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Abstract. This paper is devoted to algebro-geometric study of infinite dimensional Lie
bialgebras, which arise from solutions of the classical Yang–Baxter equation. We regard
trigonometric solutions of this equation as twists of the standard Lie bialgebra cobracket
on an appropriate affine Lie algebra and work out the corresponding theory of Manin
triples, putting it into an algebro-geometric context. As a consequence of this approach,
we prove that any trigonometric solution of the classical Yang–Baxter equation arises
from an appropriate algebro-geometric datum. The developed theory is illustrated by
some concrete examples.

1. Introduction

The notion of a Lie bialgebra originates from the concept of a Poisson–Lie group. Let G be
any finite dimensional real Lie group and g� be its Lie algebra. It was shown by Drinfeld
in [21] that Poisson algebra structures on the algebra C∞(G) of smooth functions on G
making the group product G × G ! G to a Poisson map correspond, on the Lie algebra

level, to linear maps g�
δ
−! ∧2(g◦) satisfying the cocycle and the co-Jacobi identities. Such

a pair (g�, δ) is a Lie bialgebra. Conversely, if G is simply connected then any Lie bialgebra

cobracket g�
δ
−! ∧2(g�) defines a Poisson bracket on C∞(G) such that G × G ! G is a

Poisson map; see [21].

Assuming that g� is a simple Lie algebra, it follows from Whitehead’s Lemma that any

Lie bialgebra cobracket g�
δ
−! ∧2(g�) has the form δ = ∂t for some tensor t ∈ g�⊗ g�,

where

g�
∂t−! g�⊗ g�, a 7! [a⊗ 1 + 1⊗ a, t]

and t satisfies the classical Yang–Baxter equation for constants (cCYBE):

(1) [t12, t13] + [t12, t23] + [t13, t23] = 0 and t12 + t21 = λγ

Here, γ ∈ g�⊗ g� is the Casimir element with respect to the Killing form g�× g�
κ�−! R

and λ ∈ R. For any a, b, c, d ∈ g� we put:
[
(a⊗b)12, (c⊗d)13

]
= [a, c]⊗b⊗d ∈ g⊗3

� , which

determines the expression [t12, t13]; the two other summands [t12, t23] and [t13, t23] of (1)
are defined in a similar way.

Suppose now that g is a finite dimensional complex simple Lie algebra and g× g
κ
−! C is

its Killing form. Solutions of cCYBE for λ 6= 0 were classified by Belavin and Drinfeld; see
[8, Chapter 6]. In a work of Stolin [49] it was shown that such solutions stand in bijection
with direct sum decompositions

(2) g× g = cuw,
1
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where c :=
{

(a, a) | a ∈ g
}

is the diagonal and w = wt is a Lie subalgebra of g× g which
is Lagrangian with respect to the bilinear form

(3) (g× g)× (g× g)
F
−! C,

(
(a1, b1), (a2, b2)

)
7! κ(a1, a2)− κ(b1, b2).

Such datum
((

g× g, F
)
, c,w

)
is an example of a Manin triple.

Let ˜̃G = ˜̃GA be the Kac–Moody Lie algebra, associated with a symmetrizable generalized

Cartan matrix A. It turns out that ˜̃G possesses a non-degenerate invariant symmetric

bilinear form ˜̃G× ˜̃G B
−! C and decomposes into a direct sum of root spaces [31]. From these

facts one can deduce that ˜̃G carries a distinguished Lie bialgebra cobracket ˜̃G δ◦−! ∧2
( ˜̃G)

called standard ; see [22].

Especially interesting and important phenomena in this context arise in the case of affine
Lie algebras. Assume that A is a generalized Cartan matrix of affine type. Then the

corresponding affine Lie algebra G̃ =
[ ˜̃G, ˜̃G] has a one-dimensional center 〈c〉 and both

B and δ◦ induce the corresponding structures on the Lie algebra G = G̃/〈c〉. Namely,

we have a non-degenerate invariant symmetric bilinear form G×G
B
−! C and a Lie

bialgebra cobracket G
δ◦−! ∧2(G). According to a theorem of Gabber and Kac (see [31,

Theorem 8.5]), there exists a finite dimensional simple Lie algebra g and an automorphism
σ ∈ AutC(g) of finite order m such that G is isomorphic to the twisted loop algebra
L = L(g, σ) :=

⊕
k∈Z

gk z
k ⊂ g

[
z, z−1

]
(where gk are eigenspaces of σ). The Lie algebra

L is a free module of rank q = dimC(g) over the ring R = C
[
t, t−1

]
, where t = zm. It

turns out that (up to an appropriate rescaling) the bilinear form L×L
B
−! C factorizes

as L×L
K
−! R

resω0−! C, where K is the Killing form of L (viewed as a Lie algebra over
R) and resω0 is the residue map at the zero point with respect to the differential one-form

ω =
dt

t
. Moreover, one can show that the standard Lie bialgebra cobracket δ◦ on L ∼= G

is given by the following formula:

(4) L
δ◦−! ∧2(L), f(z) 7!

[
f(x)⊗ 1 + 1⊗ f(y), r◦(x, y)

]
,

where r◦(x, y) is the so-called standard trigonometric solution of the classical Yang–Baxter
equation with spectral parameters (CYBE){ [

r12(x1, x2), r13(x1, x3)
]

+
[
r13(x1, x3), r23(x2, x3)

]
+
[
r12(x1, x2), r23(x2, x3)

]
= 0

r12(x1, x2) = −r21(x2, x1),

attached to the pair (g, σ), see for instance Corollary 6.6.

Following the approach of Karolinsky and Stolin [35], we study twisted Lie bialgebra
cobrackets δt = δ◦ + ∂t on L, where

t ∈ L∧L ⊆ (g⊗ g)
[
x, x−1, y, y−1

]
and ∂t

(
f(z)

)
=
[
f(x)⊗ 1 + 1⊗ f(y), t(x, y)

]
.

