + 5 + mZ (~e (2) we v +om (- 22) 1own).

where go(w) is given by (84).

So
such that n(g(a,k),g(g,l)) = 00+8,00k+1,0- Then for any 1 < k < m — 1 we have: vy, =

Let us rewrite the formula (90) in different terms. Choose elements (g(a,k) € gg)(a 5
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E 9(*a,+k) & 9(Fa,Fk)- It follows that

acz4 g

(Yo 1)(w) = D (k) © 9(—a,—k)

k

Il
—

13
f
[I]M

l

(L@P)(v-k) =

(18

9(——t) @ 9 (Gak))-

k

N
Il
—

[1]

[e1S

Consider the following expression

k k
(91) to(z,y) —s+z > (9 (9ak) @I(—arn) (;) +9(—a—0) @Y (9(a,k) <%> )

=1 (a,k)e=
Then we have:
(92) rQ(,y) = ro(,y) + tq(,y) = eq(w)
where x,y and w are related by the formula - exp (E) In other words, rq is the
solution of the classical Yang-Baxter equation (y36) correng)nding to the Belavin—Drinfeld
quadruple @) = ((Fl, Iy, 1), s).

Corollary 6.10. For azF bz! € £ we put: az¥ A bz = az® @ by! — ba! @ ay® € £ A L.

Then tg given by (91) can be viewed as an element of N*(L). As a consequence, the

trigonometric solution rg(x,y) is of the form (86) and can be realized as the geometric

r-matriz defined by an appropriate geometric CYBE datum (E,A), where E is a nodal

Weierstraf$ curve.

A proof of the following result is analogous to [7] and [36, Theorem 19].

Proposition 6.11. Let r(z,y) = ——— > <> v + g(x,y) be a solution of (36),
T =Y j=0

where C2 -4 g®g is a holomorphic function. Then r is equivalent (in the sense of

Subsection 5.1) to a trigonometric solution of (41).

Proof. For a,b,c,d € g put: [a®b,c®d) :=[a,c] ® [b,d]. Proceeding similarly to [7], one
can deduce from (36) the following identities:

frla ) vl ) + o) 1 £0)] + 2 2 ) =0

[(r(x,y),r(x,y)}] - [r(x,y), f(.%’) ® 1] - E%(xﬂﬂ =0,

m—1
where f(2) = [g(z,2) + = 3 k] (here, |a®b] = [a,b] for a,b € g). It follows that
k=1

@) @ 1410 fly)rlwy)] = -5 (@0) + 50 y),

Let 7(u,v) :=r (exp (%) , exp (%)) and h(u) := f (exp (%)) Then C2 gRgisa

meromorphic solution of (36) equivalent to r (whose set of poles is given by the union of
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lines {(u,v) € C? ‘ u—v =2mik} for k € Z), C N g is a holomorphic function and

[A(u) ®1+1® h(v),F(u,v)] = (;u + ;) F(u,v).

Let (C,0) 2N Endc(g) the germ of a holomorphic function satisfying the differential

equation ¢ = adp op and the initial condition ¢(0) = 1, where C 2, Endc(g) is given
by the rule (ady(u))(§) = [h(u),&] for u € C and £ € g. Then ¢ can be extended to
a holomorphic function on the entire complex plane (see [36, Theorem 19]). The initial
condition ¢(0) = 1 and the continuity of ¢ imply that det(¢(u)) = 1 for all u € C (see

the proof of [6, Proposition 2.2]). Hence, we have an entire function C —~ Autc(g). Let
plu,v) = (p(u) ™" @ ()71 (u,v)

It follows that <88 + ;) p(u,v) = 0, i.e. p(u,v) = p(u — v) for some meromorphic
u v

solution C - g ® g of (41), whose set of poles is 2miZ. It follows that g is a trigonometric
solution of (41). O

6.5. Concluding remarks on the geometrization of trigonometric solutions. Let
(E,A) be a geometric CYBE datum as in Proposition 6.4. Within that construction, we
additionally made the following choices.

e P! 5 E is a fixed normalization map. We have fixed homogeneous coordinates

(wy : w_) on P! such that v=1(s) = {s;,s_}, where s; = (0: 1) and s_ = (1:0).

e We have an algebra isomorphism I'(U,0) = Clu,u™!] as well as an I'(U, O)-

(C[u, u‘l]—equivariant isomorphism of Lie algebras A~ £ = P g, zF, where u =
kEZ

w4

U
=z™. We also put: w = —.
w_ u

Let p := 1/((1 : 1)) € E. Equipping U C E with the usual group law (on the set
of smooth point of a singular Weierstrall curve) with p being neutral element, the map
C"—- Ut V(l : t) becomes a group isomorphism.

Consider the algebra homomorphism C[u,u™!] — C[z],u — exp(z). As (exp(z) — 1) €
C[z] is a local parameter, we get an induced algebra isomorphism ép — C[z]. In
these terms, the differential form @, gets identified with dz. Moreover, the linear map

QAlp — g[z], az* — aexp (£k> is a (6pf(C[[z]])fequivariant isomorphism of Lie alge-
m ~

bras. Consider the étale covering C* = U — U = C* of degree m, given by the formula

z — o™ = u. It extends to a finite morphism P! -5 P! (w; : w_) — (w : w™).

Since 7(s+) = s+ and (76) is a pulldown diagram, we obtain an induced finite morphism
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E "5 E. Let A= n*(A). Then we have the following commutative diagram.