One can show that (L, δt) is a Lie bialgebra if and only if rt(x, y) = r◦(x, y) + t(x, y) is a
solution of CYBE (see Theorem 6.9). It is not hard to see that (after an appropriate change
of variables) all trigonometric solutions of CYBE (classified by Belavin and Drinfeld in
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[6, Theorem 6.1]) are of the form rt(x, y) for an appropriate t ∈ ∧2(L). Conversely, one
can show that any solution of CYBE of the form rt(x, y) is equivalent to a trigonometric
solution of CYBE; see Proposition 6.11. We prove that such Lie bialgebra twists t ∈ ∧2(L)
are parametrized by Manin triples of the form

(5) L×L‡ := C u W,

where L‡ = L
(
g, σ−1

)
, C =

{
(f, f ‡)

∣∣ f ∈ L
}

(here, (azk)‡ = az−k for a ∈ g and k ∈ Z) and

the symmetric non-degenerate bilinear invariant form
(
L×L‡)×

(
L×L‡)

F
−! C is given

similarly to (3), but replacing the Killing form κ by the standard form B; see Theorem
4.1. This results establishes another analogy between solutions of cCYBE for λ 6= 0 and
trigonometric solutions of CYBE (parallels between both theories were already highlighted
by Belavin and Drinfeld in [8]). We expect (in the light of the works [47, 39]) that the
constructed Manin triples (5) will be useful in the study of symplectic leaves of Poisson–Lie
structures on the affine Kac–Moody groups and loop groups, associated to trigonometric
solutions of CYBE.

Using results obtained in this paper, Maximov together with the first-named author proved
in [1] that up to R–linear automorphisms of L, the Lie bialgebra twists of the standard
Lie bialgebra cobracket (4) are classified by Belavin–Drinfeld quadruples

(
(Γ1,Γ2, τ), s

)
,

which parametrize trigonometric solutions of CYBE (see Subsection 6.4 for details).

Based on the work [14], we put the theory of Manin triples of the form (5) into an algebro-
geometric context. We show that for any twist t ∈ ∧2(L) of the standard Lie bialgebra
structure on L there exists an acyclic isotropic coherent sheaf of Lie algebras A = At

on a plane nodal cubic E = V (y2 − x3 − x2) ⊂ P2 such that Γ(U,A) ∼= L and such

that the completed Manin triple L̂ × L̂
‡

:= C u Ŵt is isomorphic to the Manin triple

Ãs = Γ(U,A)u Âs, where s is the singular point of E, U = E \ {s}, Âs is the completion

of the germ of A at s and Ãs is its rational hull. Moreover, L
δt−! ∧2(L) ⊂ L⊗L can be

identified with the Lie bialgebra cobracket

Γ(U,A) −! Γ(U,A)⊗ Γ(U,A) ∼= Γ(U × U,A�A), f(z) 7!
[
f(x)⊗ 1 + 1⊗ f(y), ρ(x, y)

]
,

where ρ ∈ Γ
(
U × U \ Σ,A � A) is the geometric r-matrix attached to the pair (E,A)

(here, Σ ⊂ U × U is the diagonal); see Theorem 6.9. From this we deduce that any
trigonometric solution of CYBE arises from an appropriate pair (E,A), completing the
program of geometrization of solutions of CYBE started in [20, 14]. Another proof of this
result was recently obtained by Polishchuk along quite different lines [43].

The theory of twists of the standard Lie bialgebra cobracket on L ∼= G can be regarded
as an alternative approach to the classification of trigonometric solutions of CYBE. In
particular, it is adaptable for the study of trigonometric solutions of CYBE for arbitrary
real simple Lie algebras, which is of the most interest from the point of view of applications
in the theory of integrable systems (see [3, 45]) as well as for simple Lie algebras over
arbitrary fields of characteristic zero.

For a completeness of exposition, we also discuss in this paper an algebro-geometric view-
point on the theory of Manin triples of the form g((z)) = gJzKuW, which can be associated
to an arbitrary formal solution of CYBE (see Subsection 5.1) as well as of Manin triples
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of the form g((z−1)) = g[z] uW, which (according to a work of Stolin [48]) parametrize
the rational solutions of CYBE; see Remark 5.8 and Remark 7.8.

The plan of this paper is the following.

In Section 2 we elaborate (following the work of Karolinsky and Stolin [35]) the theory of
twists of a given Lie bialgebra cobracket. The main result of this section is Theorem 2.10,
which describes such twists in the terms of appropriate Manin triples.

Necessary notions and results of the structure theory of affine Lie algebras and twisted
loop algebras are reviewed in Section 3. In particular, we recall the description of the

standard Lie bialgebra cobracket G
δ◦−! ∧2(G) for an affine Lie algebra G ∼= L. The main

new result of this section is Theorem 3.11 asserting that any bounded Lie subalgebra

O ⊂ L, which is coisotropic with respect to the standard bilinear form L×L
B
−! C, is

stable under the multiplication with elements of the polynomial algebra C[t].

In Section 4, we apply the theory of twists of Lie bialgebra cobrackets, developed in Section
2, to the particular case of (L, δ◦). The main results of this section are Theorem 4.1 and

Proposition 4.5, giving a classification of the twisted Lie bialgebra cobrackets L
δt−! ∧2(L)

via appropriate Manin triples.

Section 5 is dedicated to the algebro-geometric theory of CYBE. In Subsection 5.1, we
recall a well-known connection between solutions of CYBE and Manin triples of the form
g((z)) = gJzK uW. In Subsection 5.2 we give a survey of the algebro-geometric theory of
CYBE developed in [14]. In Subsection 5.3, we study properties of geometric CYBE data
(E,A), where E is a singular Weierstraß curve. The main result of this section is Theorem
5.7 (see also Remark 5.8), which gives a recipe to compute the geometric r-matrix attached
to a datum (E,A).

In Section 6, we continue the algebro-geometric study of solutions of CYBE, started in
Section 5. In Subsection 6.1, we review the theory of torsion free sheaves on degenerations
of elliptic curves, following the work [9]. Subsections 6.2 and 6.3 are dedicated to the
problem of geometrization of twists of the standard Lie bialgebra structure on L. In
Proposition 6.5, we derive a formula for the standard trigonometric r-matrix, associated
to an arbitrary finite order automorphism σ ∈ AutC(g). We give a geometric proof of the

known fact that the standard Lie bialgebra cobracket L
δ◦−! ∧2(L) is given by the standard

solution r◦(x, y) of CYBE; see Corollary 6.6. After these preparations been established,

we prove in Theorem 6.9 that an arbitrary twist L
δt−! ∧2(L) arises from an appropriate

geometric CYBE datum (E,A), where E is a nodal Weierstraß curve. After reviewing in
Subsection 6.4 the theory of trigonometric solutions of CYBE due to Belavin and Drinfeld
[6, 8], we prove in Proposition 6.11 that any twist rt(x, y) of the standard solution r◦(x, y)
of CYBE is equivalent to a trigonometric solution.

Some explicit computations are performed in Section 7. In particular, we explicitly de-
scribe Manin triples of the form (5) and the corresponding geometric data for the quasi-
constant trigonometric solutions of CYBE (see Theorem 7.7) as well as for a distinguished

class of (quasi-)trigonometric solutions rtrg
(c,d) for the Lie algebra g = sln(C), which are

attached to a pair of mutually prime natural numbers (c, d) such that c + d = n (see
Theorem 7.1).
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In the final Section 8, we review various constructions of Lie bialgebras arising from
solutions of the classical Yang–Baxter equation.

List of notation. For convenience of the reader we introduce now the most important
notation used in this paper.

− We use Gothic letters as a notation for Lie algebras. In particular, g is a finite di-
mensional complex simple Lie algebra of dimension q and L = L(g, σ) is the twisted loop
algebra associated with an automorphism σ ∈ AutC(g) of order m, whereas L = g

[
z, z−1

]
denotes the full loop algebra. We put t = zm and R = C

[
t, t−1

]
and denote by g× g

κ
−! C

(respectively, L×L
K
−! R) the Killing form of g (respectively, of L) and by γ ∈ g⊗ g (re-

spectively, χ ∈ L⊗R L) the corresponding Casimir element.

− Unless otherwise stated, by ⊗ we mean the tensor product over the field of definition.
We use u to denote the (inner) direct sum of vector spaces. Given a vector space V over
a field k and v1, . . . , vn ∈ V , we denote by 〈v1, . . . , vn〉k the corresponding linear hull. If
V is a Lie algebra then 〈〈v1, . . . , vn〉〉 is the Lie subalgebra of V generated by v1, . . . , vn.

− We denote by G̃ an affine Lie algebra and by G its quotient modulo the center. Next,

G̃ × G̃
B
−! C (respectively, L×L

B
−! C) is the standard bilinear form and G̃

δ◦−! ∧2(G̃)

(respectively, L
δ◦−! ∧2(L)) is the standard Lie bialgebra cobracket.

− A Weierstraß curve E is an irreducible projective curve over C of arithmetic genus one.
If E is singular then s denotes its singular point and U = E \ {s} its regular part. For a
coherent sheaf F on a scheme X and a point p ∈ X, we denote by F

∣∣
p

the fiber of F over

p and by Fp the stalk of F at p.

− Next, A denotes a coherent sheaf of Lie algebras on a (singular) Weierstraß curve E
such that H0(E,A) = 0 = H1(E,A) and A

∣∣
x
∼= g for any x ∈ U (together with a certain

extra condition at the singular point s). Such a pair (E,A) is called geometric CYBE
datum and ρ is the corresponding geometric r-matrix.

− Given a geometric CYBE datum (E,A) and a fixed point p ∈ E, we write O for the
structure sheaf of E and put Ep = E \ {p} and Up = U \ {p} as well as R = Γ(U,O), Rp =
Γ(Ep,O) and R◦p = Γ(Up,O). For the corresponding sections of A we write A = Γ(U,A),
A(p) = Γ(Ep,A) and A◦(p) = Γ(Up,A). The completion of the stalk of O at p is denoted

by Ôp, while its field of fraction is denoted by Q̂p. Finally, the completion of the stalk of

A at p is denoted by Âp, whereas Ãp = Q̂p ⊗Ôp Âp is the corresponding rational hull. If p

is the singular point of E, we omit the indices p.

Acknowledgement. The work of both authors was supported by the DFG project Bu–
1866/5–1. We are grateful to Stepan Maximov and Alexander Stolin for fruitful discussions
as well as to both anonymous referees for their helpful comments and remarks.
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2. Lie bialgebras and Lagrangian decompositions

In this section k is a field of char(k) 6= 2

2.1. Generalities on Lie bialgebras. Let R =
(
R, [− ,− ]

)
be a Lie algebra over k.

Recall the following standard notions.

• For any n ∈ N we denote: R⊗n = R⊗R⊗ · · · ⊗R︸ ︷︷ ︸
n times

. For any t ∈ R⊗n and a ∈ R,

we put: a ◦ t = ada(t) :=
[
a ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ a, t

]
. A tensor

t ∈ R⊗n is called ad-invariant if a ◦ t = 0 for all a ∈ R.

• A linear map R
δ
−! R⊗R is a skew-symmetric cocycle if Im(δ) ⊆ ∧2(R) and

δ
(
[a, b]

)
= a ◦ δ(b)− b ◦ δ(a)

for all a, b ∈ R.

• For any t ∈ R⊗2 we have a linear map R
∂t−! R⊗2, a 7! a ◦ t. If t ∈ ∧2 R then ∂t

is automatically a skew-symmetric cocycle.

Definition 2.1. A Lie bialgebra is a pair (R, δ), where R is a Lie algebra and δ is a skew-

symmetric cocycle satisfying the co-Jacobi identity alt
(
(δ⊗1)◦δ

)
= 0, where R⊗3 alt

−! R⊗3

is given by the formula alt(a⊗ b⊗ c) := a⊗ b⊗ c+ c⊗ a⊗ b+ b⊗ c⊗ a for a, b, c ∈ R.

Remark 2.2. Let (R, δ) be a Lie bialgebra.

• The Lie cobracket δ defines an element in the Lie algebra cohomologyH1
(
R,∧2(R)

)
.

For any t ∈ ∧2(R) we have: [∂t] = 0 in H1
(
R,∧2(R)

)
.

• The linear map R∗⊗R∗ ↪−!
(
R⊗R

)∗ δ∗
−! R∗ defines a Lie algebra bracket on

the dual vector space R∗ of R. ♦

Following the work [35], we have the following result.

Proposition 2.3. Let (R, δ) be a Lie bialgebra, t ∈ ∧2(R) and δt := δ+∂t. Then (R, δt)
is a Lie bialgebra if and only if the tensor

(
alt
(
(δ⊗1)(t)

)
− [[t, t]]

)
∈ R⊗3 is ad-invariant,

where

[[t, t]] := [t12, t13] + [t12, t23] + [t13, t23].

In this case, δt is called a twist of δ.