T(ExU)\ 3, AR A)C I((UxU)\3, AR A)
F((ExU)j\Z,A&A)( N(UxU)\E,AK A)
) 1 [
Ql(p) ®§[p( Ql(()p) ®§lp
gl(p) ®§[p

Then p € D((Ex U)\ 2, AR A), pe T((Ux U)\ 2, AR A), e T((U xU)\ %, AR A)
and p € §l(p) ® QAlp are identified with each other under the corresponding maps. Taking
the trivialization D(U, A) = € = gz, 27t], we get a solution of (36)

m m—1 T k
r(z,y) =ro(z,y) + t(z,y) = < z > (y) %) + ?th(x,y),
k=0

W
where t € A2€ C (g®g) [:L,’:E—l’y’ y—l], Making the substitutions z = exp (i> and
m

w
Yy = exp (—), we obtain the solution
m

1 e z2—w Yo z w
(94) r(z,w) = (exp(z—w)—l Z exp < - k:) %) +E+t (exp (E) , €Xp (E)) :

The corresponding element of (g

—

(2)) ® g)[w] viewed as a solution of (47), coincides with

the image of p under the isomorphism §l(p) ® é\(p =~ (g((2) ® g) [w].

Remark 6.12. The set of Manin triples £ x £ = ¢ 4+ 20 from Theorem 4.1 admits a
natural involution 20 — 20% induced by the Lie algebra automorphism

(95) ex et — ex et (f,9)— (¢4 1)

Note that (95) is an involution which fixes the Lie subalgebra €. Let (E, A) end (E, AY) be
the geometric CYBE data from Proposition 6.4, corresponding to 20 and 20%, respectively.
It is not hard to see that A* = *(A), where E — E is the involution, induced by the
involution P! — P! (wy : w_) — (w_ : wy). It is clear that «(p) = p. Moreover, the
solutions 7(z,w) and r#(z,w) corresponding to W and W and given by (94) are related
by the formula: r#(z,w) = r(—z, —w). %

Summary. Let t € A2 £ be a twist of the standard Lie bialgebra cobracket £ Do, ong,
Then ry(x,y) = ro(x,y)+t(x,y) is a solution of (36), which is equivalent to a trigonometric
solution gy of (41) with respect to the equivalence relations (38) and (39). On the other



ALGEBRAIC GEOMETRY OF LIE BIALGEBRAS 45

hand, any trigonometric solution of (41) is equivalent to a solution ry(x,y) for some
t € A2L£. Moreover, it was shown in [1] that for two twists t/,t” € A2€ of §, the
corresponding Lie bialgebras (£, dy/) and (£, dy~) are related by an R-linear automorphism
of £ if and only if the solutions gy and gy~ are equivalent.

Remark 6.13. The presented way of geometrization of twists of the standard Lie bialge-
bra structure can be viewed as an alternative approach to classification of trigonometric
solutions of (41). On the other hand, methods developed in this work are adaptable for
a study of analogues of trigonometric solutions of (41) for simple Lie algebras defined
over algebraically non-closed fields like R (what is interesting because of applications to
classical integrable systems [3, 44]) or C((h)) (motivated by the problem of quantization of
Lie bialgebras; see [23, 33, 34]). We are going to return to these questions in the future.{

7. EXPLICIT COMPUTATIONS

7.1. On explicit geometrization of certain solutions for sl,(C). Let P be a simple
vector bundle on a Weierstral curve E (i.e. Endg(P) = C) of rank n and degree d.
Then gcd(n,d) = 1 and for any other simple vector bundle Q with the same rank and
degree there exists a line bundle £ € Pic®(E) such that Q = P ® £. Conversely, for any
(n,d) € N x Z satisfying the condition ged(n,d) = 1, there exists a simple vector bundle
of rank n and degree d on E; see [2, 12, 10] for the case when E is elliptic, nodal and
cuspidal, respectively. In what follows, we put ¢ :=n — d.

Let A = Adg(P) be the sheaf of Lie algebras on E given by the short exact sequence
(96) 0— A— Endg(P) -5 O — 0.

From what was said above we see that A = A(.q) does not depend (up to an automor-
phism) on the particular choice of simple vector bundle P and is uniquely determined by
the pair (¢,d). For any p € E we have: .A‘p >~ g = sl[,(C). Simplicity of P implies that
HY(E,A) =0= H'(E, A). It follows that the pair (E,.A) is a geometric CYBE datum.

0 Iy I. 0
Let K = K q4) = L 0 ) and T'= T, g)(u-) = ( 0 ull, >, where ¢ = n —d. We
put: ¢(.q) := {(a,Adk(a)) |a € g} (where Adg(a) := KaK ') and

/\trg -~

Wiy = (1 x Adr) ((us alus] < {0}) + ({0} x u-gu-]) + ccq)) €D =24 x L,
where €1 = g((u)).
Theorem 7.1. Let E be a nodal Weierstraf§ curve, s be its singular point and A = A q)
be a sheaf of Lie algebras attached to the pair (¢, d), where ¢,d € N are coprime. Then the
Manin triple A, = A, + Rl(s) is isomorphic to the Manin triple D= @Efd) +c.
Proof. Let us first recall our notation and give an explicit description of the sheaf A.