Proof. Clearly, δt is a skew-symmetric cocycle. Hence, (R, δ) is a Lie bialgebra if and
only if alt

(
(δt ⊗ 1) ◦ δt

)
(x) = 0 for all x ∈ R. Since (R, δ) is a Lie bialgebra, we have:

alt
(
(δ ⊗ 1) ◦ δ

)
= 0. Next, for any x ∈ R the following formula is true:

alt
(
(∂t ⊗ 1) ◦ ∂t

)
(x) = −x ◦ [[t, t]],

see [19, Lemma 2.1.3]. If t =
n∑
i=1

ai ⊗ bi then we have:

x ◦
(
(δ ⊗ 1)(t)

)
=

n∑
i=1

(
(x ◦ δ(ai))⊗ bi + δ(ai)⊗ [x, bi]

)
.
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Since (δ ⊗ 1)(∂t(x)) = (δ ⊗ 1)[x⊗ 1 + 1⊗ x, t] =

=
n∑
i=1

(
δ([x, ai])⊗ bi + δ(ai)⊗ [x, bi]

)
=

n∑
i=1

((
x ◦ δ(ai)− ai ◦ δ(x)

)
⊗ bi + δ(ai)⊗ [x, bi]

)
,

we obtain: (δ ⊗ 1)(∂t(x)) = x ◦
(
(δ ⊗ 1)(t)

)
−

n∑
i=1

(
ai ◦ δ(x)

)
⊗ bi.

Let δ(x) =
m∑
j=1

xj ⊗ yj . Then we have:

(∂t ⊗ 1)(δ(x)) =

m∑
j=1

n∑
i=1

(
[xj , ai]⊗ bi ⊗ yj + ai ⊗ [xj , bi]⊗ yj

)
and

n∑
i=1

(
ai ◦ δ(x)

)
⊗ bi =

m∑
j=1

n∑
i=1

(
[ai, xj ]⊗ yj ⊗ bi + xj ⊗ [ai, yj ]⊗ bi

)
.

Since t ∈ ∧2(R), we have: t = −
n∑
i=1

bi ⊗ ai. It follows that

m∑
j=1

n∑
i=1

[ai, xj ]⊗ yj ⊗ bi =
m∑
j=1

n∑
i=1

[xj , bi]⊗ yj ⊗ ai.

As a consequence, we obtain: alt
( m∑
j=1

n∑
i=1

ai⊗ [xj , bi]⊗ yj − [xj , bi]⊗ yj ⊗ ai
)

= 0. Similarly,

since δ(x) ∈ ∧2(R), we have:
m∑
j=1

xj ⊗ yj = −
m∑
j=1

yj ⊗ xj . Hence,

m∑
j=1

n∑
i=1

xj ⊗ [ai, yj ]⊗ bi =
m∑
j=1

n∑
i=1

yj ⊗ [xj , ai]⊗ bi

and as a consequence, alt
( m∑
j=1

n∑
i=1

[xj , ai]⊗bi⊗yj−yj⊗ [xj , ai]⊗bi
)

= 0. Putting everything

together, we finally obtain: alt
(
(δt ⊗ 1) ◦ δt

)
(x) = x ◦

(
alt
(
(δ ⊗ 1)(t)

)
− [[t, t]]

)
, implying

the statement. �

Corollary 2.4. Let (R, δ) be a Lie bialgebra and t ∈ ∧2(R). A sufficient condition for
δt to be a twist of δ is provided by the twist equation

(6) alt
(
(δ ⊗ 1)(t)

)
− [[t, t]] = 0,

introduced in [35].

Definition 2.5. Let R be a Lie algebra over k and R×R
F
−! k be a symmetric invariant

non-degenerate bilinear form, i.e. F
(
[a, b], c) = F

(
a, [b, c]

)
for all a, b, c ∈ R. Next, let

R± ⊂ R be a pair of Lie subalgebras such that

R = R+uR− and R± ⊆ R⊥±,
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where u is the direct sum of vector subspaces. Then
(
(R, F ),R+,R−

)
=
(
R,R+,R−

)
is

called a Manin triple. We say that a given splitting R = R+uR− is a Manin triple, if(
R,R+,R−

)
is. Two Manin triples

(
(R, F ),R+,R−) and

(
(R̃, F̃ ), R̃+, R̃−) are isomorphic

if there exists an isomorphism of Lie algebras R
f
−! R̃, which is a homothety with respect

to the bilinear forms F and F̃ (i.e. there exists λ ∈ k∗ such that F (a, b) = λF̃ (a, b) for all

a, b ∈ R) and such that f(R±) = R̃±.

Remark 2.6. If
(
R,R+,R−) is a Manin triple, then we automatically have: R± = R⊥±;

see Lemma 2.8 below. ♦

Definition 2.7. Let (R+, δ) be a Lie bialgebra. We say that the Lie bialgebra cobracket

R+
δ
−! ∧2(R+) is determined by a Manin triple

(
(R, F ),R+,R−) if

(7) F
(
δ(a), b1 ⊗ b2

)
= F

(
a, [b1, b2]

)
for all a ∈ R+ and b1, b2 ∈ R−.

It is clear that if R+
δ̃
−! ∧2(R+) is another Lie bialgebra cobracket which is determined

by the same Manin triple
(
R,R+,R−), then δ = δ̃.

2.2. Some basic results on Lagrangian decompositions. Let V be a (possibly infinite
dimensional) vector space over k. Recall that two vector subspaces W ′,W ′′ ⊂ V are called
commensurable (which will be denoted W ′ �W ′′) if dimk

(
(W ′ +W ′′)/(W ′ ∩W ′′)

)
<∞.

Lemma 2.8. Let V = U uW , where U,W ⊂ V are isotropic subspaces with respect to a

non-degenerate symmetric bilinear form V × V F
−! k. Then we have:

(a) The linear map U
F̃
−!W ∗, u 7! F (u, −) is injective and both subspaces U and W

are automatically Lagrangian, i.e. V = U uW is a Lagrangian decomposition.
(b) The linear map

U ⊗ U 
−! Homk(W,U), t =

n∑
i=1

ai ⊗ bi 7!
(
W

ft
−! U, w 7!

n∑
i=1

F (w, ai)bi
)

is injective.
(c) For any t ∈ U⊗2 let Wt :=

{
w + ft(w) |w ∈W

}
. Then we have:

(1) V = U uWt and W �Wt.
(2) The map W −! Wt, w 7! w + ft(w) is an isomorphism of vector spaces and

Wt = Wt′ if and only if t = t′.

Proof. (a) Since U ⊆ U⊥ and F is non-degenerate, the linear map F̃ is injective. Let
v ∈ U⊥. Then there exist uniquely determined u ∈ U and w ∈ W such that v = u + w.
For any u′ ∈ U and w′ ∈W we have:

F (w, u′) = F (v, u′) = 0 and F (w,w′) = 0.

It follows that w = 0 and v = u ∈ U , hence U = U⊥ is Lagrangian.
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(b) Since U is isotropic and F is non-degenerate, the linear map U
F̃
−!W ∗, u 7! F (−, u)

is injective. The linear map  coincides with the composition

U ⊗ U F̃⊗1
↪−!W ∗ ⊗ U ↪−! Homk(W,U),

and is therefore injective.