We choose homogeneous coordinates (w; : w_) on P! and view them as global sections:
wy € T'(P',Op1(1)). Let s4 € P! be the point of vanishing of wy, ie. sy = (0 : 1)

and s_ = (1:0). We put: Uy := P!\ {s+}, U =U; NU_ and uy := UL It is clear
W
that s+ € Uy and that the rational function u4 is a local parameter at si. We put:
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Ly = F(Ui,OPl) > Cluy]. Let 5i be the completion of the stalk of Op1 at si and
Q. be the corresponding quotient field. Then we have: O+ = Clu+] and Q1 = C((u+))
Finally, let R := I‘(U, Opl) = C[ui,uf] = (C[u,uil], where © = uy = u='. We fix the
following trivializations:

S

(97) D(Us, Opi (1)) =5 Le, fo .
w:F‘Ui

As a consequence, for any ¢,d € No and G = G 4) = (’)g?f @ (Opl(l))@d we have the
g
induced trivializations F(Ui,g) E—i> Lf", where n = c+d. Let B = B(c,d) = Ad(G).

8 =
Then fng induces trivializations I‘(Ui,B) BN glut]. Let By be the completion of the
stalk of B at s4, By its rational envelope and B ‘Si the fiber of B over s+. Then we get
induced isomorphisms

~ & ~ & 3
By == glus], B+ = g((us) and B[ —g.

We define a nodal Weierstrafl curve E via the pushout diagram (76). We recall now the
description of the sheaf A given in [15, Proposition 3.3] (see also [17, Section 5.1.2]).

Oc
Consider the embedding of Lie algebras g Lo gxg, a— (a, Ad K(a)). Then A is defined
via the following pullback diagram in the category Coh(E):

A——9g
(98) J i &(c,d)
v« (B) LN gxg

where we view g and g x g as skyscraper sheaves supported at s and & is the composition

ev 5?><§§
V*(B)—>BS XBS ———gxg
+ —

In the notation of Theorem 6.1, (B, g, (L, AdK)) is a triple corresponding to A. Let O be
the completion of the stalk of O at s and @ be the corresponding total ring of fractions.
Then we have: T'(U,0p) = T'(v1(U),Op1) = Clu,u™t], O = Clus,u_]/(uyu_) and
Q= Q4 x Q- = C((uy)) x C((u-)).

From (98) we get the following commutative diagram of Lie algebras:

~

A 3
O(c.a)
(99) l§+ xB.——%B| xB
S+ S_—
exe &8 g

glus] x glu-] ——» g xg.
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It follows that the image of A; in g[u,] x g[u_] under the composition of two left vertical
maps in (99) is the Lie algebra (u gluy] x {0}) + ({0} x u_ g[u_]) +¢(.,q). Passing to the
rational hulls, we end up with the embedding of Lie algebras

~ ~ BxgB

Ay A, 2B x B S25 gun) ¢ o)

e 33 . . .
On the other hand, the trivialization I'(Uj., B) —% glu] restricts to an isomorphism

(U, B) LN g[u u~'] and induces the isomorphisms of Lie algebras I'(U, A) LN glu,u™?]
* B
given as the composition I'(U, A) <= T'(U, B) Lo, g[u,u™!]. We get the induced isomor-

phism By x B_ & g((uy)) x g((u—)) as well as the following commutative diagram:

* B
(U, A) —Z T(U, B) —— g[u, u~"]
] ‘[ - 58 f \[
Ay~ B x B- 7 g((uy) x gl(un)).
It follows that the image of I'(U, A) under the embedding

DU, A) — A, B x B %, ) x al(us)

is the Lie algebra € = { au’l, au™) ‘a €g,n € Z}.

The formal trivializations E? and éi are related by the following commutative diagram

B
€8 &8
u@«u

It follows that the image of A, under the embedding
—~ ~ ~ ~ Efng
As — As — By x B- — g((ut)) x g((u-)),

is the Lie algebra @Efd) = (1 x Ady) ((u+ glus] x {0}) + ({0} x u_glu_]) + c(c,d))v as
asserted. O

1 0 0 1 0 0
Example7.2.Letg—slg((C)andh—<0 _1>,e—<0 O>’f_<1 0).Then

@Eﬁ) = (uy glus] x {0}) + ({0} x u? g[u_]) + u, where

u= <(0, u_h), (0,u_f), (0, f), (f,u_e), (e, u:lf), (h, —h)>C.
The formula (74) gives the following solution of (36):

. lu+o
(100) rzfl) (u,v) = 1

h®h+—f®e+

e®f+(v—u)f®f.
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Remark 7.3. Let £ be a Weierstrafl curve and A = A, 4) be the sheaf of Lie algebras
attached to a pair (n,d), where 0 < d < n and gecd(n,d) = 1. Explicit expressions for the
corresponding geometric r-matrix pfj ) are known.