(c1) Let t =
n∑
i=1

ai ⊗ bi. Then Im(ft) ⊆
〈
b1, . . . , bn

〉
k

and dimk

(
Im(ft)

)
≤ n. Since

W/Ker(ft) ∼= Im(ft), there exists a finite dimensional vector subspace W ′ ⊂W such that
W = W ′ u Ker(ft). It follows that

Ker(ft) ⊆W ∩Wt ⊆W +Wt ⊆ Ker(ft) +
(
W ′ + Im(ft)

)
.

Hence, W � Wt. It is easy to see that U ∩Wt = 0 and W ⊂ U + Wt. It follows that
V = U +W ⊆ U +Wt, hence V = U uWt as asserted.

(c2) The linear map W ! Wt is by construction surjective. It is also easy to see that it
is injective.

Assume that t, t′ ∈ U⊗2 are such that Wt = Wt′ . Then for any w ∈ W there exists
a uniquely determined w′ ∈ W such that w + ft(w) = w′ + ft′(w

′). It follows from
U ∩W = 0 that w = w′. Hence, ft(w) = ft′(w) for all w ∈ W . Since  is injective, we
have: t = t′. �

Proposition 2.9. Let V = U uW be a Lagrangian decomposition and

LG
(
V,U ;W ) :=

{
W̃ ⊆ V

∣∣∣∣∣ V = U u W̃
W̃⊥ = W and W̃ �W

}
.

Then the map ∧2U −! LG
(
V,U ;W ), t 7!Wt is a bijection.

Proof. Let t ∈ U⊗2. Then Wt ⊂ V is Lagrangian if and only if

F
(
ft(w), w′

)
+ F

(
w, ft(w

′)
)

= 0 for all w,w′ ∈W.

It follows that F̂
(
t + t21, w ⊗ w′

)
= 0 for all w,w′ ∈ W , where V ⊗2 × V ⊗2 F̂

−! k is the
bilinear form induced by F . Since V = U uW is a Lagrangian decomposition, it follows

that F̂
(
t+ t21, v⊗ v′

)
= 0 for all v, v′ ∈ V . Thus, t+ t21 = 0, i.e. t ∈ ∧2(U). Lemma 2.8

implies that ∧2U −! LG
(
V,U ;W ), t 7!Wt is a well-defined injective map and it remains

to prove its surjectivity.

Let W̃ ∈ LG
(
V,U ;W ). Then for any w ∈ W there exist uniquely determined u ∈ U and

w̃ ∈ W̃ such that w = w̃−u. We define a linear map W
f
−! U by setting u := f(w). Since

W � W̃ , Ker(f) = W ∩W̃ ⊆W is a subspace of finite codimension and dimk

(
Im(f)

)
<∞.

We also get an isomorphism W ! W̃ , w 7! w̃ = w + f(w). Since W̃ is a Lagrangian
subspace of V , we have: F

(
f(w), w′

)
+ F

(
w, f(w′)

)
= 0 for all w,w′ ∈W . It follows that

Ker(f) =
(
Im(f)

)⊥ ∩W . Moreover, we obtain a bilinear pairing

W/Ker(f)× Im(f)
F̄
−! k, (w̄, u) 7! F (w, u).

It is not hard to show that F̄ is non-degenerate. Let w1, v1, . . . , wn, vn ∈W be such that
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•
(
f(w1), . . . , f(wn)

)
is a basis of Im(f).

•
(
v̄1, . . . , v̄n

)
is a basis of W/Ker(f).

• For all 1 ≤ i, j ≤ n we have: F
(
vi, f(wj)

)
= δij .

Then we have:
n∑
i=1

F
(
wj ,−f(vi)

)
f(wi) =

n∑
i=1

F
(
f(wj), vi

)
f(wi) = f(wj).

Let t := −
n∑
i=1

f(vi) ⊗ f(wi) ∈ U⊗2. Then for any 1 ≤ j ≤ n we have: ft(wj) = f(wj),

hence Im(f) = Im(ft). Since Ker(f) =
(
Im(f)

)⊥ ∩W ⊆ Ker(ft), it follows that Ker(f) =

Ker(ft) implying that f = ft. Thus, we have found t ∈ U⊗2 such that W̃ = Wt. Finally,

the assumption W̃⊥ = W̃ implies that t ∈ ∧2(U), as asserted. �

Theorem 2.10. Let (R,R+,R−) = ((R, F ),R+,R−) be a Manin triple determining a

Lie bialgebra cobracket R+
δ
−! ∧2(R+) and

MT
(
R,R+;R−) :=

{
W ⊂ R

∣∣∣∣ (R,R+,W) is a Manin triple
W � R−

}
.

Let t ∈ ∧2(R+). Then the corresponding subspace Rt
− :=

(
R−
)
t
⊂ R is a Lie subalgebra

if and only if t satisfies the twist equation (6) and the map{
t ∈ ∧2(R+)

∣∣∣ alt((δ ⊗ 1)(t)
)
− [[t, t]] = 0

}
−! MT

(
R,R+;R−)

assigning to a tensor t ∈ ∧2(R+) the subspace Rt
− ⊂ R is a bijection. Moreover, the Lie

bialgebra cobracket R+
δt−! ∧2(R+) is determined by the Manin triple R = R+uRt

−.

Proof. Let t ∈ ∧2(R+). Then the corresponding vector subspace Rt
− ⊂ R is Lagrangian,

R = R+uRt
− and Rt

− � R−. Conversely, any such Lagrangian subspace W has the form

W = Rt
− for some uniquely determined t ∈ ∧2

(
R+

)
; see Proposition 2.9.

Since R = R+uRt
− is a Lagrangian decomposition, the subspace Rt

− ⊂ R is closed under

the Lie bracket if and only if F
(
[w̃1, w̃2], w̃3

)
= 0 for any w̃1, w̃2, w̃3 ∈ Rt

−.

For any w ∈ R− let w̃ = w + ft(w) be the corresponding element of Rt
−. The same

computation as in [35, Theorem 7] shows that for all w1, w2, w3 ∈ R− we have:

F
(
w1 ⊗ w2 ⊗ w3, [[t, t]]− alt

(
(δ ⊗ 1)(t)

))
= F

(
[w̃1, w̃2], w̃3

)
.

This implies that Rt
− is a Lie subalgebra of R if and only if alt

(
(δ◦ ⊗ 1)(t)

)
− [[t, t]] = 0.

Since t ∈ ∧2
(
R+

)
, it follows that F

(
∂t(a), w1 ⊗ w2

)
= F

(
a,
[
w1, ft(w2)

]
+
[
ft(w1), w2

])
for any a ∈ R+ and w1, w2 ∈ R−. A straightforward computation shows that

F
(
δt(a), w̃1 ⊗ w̃2

)
= F

(
a,
[
w̃1, w̃2

])
for any a ∈ R+ and w̃1, w̃2 ∈ Rt

−,

implying that R+
δt−! ∧2

(
R+

)
is determined by the Manin triple R = R+uRt

−. �
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3. Review of affine Lie algebras and twisted loop algebras

3.1. Basic facts on affine Lie algebras. Let Γ̂ be an affine Dynkin diagram, |Γ̂| =
r + 1 and A ∈ Mat(r+1)×(r+1)(Z) be the corresponding generalized Cartan matrix. We

choose a labelling of vertices of Γ̂ as in [18, Section 17.1]. The corresponding affine Lie

algebra G̃ = G̃
Γ̂

= G̃A is by definition the Lie algebra over C generated by the elements

e±0 , . . . , e
±
r , h̃0, . . . , h̃r subject to the following relations:

[h̃i, h̃j ] = 0

[e+
i , e

−
j ] = δij h̃i

[h̃i, e
±
j ] = ±aij e±j

for all 0 ≤ i, j ≤ r

and {
ad

1−aij
e±i

(e±j ) = 0 for all 0 ≤ i 6= j ≤ r

see [18, 31]. Recall the following standard facts.

1. There exist unique vectors ~k = (k0, . . . , kr) and ~l = (l0, . . . , lr) in Nr+1 such that

gcd(k0, . . . , kr) = 1 = gcd(l0, . . . , lr)

and ~lA = ~0 = A~kt; see [18, Section 17.1].

• For any 0 ≤ i ≤ r let di :=
ki
li

. Then for any 0 ≤ i, j ≤ r we have: aijdj = ajidi.

In other words, the matrix D−1A is symmetric, where D := diag
(
d0, . . . , dr

)
.

• The center of the Lie algebra G̃ is one-dimensional and generated by the element
c := l0h̃0 + · · ·+ lrh̃r; see [18, Proposition 17.8].

2. There exists a symmetric invariant bilinear form G̃ × G̃
B̃
−! C (called standard form)

given on the generators by the following formulae:

(8)


B̃(h̃i, x

±
j ) = 0

B̃(h̃i, h̃j) = djaij

B̃(e±i , e
∓
j ) = diδij

B̃(e±i , e
±
j ) = 0

for all 0 ≤ i, j ≤ r

see [18, Theorem 16.2]. This form is degenerate and its radical is the vector space Cc.

3. The Lie algebra G̃ carries a so-called standard Lie bialgebra cobracket G̃
δ̃◦−! ∧2G̃

(discovered by Drinfeld [22]) given by the formulae

δ̃◦(e
±
i ) =

1

di
h̃i ∧ e±i and δ̃◦(h̃i) = 0 for all 0 ≤ i ≤ r.

4. Consider the Lie algebra G = G̃/〈c〉. Then we have the induced non-degenerate

symmetric invariant bilinear form G×G
B
−! C, which will be also called standard, as well

as a Lie bialgebra cobracket G
δ◦−! ∧2 G, given by the formulae

(9) δ◦(e
±
i ) =

1

di
hi ∧ e±i and δ◦(hi) = 0 for all 0 ≤ i ≤ r,
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where hi denotes the image of h̃i in G.

5. Denote by G± = 〈〈e±0 , . . . , e±r 〉〉 the Lie subalgebra of G generated by the elements
e±0 , . . . , e

±
r and put H :=

〈
h1, . . . , hr

〉
C. Then we have the triangular decomposition G =

G+⊕H⊕G− as well as the following symmetric non-degenerate invariant bilinear form:

(10)
(
G×G

)
×
(
G×G

) F
−! C,

(
(a′, b′), (a′′, b′′)

)
7! B(a′, b′)−B(a′′, b′′).

We identify G with the diagonal
{

(a, a)
∣∣ a ∈ G

}
⊂ G×G and put

(11) H′ =
{

(a,−a)
∣∣ a ∈ H

}
and W

◦
:=
(
G+×G−

)
+ H′ .

The following result is essentially due to Drinfeld [22, Example 3.2]; see also [19, Example
1.3.8] for a detailed proof.

Theorem 3.1. We have a Manin triple

(12) G×G = GuW
◦
,

which moreover determines the standard Lie bialgebra cobracket G
δ◦−! ∧2 G.

3.2. Basic facts on twisted loop algebras. Let g be a finite dimensional complex

simple Lie algebra of dimension q, g× g
κ
−! C its Killing form, σ ∈ AutC(g) an automor-

phism of order m and ε = exp
(2πi

m

)
. For any k ∈ Z, let gk :=

{
x ∈ g

∣∣σ(x) = εkx
}
.

Then we have a direct sum decomposition g = ⊕m−1
k=0 gk. First note the following easy and

well-known fact.

Lemma 3.2. For any k, l ∈ Z, the pairing gk× gl
κ
−! C is non-zero if and only if m|(k+l).

Moreover, the pairing gk× g−k
κ
−! C is non-degenerate for any k ∈ Z.

Proof. Let a ∈ gk and b ∈ gl. Then we have: κ(a, b) = κ
(
σ(a), σ(b)

)
= εk+lκ(a, b),

implying the first statement. The second statement follows from the first one and non-
degeneracy of the form κ. �

Corollary 3.3. The Casimir element γ ∈ g⊗ g (with respect to the Killing form κ) admits

the decomposition γ =
m−1∑
k=0

γk with components γk ∈ gk⊗ g−k.

Let L = g[z, z−1] be the loop algebra of g, where
[
azk, bzl

]
:= [a, b]zk+l for any a, b ∈ g

and k, l ∈ Z. The twisted loop algebra is the following Lie subalgebra of L:

(13) L = L(g, σ) :=
⊕
k∈Z

gk z
k.

Let Inn(g) be the group of inner automorphisms of g. It is a normal subgroup of the group
Aut(g) of Lie algebra automorphisms of g. The quotient Out(g) := Aut(g)/ Inn(g) can be
identified with the group Aut(Γ) of automorphisms of the Dynkin diagram Γ of g; see e.g.
[41, Chapter 4]. Moreover, given two automorphisms σ, σ′ ∈ Aut(g) of finite order, the
corresponding twisted loop algebras L(g, σ) and L(g, σ′) are isomorphic if and only if the
classes of σ and σ′ in Out(g) are conjugate; see [31, Chapter 8] or [30, Section X.5].