1. Let F be an elliptic curve. The corresponding solution T‘?H )(:z, y) of (36) is an elliptic

solution discovered by Belavin [5]; see e.g. [16, Theorem 5.5]. For any p € E, we have
the Manin triple 2, = 2, + 2l(), which can be identified with a Manin triple of the
form g((z)) = g[z] + Qﬂfgd) for an appropriate Lagrangian subalgebra Qﬂ'fg’d) C 9((2).
This Manin triple appeared for the first time in the work of Reyman and Semenov-Tyan-
Shansky [44]. A description of the Lie algebra QU‘E’E q) Vvia generators and relations was
given for (c,d) = (1,1) by Golod [29], and for arbitrary (¢, d) by Skrypnyk [46].
2. Let E be nodal. The (quasi-)trigonometric solution r(rgd) (x,y) of (36) was computed
in [15, Theorem A]. We recall the corresponding formula. Let

®:={(i,j) eEN*|1<4,j<n}2Z,xZ, and &, :={(i,j) € ®|i<j}.
Then we have a permutation ® 5 @, (i,4) = (i +¢,j+ c) of order n. For any « €dy,
let p(a) = mm{k € N|7' ) ¢ <I>+} For any 1 <i<n—1, we put: ¢; := 7i(¢) — 77 1(¢)
and f; == 3(r%(e) + 771 (e )) 17, where I is the identity matrix and & = ey; is the first
matrix unit. Then (q1,...,¢,—1) is a basis of the standard Cartan part b of the Lie algebra
g. Let (q¢f,...,q;_;) be the dual basis of h with respect to the trace form. The solution
of (36) corresponding to (FE,.A) is given by the formula
(101) P (2,y) = 1a(2.y) + (e (@)
where ro(x,y) is the standard trigonometric r-matrix (85) and

p(a)—

Z <( Z e Tk ( /\6 a)+$€7.p(a)( )®€ a—Ye— a®$e7-p(0¢ >+Zqz ®fl

acd,

For (¢,d) = (1,1) we recover the formula (100) above.

3. Let E be cuspidal. The corresponding rational solution rzat )(a: y) of (36) was computed
in [16, Theorem 9.6 and Example 9.7]. The Manin triple 2, = A + RU(5) (where s is the
singular point of E) has the form g(z71)) = @E:fd) +g[z] and the corresponding Lagrangian
subalgebra @E:ﬁd) C g((z7 1)) was explicitly described in [16, Lemma 9.2]. O
7.2. Explicit geometrization of quasi-constant solutions of CYBE. Let g be a
simple Lie algebra. According to the Whitehead’s lemma, we have: H! (g,/\Q(g)) = 0.

Moreover, it can be shown that any Lie bialgebra structure g N g®g is of the form
0 = O, where t € g® g is such that

(102) 12,68 + £t B] + 81,62 =0 and t? 4+t =)\

for some A € C, i.e. t is a solution of the classical Yang—Baxter equation for constants
(cCYBE); see e.g. [24, Section 5.1]. Of course, without loss of generality we may assume
that A € {0,1}.

The following result is due to Stolin [49].
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Theorem 7.4. Solutions of cCYBE can be described in the following terms.
(a) Tensors t € g® g satisfying
(103) (612,58 + [612, 6] + [£13,¢2°] =0 and t2 +t2 =4
stand in bijection with Manin triples 0 = ¢+ to, where
c={(a,a)|acg} Co:=gxg
and the bilinear form 0 x 0 Focis given by the rule:
F((a,V),(d",b") = k(d,d") — s(¥,b").
(b) Tensors t € g® g satisfying
(104) 12, e8]+ 612,62 + [£1%,tP] =0 and t2 +t2 =0
stand in bijection with Manin triples 0 = ¢+ to, where
c={alacg}Cco:= ale]/(€?)
and the bilinear form bilinear form 9 X 0 Lcis given by the rule:
F((a +eb),(a" +¢eb")) = k(d, V") + x(a”, V).

Comment to the proof. The correspondence between solutions of cCYBE and Manin triples

is as follows. Let (g1,...,g4) be a basis of g.
(a) Let ((wi,wy),...,(wS,wy;)) be the basis of v C 9 = g x g, which is dual to the
basis ((gl,gl), ce (gq,gq)) of ¢. Then the solution of (103) corresponding to tv is
given by the formula

q
(105) ti=Y gou;
=1

see [49, Section 6].

(b) Similarly, let (h1 +egj,...,hq + eg;) be the basis of w C 0 = g[e]/(¢?), which is
dual to the basis (g1,...,gq) of c. Then the solution of (104) corresponding to tv
is given by the formula

q q
(106) =) gi®hi=—Y hi®g;
=1 i=1

see [49, Theorem 3.12].

Remark 7.5. All solutions of (103) were classified by Belavin and Drinfeld in [8, Section
6]. On the other hand, let g = s[,,(C) and a,b € g be such that [a,b] =0. Then t =a A b
satisfies (104). This implies that classification of all solutions of (104) is a representation-
wild problem; see [27]. O

Remark 7.6. Any solution t € g® g of cCYBE defines a solution of CYBE.
(a) If t € g® g satisfies (103) then r(z,y) = L'y + t satisfies (36).
=Y

1
(b) If t € g® g satisfies (104) then r(x,y) = —— + t satisfies (36).
r—y
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Such solutions of CYBE are called quasi-constant. %

Theorem 7.7. Let gxg = ¢+t be a Manin triple as in Theorem 7.4 and t € gRg
be the corresponding solution of (103), given by the formula (105). Choose homogeneous
coordinates on P! and define a nodal Weierstras curve E via the pushout diagram (76),
where sy = (0:1) and s— = (1:0). Define the sheaf of Lie algebras A as the pullback

A—— 1o

(107) J

B—sgxg

in the category Coh(E), where B := g ®c¢ (V*((’)]pl)), whereas o and g X g are considered as
skyscraper shaves supported at the singular point s € E and ev is induced by the canonical

isomorphisms Oﬂbl‘ =~ C. Then (E,A) is a geometric CYBE datum and the correspond-

s+
ing geometric r-matriz is the quasi-constant solution r(x,y) = L’y +t of (36).
r—y

Proof. 1t follows from the definition of A that 2 = T(U,A) = T(U,B) = £ = g[z,27'].
Next, I'(E,B) = g and H'(E, B) = 0. From (107) we obtain an exact sequence

0 — H(E,A) — c+w — (gx g) — H'(E, A) — 0,

which implies that HY(E, A) = 0 = H'(E, A). From (58) we get a direct sum decompo-
sition A = A + A, where 2A is the completion of the stalk of A at s and 2 is its rational
hull. We have: 2 = g((x+)) x g((z_)) and A = {(az®, az_ ) la€g ke Ng} Moreover, it
follows from (107) that Ay g[z+] + z— g[z_] + w. In particular, 2 is a Lagrangian
Lie subalgebra of 2 and (E, A) is a geometric CYBE datum, as asserted.

The recipe to compute the geometric r-matrix of (£, A) is given by (74). Let (g1,...,dq)
be a basis of g, (¢7,... ,g;) be the corresponding dual basis with respect to the Killing
form and (a(m) =g 1 <i<qkce Z) be the corresponding basis of £. Note that
the elements w;, ;) defined by (69) belong to x4 g[z4+] + x—g[z_] + o for £ # 0. As a
consequence, the elements h, ;) given by (70) are zero for k # 0.

Let ((wi,wy),...,(wS,w;)) be a basis of w dual to the basis ((g1,91),--,(9q,9q)) of

¢. For any 1 § t < q there exists a uniquely determined element v; € g such that
(=95,0) + (vi,v;) = (—w;", —w;). It follows from (70) that hg; = v; = —w; for all

1<i<gqand w] = gf +w; (here we use that K(gi,g;-‘) = k(gi, g;) = 6ij). From (74) we
conclude that

(o) = 7+Zw ®gz——v+z g ®gi= - Zw ® gi.
=1

Since r(z,y) is skew-symmetric, we have:

T(ﬂf,y) = _T21(y7 JI) =

7+Zgz®w
=1

as asserted. OJ

xTr —
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Remark 7.8. An analogous statement is true for the rational quasi-constant solutions.
Let g[e]/(%) = ¢+t be a Manin triple as in Theorem 7.4 and t € g®g be the corre-
sponding solution of (104). Choose homogeneous coordinates on P! and define a cuspidal
Weierstrafl curve F via the pulldown diagram

Spec(@[e}/(sz))C—ﬁ> P!
(108) ﬁl ly
Spec(C)—1 > F

where the image of 7 is the scheme supported at (1 : 0). Similarly to the nodal case, we
define the sheaf of Lie algebras A as the pullback

A——w

(109) l

B—"=g[e]/(¢?)
where B := g ®¢ (v4(Op1)). Let U be the regular part of E. Then we have: 2 = I'(U, A) =
g[z]. As in the nodal case, it follows that Ay = ﬁs + 25y is a Manin triple, which can be
identified with the Manin triple g((z~1)) = 2 + g[z], where the symmetric non-degenerate

bilinear form Eils X ﬁls £, C can be identified with
(110) 07" x g(z1) =5 C, (a2F,b2Y) = Spyi11 05(a, b).

In these terms, we have: 9 = 272g[z7!] + o, where we identify ro C gle]/(¢?) with a
subspace of g+2z~1g. It is precisely the setting of Stolin’s theory of rational solutions
[48]. As in the nodal case, one can derive from the formula (75) that the corresponding
geometric r-matrix is given by the formula

1
T-t=
Ty z =y

q
r(z,y) = Y+ hi®gi
i=1

where (h1 +eg},...,hg +cg}) is the basis of v C 0 = g[e]/(¢?) dual to (g1,...,9q)-

8. APPENDICES

8.1. Road map to this work. Let 8 be the Kac-Moody Lie algebra over C associated
with an arbitrary symmetrizable generalized Cartan matrix A. It is well-known £ admits
a natural triangular decomposition R = K1 ® H P K_ . Moreover, K has finite dimensional
root spaces as well as an essentially unique non-degenerate symmetric invariant bilinear

form £ x & 2 C (which coincides with the Killing form if £ is finite dimensional); see

[31]. As discovered by Drinfeld [22], R has a structure of a Lie bialgebra 8 Lo, R®R,
called in this paper standard. Existence of d, follows from the root space decomposition
of R and as well as invariancy and non-degeneracy of the bilinear form B. The action of
0o on the Cartan—Weyl generators of & can be expressed purely in terms of the entries of
the matrix A.
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The Lie algebra € = K x K is also equipped with a symmetric non-degenerate invariant
bilinear form

exe -, ((a1,b1), (a2,b2)) — B(a1,az) — B(by, by).
Identifying & with the diagonal in &, we get a direct sum decomposition ¢ = £+ 2,,
where 20, = {((c4,h), (c—,—h)) € (R ®H) x (R- D H) | c+ € Ry, h € H}. Moreover, &

and 0, are Lagrangian Lie subalgebras of € with respect to the form F. The Manin triple
¢ = R+ 2, “determines” the cobracket d, in the following sense:

F(éo(c),wl ® wg) = B(c, [wl,wg]) for all c€ K and wy,wy € W .