Let R = C[z, z−1] and R = C[t, t−1], where t = zm.
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Proposition 3.4. The following results are true.

(a) L is a free module of rank q over R. Moreover, for any λ ∈ C, we have an
isomorphism of Lie algebras

(
R/(t− λ)

)
⊗R L ∼= g.

(b) Consider the symmetric C-bilinear form

(14) L×L
B
−! C, B(azk, bzl) = κ(a, b)δk+l,0.

Then B is non-degenerate and invariant. Moreover, the rescaled bilinear form mB

coincides with the composition L×L
K
−! R

resω0−−! C, where K is the Killing form

of L, ω =
dt

t
and resω0 (f) = res0(fω) for any f ∈ R.

(c) For any n ∈ N, the (n + 1)-fold tensor product L⊗(n+1) does not contain any
non-zero ad-invariant elements.

Proof. (a) Let (f1, . . . , fq) be any basis of the vector space
m−1⊕
j=0

gj z
j . Then for any f ∈ L

there exist unique p1, . . . , pq ∈ R such that f = p1f1 + · · · + pqfq. Hence, L is a free
R-module of rank q.

The canonical map R ⊗R L
π
−! L, zn ⊗ azk 7! azn+k is an R–linear surjective morphism

of Lie algebras. Since R ⊗R L and L are both free R–modules of the same rank, π is
an isomorphism. Finally, the extension R ⊂ R is unramified, hence for any µ ∈ C∗ the
following canonical linear maps

R/(t− µm)⊗R L! R/(z − µ)⊗R L! R/(z − µ)⊗R R⊗R L! R/(z − µ)⊗R L! g

are isomorphisms of Lie algebras.

(b) Let L × L
K
−! R be the Killing form of L. Then we have: K(azk, bzl) = κ(a, b)zk+l.

The isomorphism of Lie algebras R ⊗R L ∼= L as well as invariance of the Killing form
under automorphisms imply that the following diagram is commutative:

L×L
_�

��

K // R� _

��

L× L
K // R.

Since ω =
dt

t
= m

dz

z
, we get the second statement.

(c) Assume that t ∈ L⊗(n+1) is such that

(15)
[
x⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ x, t

]
= 0

for all x ∈ L. Let (bk)k∈N be an orthonormal basis of L with respect to the form B. Then

we can express t as a sum t =
s∑

j1,...,jn=1
aj1...jn ⊗ bj1 ⊗ · · · ⊗ bjn . Consider the vector space

J := 〈aj1...jn | 1 ≤ j1, . . . , jn ≤ s〉C ⊂ L For any 1 ≤ i1, . . . , in ≤ s, we apply the map

1L ⊗B(bi1 ,−)⊗ · · · ⊗B(bin ,−) : L⊗(n+1) −! L
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to the identity (15). It follows that
[
x, ai1...in ] ∈ J for any x ∈ L, implying that J is an

ideal in L. However, L does not contain any non-zero finite-dimensional ideals; see [31,
Lemma 8.6]. Hence, t = 0, as asserted. �

A proof of the following key result can be found in [31, Lemma 8.1].

Proposition 3.5. The algebra g0 =
{
a ∈ g

∣∣σ(a) = a
}

is non-zero and reductive.

Remark 3.6. In what follows, we choose a Cartan subalgebra h ⊂ g0. Let ∆0 be the
root system of (g0, h). We fix a polarization ∆0 = ∆+

0 t ∆−0 , which gives a triangular

decomposition g0 = g+
0 ⊕ h⊕ g−0 . One can show that h̃ :=

{
a ∈ g

∣∣[a, h] = 0 for all h ∈ h
}

is a Cartan subalgebra of g; see [31, Lemma 8.1]. However, in general h̃ 6= h. The algebra
g0 is simple if σ is a so-called diagram automorphism of g; see [31, Chapter 8]. ♦

Now we review the structure theory of twisted loop algebras as well as their relations with
affine Lie algebras. For that we need the following notions, notation and facts.

1. For any j ∈ Z we put: Lj = gj z
j ⊂ L. Since

[
g0, gj

]
⊆ gj , it follows that

[
g0,Lj

]
⊆ Lj ,

too. A pair (α, j) ∈ h∗×Z is a root of (L, h) if

L(α,j) :=
{
x ∈ Lj

∣∣ [h, x] = α(h)x for all h ∈ h
}
6= 0.

In our convention, (0, 0) is a root of (L, h). Note that L(0,0) := h.

Let Φ be the set of all roots of (L, h). It is clear that (−α,−j), (α, j + km) ∈ Φ for all
k ∈ Z and (α, j) ∈ Φ.

2. For any (α, j), (α′, j′) ∈ h∗×Z we put: (α, j) + (α′, j′) = (α+ α′, j + j′). We have:[
L(α,j),L(α′,j′)

]
⊆ L(α+α′,j+j′) .

A root (α, j) is called real if α 6= 0 and imaginary otherwise. There exists m′|m such that
any imaginary root has the form (0, km′) for some k ∈ Z. For any real root (α, j) ∈ Φ we
have: dimC

(
L(α,j)

)
= 1 (see e.g. [30, Lemma X.5.4’]). A formula for dimC

(
L(0,km′)

)
can

be found in [31, Corollary 8.3].

Since g0 is a reductive Lie algebra, we have a direct sum decomposition L =
⊕

(α,j)∈Φ L(α,j) .

The sets of positive and negative roots of (L, h) are defined as follows:

(16) Φ± :=
{

(α, j) ∈ Φ
∣∣ ± j > 0

}
t
{

(α, 0) ∈ Φ
∣∣ ± α ∈ ∆+

0

}
,

where ∆+
0 is the set positive roots of (g0, h). We have: Φ = Φ+ t Φ− t

{
(0, 0)

}
and

Φ− = −Φ+.

3. Since the bilinear form L×L
B
−! C is invariant and non-degenerate, analogously to

Lemma 3.2 we obtain the following results:

• The pairing L(α,j)×L(α′,j′)
B
−! C is zero unless (α, j) + (α′, j′) = (0, 0).

• For any (α, j) ∈ Φ, the pairing L(α,j)×L(−α,−j)
B
−! C is non-degenerate.

• In particular, since B
∣∣
h× h

= κ|h× h, the pairing h× h
κ
−! C is non-degenerate.
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4. The set Π of simple roots of (L, h) is defined as follows:

(17) Π :=
{

(α, j) ∈ Φ+

∣∣ (α− β, j − i) /∈ Φ+ for all (β, i) ∈ Φ+

}
.