Following the work of Karolinsky and Stolin [35], we study “twisted” Lie bialgebra co-
brackets of the form 0y = do + Oy, where t € A%(&) and O;(a) = [a®1+1®a,t] for a € K.
By Proposition 2.3 (see also [35, Theorem 7]), d¢ is a Lie bialgebra cobracket if and only
if the tensor

(alt((éo ® ﬂ)(t)) - [t12,t13] _ [tlz,t23] _ [t13,t23] c ﬁ®3

is ad-invariant, where alt(a ® b ®¢) = a®@b®c+cRa®b+b®c®a for a,b,c € K.
In Section 2, we elaborate a general framework to study twists of a given Lie bialgebra
structure (generalizing and extending results known in the finite dimensional case [35])
and prove that such t are parametrized by Manin triples of the form & = &+ 20, where
2 is a Lie subalgebra of & commensurable with 2J,; see Theorem 2.10.

From the point of view of applications in the theory of classical integrable systems as
well as from the purely algebraic point of view, the most interesting and rich case is when

A =6is an affine Kac—-Moody algebra. Then the center 3 of the Lie algebra gﬁ is one-

dimensional. Let & = & /3 be the “reduced” affine Lie algebra, where ® = [(75, QNﬂ It
follows from the explicit formulae for d, that one gets an induced Lie bialgebra cobracket

& LN B R ®B. An inconspicuous but decisive advantage to pass from K to & is due to the
fact that for any n € N, the n-fold tensor product ™ does not have non-zero ad-invariant
elements; see Proposition 3.4. As a consequence, t € A?(®) defines a twisted Lie bialgebra

cobracket & 2 & ® & if and only if it satisfies the twist equation
(alt((do ® 1)(t)) — [£12,£17] — [£1%, 2] — [£13,+%] = 0
introduced in [35], which is an incarnation of the classical Yang-Baxter equation
[rl2(:131,:n2),7‘23(x2,$3)] + [r12(m1,m2),7‘13(x1,:n3)] + [7’13(1'1,1‘3),7'23(1'2,1'3)] =0.

To see the latter statement, recall that the “reduced” affine Lie algebra & is isomorphic
to a twisted loop algebra £ = £(g, o), where g is a finite dimensional simple Lie algebra
and o is an automorphism of its Dynkin diagram [18, 31].

Let us for simplicity assume that the affine Cartan matrix A corresponds to an extended
Dynkin diagram. In this case, the automorphism ¢ is trivial and £ = g [z, z‘l] is the usual
loop algebra. We have a non-degenerate invariant bilinear form

ex e C, B(az*,bz") = k(a,b)dk410,

where k denotes the Killing form of g. A theorem due to Gabber and Kac asserts that
there exists an isomorphism of Lie algebras & — £ identifying both non-degenerate
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invariant bilinear forms on & and £ up to a rescaling; see [31, Theorem 8.5]. We show
(see Corollary 6.6) that under this identification, the standard Lie bialgebra cobracket do
on £ is given by the formula

do
£ =5 AH(L), f2) = [f(2) @ 1+ 1@ f(y), ro(z,y)],
1
where 7o(z,y) = §(x+ y’y +>e—a €a> is the “standard” solution of CYBE. As a
=Yy «

consequence, twists of the standard Lie bialgebra cobracket £ L, A%(£) have the form

25 N(9), f(2) = [f@) @ 1416 f(y)reley)],
where t(z,y) € (g®g)[z,271,y, y '] is such that r¢(z,y) = ro(z, y) + t(z, y) is a solution
of CYBE; see Theorem 6.9. It turns out that any such solution of CYBE is equivalent
(with respect to the equivalence relation given by (38) and (39)) to a trigonometric solution
of CYBE with one spectral parameter (41); see Proposition 6.11. Trigonometric solutions
of CYBE were completely classified by Belavin and Drinfeld [6]. However, our work is
completely independent of that classification and in particular provides an alternative
approach to the theory of trigonometric solutions of CYBE.

The latter point is explained by the algebro-geometric perspective on Lie bialgebra
structures on twisted loop algebras. To proceed to this, we first show that twists t € A2(£)

£

of the standard Lie bialgebra cobracket £ Lo, A?(£) are in bijection with Manin triples
D=0C+ 0, W=<W,
where ® = £, x£&_ = £x & and € = {(f, /5| f € £}; see Theorem 4.1. If £ =

£(g,0) C gfz4,2;"] then £ := £(g,071) C g[z—,27"] and (azh)} = az=". The key
statement is that 27 is stable under multiplications by the elements of the algebra

Clts,t-]/(tt-) = {(f+. f-) € Ct4] x Ct_]| f+(0) = f-(0)},

where t4 = 2" and m is the order of the automorphism o; see Lemma 4.3. Its proof uses
the fact that any bounded coisotropic Lie subalgebra of £ is stable under the multiplication
by the elements of C[t]; see Theorem 3.11. In its turn, the proof of Theorem 3.11 is based on
properties of affine root systems as well as on the result of Kac and Wang [32, Proposition
2.8].

The crux of our work is that Manin triples © = € + 20, 20 < 20° are of algebro-geometric
nature. Projecting the Lie algebra 20 to each factor £i of ©, we get a pair of Lie
algebras 204 C £4, which can be glued to a Lie algebra bundle B on the projective line
P!, whose generic fibers are isomorphic to the Lie algebra g; see Proposition 6.3. Let

w =22 /(ty,t_)W, wy = W, /tL W and <, oy X to_ be the canonical embedding.
Using the theory of torsion free sheaves on singular projective curves developed in [9, 11],
we attach to the datum (B, tv,0) a sheaf of Lie algebras A on a plane nodal cubic curve
E =V (u? — v3 — v?) C P?; see Proposition 6.4. This sheaf has the following properties.

o A|p >~ g for all p € F, where E is the smooth part of E.
e A has vanishing cohomology: H°(E, A) = 0= H'(E, A).
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e A is a Lagrangian Lie subalgebra of the rational hull of A (which is a simple Lie
algebra over the field of rational functions of E), where s is the unique singular

point of F.
The constructed geometric datum (F, .A) fits precisely into the framework of the algebro-
geometric theory of solutions of CYBE developed by Burban and Galinat [14, Theorem
4.3]. In that work, the authors constructed a canonical section (called geometric r-matrix)

pE F(E x E \ 2, AX A), where ¥ C E x E is the diagonal,
which satisfies a sheaf-theoretic version of the classical Yang—Baxter equation:
[0%,0"°] + [0, 0% + [p'%,p™] = 0 .and p(p1,p2) = —p* (p2,p1) for p1,p2 € E.
In [14, Proposition 4.12] it was shown that I'(, A) is a Lie bialgebra: the linear map

(B, A) 22 T(B, A) @ T(, A), f(t) — [f(u) ©1+ 1@ f(v), p(u,v)]

is a skew-symmetric one-cocycle satisfying the co-Jacobi identity. It follows from the
construction of (E,A) that ['(E,Op) C[t,t7] and I'(E,A) = £ 1In Theorem 6.9
we show that Lie bialgebras (F(E,A),ép) and (£,0¢) are isomorphic. This statement
also allows to identify the trivialized geometric r-matrix p with the solution r¢(x,y) =
ro(x,y) + t(x,y) of CYBE. The latter fact in particular means that any trigonometric
solution of CYBE arises from an appropriate geometric datum (E,.A), concluding the
geometrization programme started in [14].

In Section 7, we deal with concrete examples. In Theorem 7.7, we describe Manin triples

o((=+) x 8(>-) = g[, 27 '] + 21,
corresponding to quasi-constant trigonometric solutions of CYBE. In Theorem 7.1, we

describe the corresponding Lagrangian subalgebras 2 for a special class of (quasi)-trigono-
metric solutions of CYBE for g = sl,,(C), which were obtained in [15, Theorem A].

8.2. Infinite dimensional Lie bialgebras. As usual, let g be a finite dimensional simple
complex Lie algebra and r(x,y) be a solution of the classical Yang-Baxter equation (36).
There are several essentially different possibilities to attach to r(x,y) a Lie bialgebra.

1. There is a “universal procedure”, applicable for all three types of solutions of (41):
elliptic, trigonometric and rational. As was explained in Subsection 5.1, any solution of
(47) defines a Manin triple of the form g((z)) = g[2] + 20 and the linear map

9y o, WRW, w(z) — [w(w) ®1+1 ®w(y),r(x,y)}

is a Lie bialgebra cobracket on 2. For elliptic solutions, such Manin triples appeared for
the first time in [44]. A description of the corresponding Lie algebras 20 via generators
and relations was given in [29, 46].
2. Let o(z) be a trigonometric solution of CYBE with the lattice of poles 2miZ. Then
there exists o € Autc(g) such that

o(z +2mi) = (0 @ 1y)o(z) = (1@ 0~ ) o(2).

Moreover, there exists m € N such that ¢ = 14; see [6, Theorem 6.1]. It turns out that
(after an appropriate change of coordinates) p defines a Lie bialgebra cobracket on the
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twisted loop algebra £ = £(g, o), which is a twist of the standard Lie bialgebra structure
on £. In this paper we prove that such twists are classified by Manin triples of the form

ex et =4, W=Wwe,

where € = {(f7 &) ‘ fe 2} =~ £ and 20° is the Lie algebra corresponding to the standard
Lie bialgebra cobracket on £. From this perspective, the theory of trigonometric solutions
of CYBE appears in a parallel way to the theory of of solutions of cCYBE. Methods
developed in this work should be applicable to study analogues of trigonometric solutions
of CYBE for simple Lie algebras defined over arbitrary fields.

3. Lie bialgebra structures on the Lie algebra g[z] were studied in [40]. For any

l/x+y 1 Yy
(111) r(z,y) € 40, §<x—y7+ Z 6—a/\ea)7 xi—y% x_y’Y

we have the corresponding Lie bialgebra cobrackets g[[z] S, glz] ®@g[y]. It turns out that

for any other Lie bialgebra cobracket g[z] 2, g[z] ® g[y], the corresponding Drinfeld
double D (g[z], ) is isomorphic to D (g[z], d,) for some r(z,y) from the list (111); see [40,
Theorem 2.10].

4. Let r(z,y) = rst(z,y) + p(x, y) be a solution of CYBE, where p(x,y) € (g® g)[x,y] and

y
r—y

rational case

ret(z,y) = T yw quasi-trigonometric case
x

r—y

~ quasi-rational case.

For any such r(z,y) we have a Lie bialgebra cobracket g[z] N g[z] ® g[y]. Such Lie
bialgebra structures of g[z] are controlled by Manin triples of different shapes (depending
on rs(x,y)). According to [48], rational solutions of (36) are parametrized by Manin
triples of the form

oz =glel +28, wW=2gla7'].

The theory of Manin triples for quasi-trigonometric and quasi-rational solutions od CYBE
is given in [36] and [50], respectively. It turns out that any quasi-trigonometric solution
is equivalent (with respect to the transformation rules (38) and (39)) to a trigonometric
solution of (41); see [36]. Therefore, quasi-trigonometric solutions of CYBE can be used
to define Lie bialgebra cobrackets both on g[z] and g[z, z_l].

5. A relation between trigonometric and quasi-trigonometric solutions was also explored in
[1, Section 4.2 and Section 4.3]. In particular, let g = sl,,(C) and o(z) be a trigonometric
solution of (41) such that the corresponding monodromy automorphism o € Autc(g)
induces the trivial automorphism of the Dynkin diagram of g. Then o(z) is equivalent to
a quasi-trigonometric solution; see [1, Lemma 4.10 and Remark 4.11].
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8.3. Twists of the standard Lie bialgebra structure on a twisted loop algebra.
Let g be a finite dimensional simple complex Lie algebra, o € Autc(g) be an automorphism
of finite order m and £ = £(g, o) be the corresponding twisted loop algebra. In [1] it is
shown that results of this work (in particular, Proposition 6.11 and Theorem 6.9) can be
used to extend the Belavin—Drinfeld classification of trigonometric solutions of CYBE to

a classification of twists of the standard Lie bialgebra cobracket £ Lo, A%(L). The key
observation is thereby that for two classical twists t,t’ € A%(£) of J, the Lie bialgebras
(£,6:) and (£,0y) are isomorphic via some R-linear automorphism of £ if and only if

there exists a holomorphic germ (C,0) 2, Autc(g) such that

(112) v (exp (=) vexp () = (6(w) @ () (exp () exp (=) )

see [1, Theorem 3.7 and Theorem 5.8]. A proof of this statement uses the algebro-geometric
theory of the CYBE developed in Section 5 and Theorem 6.9. In particular, as an inter-
mediate step it is shown that the sheaves of Lie algebras A; and Ay from Theorem 6.9
are isomorphic in this case.

In the setting of Remark 6.7 (i.e. when o is a Coxeter automorphism of a diagram au-
tomorphism of g) this fact already yields the desired classification of classical twists of
do. Combining Proposition 6.11 with the classification of trigonometric solutions of (41)
presented in Section 6.4 it follows that r¢ is equivalent to r¢g given by formula (92) for an
appropriate Belavin-Drinfeld quadruple Q. It follows that (£, §¢) is isomorphic to (£,d¢),
where 0g = do + 0y, and tq is given by (91).
For an arbitrary automorphism o this classification needs a slight adjustment; see [1,
Lemma 3.2] as well as [6, Lemma 6.22]. We keep the notation of Subsection 3.2. In this
setting, a Belavin-Drinfeld quadruple @ = ((I'1,T'2,7),s) consists of (possibly empty)
proper subsets 'y, Ty of the set IT C h* xNy of simple roots of (£, h), a bijection T'y — 'y
and a tensor s € A%(h) satisfying the following conditions:

o i(7(a), 7(¢))) = k(a, ) for all (a,k), (!, k) € Ty;

e for any (o, k) € T'; there exists [ € N such that (o, k),..., 771 (a, k) € Ty but

o, k) ¢ Ty;
e (Bol+11a) (s n ?) — 0 for all (o, k) € Ty, where 7(a, k) = (8, 1).

For i € {1,2} consider Lie algebras s& := <<x;t |jeTi) C Lands; := ((acj’,a:]_ |jeTi) C
£, where xj[ € L(ta,+s;) = Ota, 2%%i are Chevalley generators of £ corresponding to
(faj,£s)) € II*. Since I'; is a proper subset of I, the Lie algebra s; is finite dimensional
and semisimple. It is clear that 7 induces an isomorphism s§; — s, given by the formula

m]i — xf(j) for all j € I'y (where we identify IT with {0,1,...,r}). We have: 7(st) = s5.

It is clear that there exists a finite subset ®; C ® \ {(0,0)} and a Lie subalgebra bh; C b
such that s; = b; ® S (q r)ed; L(ak) and sii = Do p)cos £(a k), where @ii =®;NPy. Let
9 be the nilpotent C-linear endomorphism of £ given as the composition

™ T 2
£ —"»s s — &
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where 7 and ¢ are the canonical projection and embedding with respect to the direct sum

9 o0
decomposition £ = @4 p)cd L(a,k)- We put: ¢ = 1-0 = S 9 € Endc(L). Finally, let
- =1

us choose a family (b(a’k) € S(a’k)) such that B(b(a,k), b(B,t)) = 0a+3,0 Ok+t,0 for all

(a,k)€<1>1
(a, k), (B,t) € 1. The following statement is one of main results of [1].

Theorem. Let Q = ((Fl, Iy, 7), s) be a Belavin—Drinfeld quadruple and

tg=s+ Z b(—a,—k) A w(b(a,k) € /\2(2/)
(a,k)edf
Then 6g = 0o + Oy, is a twist of the standard Lie bialgebra cobracket £ Lo, A2(L).

Conversely, let t € A%(£) be such £ L, AZ(£) is a Lie bialgebra cobracket. Then there
exists a Belavin—Drinfeld quadruple ) and an R-linear automorphism of £ giving an
isomorphism of Lie bialgebras (£, dy) and (£, dg).

Note that
o g e\
rq(z,y) = (20 + ’Yo_> + pe——rY Z <y> Vi + s+ Z b(—a,—k) N U (bak)-
k=0

(a,k)ed]

is a solution of CYBE. In [1] these solutions are called o-trigonometric.
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