All elements of Π are real roots and we have: |Π| = r + 1; see [30, Lemma X.5.7 and
Lemma X.5.9]. We use the following notation:

(18) Π =
{

(α0, s0), . . . , (αr, sr)
}
.

5. Since the pairing h× h
κ
−! C is non-degenerate, we get the induced isomorphism of

vector spaces h
κ̃
−! h∗. Abusing the notation, let h∗× h∗

κ
−! C be the transfer of the

Killing form κ under the isomorphism κ̃.

• For any 0 ≤ i ≤ r we put: yi :=
2

κ(αi, αi)

(
κ̃
)−1

(αi) ∈ h.

• For any 0 ≤ i, j ≤ r we set:

(19) aij := 2
κ(αi, αj)

κ(αi, αi)
.

It turns out that aij ∈ Z and A = (aij) ∈ Mat(r+1)×(r+1)(Z) is a generalized Cartan
matrix of affine type; see [30, Lemma X.5.6 and Lemma X.5.11]. In particular, we
have: rk(A) = r.
• For every 0 ≤ i ≤ r one can choose x±i ∈ L±(αi,si) such that the following relations

are satisfied for all 0 ≤ i, j ≤ r:
[yi, yj ] = 0
[x+
i , x

−
j ] = δij yi

[yi, x
±
j ] = ±aij x±j .

Moreover, for any 0 ≤ i 6= j ≤ r we have:

ad
1−aij
x±i

(x±j ) = 0

and the elements x±0 , . . . , x
±
r , y0, . . . , yr generate L; see [30, Section X.5].

• Let G = GA. A theorem of Gabber and Kac asserts that the linear map

(20) G
ϕ
−! L, e±i 7!, x

±
i , hi 7! yi

is an isomorphism of Lie algebras, which identifies both standard forms on G and
on L (up to an appropriate rescaling); see [31, Theorem 8.5].

Corollary 3.7. We have a Lie bialgebra cobracket L
δ◦−! ∧2 L (also called standard),

given by the formulae

(21) δ◦(x
±
i ) =

κ(αi, αi)

2
yi ∧ x±i and δ◦(yi) = 0 for all 0 ≤ i ≤ r.

This cobracket is determined by the Manin triple, which is isomorphic to (12).
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3.3. Bounded Lie subalgebras of twisted loop algebras. For any 0 ≤ i ≤ r, the
corresponding (positive) maximal parabolic Lie subalgebras Pi ⊂ L is defined as follows:

Pi := 〈〈h0, . . . , hr, x
+
0 , . . . , x

+
r , x

−
0 , . . . , x̂i

−, . . . , x−r 〉〉.

A similar argument to [32, Lemma 1.5] implies that

(22) Pi = B+⊕
(
⊕(α,j)∈Φ−i

L(α,j)

)
,

where Φ−i := Φ− ∩
〈
α0, . . . , α̂i, . . . , αr

〉
N−0

and B+ := (g+
0 ⊕ h) ⊕

( ∞⊕
k=1

gk z
k
)

is a positive

Borel subalgebra of L.

Lemma 3.8. For any 0 ≤ i ≤ r we have: tPi ⊆
(
Pi

)⊥
, where the orthogonal space is

taken with respect to the bilinear form B, given by the formula (14).

Proof. Since the roots α0, . . . , α̂i, . . . , αr are linearly independent elements of h∗, it follows
that (0,−km′) /∈ Φ−i for all k ∈ N. Let Φi := Φ+ t {(0, 0)} t Φ−i . Then we have:

Pi =
⊕

(α,j)∈Φi

L(α,j) and tPi =
⊕

(β,k)∈Φi

L(β,k+m) .

Let (α, j), (β, k) ∈ Φi, x ∈ L(α,j) and y ∈ L(β,k+m) are such that B(x, y) 6= 0. Then we
have: α = −β and j = −k −m.

Case 1. Assume that α = 0. Then (α, j) ∈ Φ+ t {(0, 0)} and (β, k) = (0,−j −m) ∈ Φ−i is
a negative imaginary root. Contradiction.

Case 2. Assume that (α, j) is a real root. Then there exist x ∈ L(α,j) and y ∈ L(β,k+m)

such that [x, y] 6= 0; see [30, Lemma X.5.5’]. Hence, L(0,−m) ∩Pi 6= 0. It follows from the

decomposition (22) that (0,−m) ∈ Φ−i . Contradiction.

We have shown that the pairing tPi×Pi
B
−! C is zero, what implies the claim. �

For any n ∈ Z we put: L≥n := tn L≥0, where L≥0 :=
⊕
j≥0

Lj . Note that for any n ∈ N we

have:
(
L≥n

)⊥ ⊆ L≥−n.

Definition 3.9. A Lie subalgebra O ⊆ L is bounded if L≥n ⊆ O ⊆ L≥−n for some n ∈ N.

Let L̃ = LuCc be a central extension of L with the Lie bracket given by the formulae

(23) [azk, bzl] := [a, b]zk+l + kδk+l,0 κ(a, b) c and [azk, c] = 0

for all k, l ∈ Z, a ∈ gk and b ∈ gl. Let A ∈ Mat(r+1)×(r+1)(Z) be the generalized Cartan

matrix of affine type, given by (19) and ˜̃G = ˜̃GA be the corresponding affine Kac–Moody

Lie algebra. Then ˜̃G has one-dimensional center Z, G̃ =
[ ˜̃G, ˜̃G] and G = G̃/Z. The

Gabber–Kac isomorphism G
ϕ
−! L given by (20) extends to an isomorphism of Lie algebras

G̃
ϕ̃
−! L̃. The entire picture can be summarized in the following commutative diagram of
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Lie algebras and Lie algebra homomorphisms:

(24)

˜̃G G̃? _oo // //

ϕ̃
��

G

ϕ

��

L̃ // // L .

For 0 ≤ i ≤ r, let G̃+ ⊂ P̃i := PiuCc ⊂
˜̃G be the corresponding maximal parabolic Lie

subalgebra.

Proposition 3.10. Let O ⊆ L be a bounded Lie subalgebra. Then there exists an R-linear
automorphism φ of L and 0 ≤ i ≤ r such that O ⊆ φ

(
Pi

)
.

Proof. Let n ∈ N be such that L≥n ⊆ O ⊆ L≥−n and I := t2n+1 O. Obviously, I is a Lie

ideal in O and L≥(3n+1) ⊆ I ⊆ L≥(n+1) . We can view I and L as vector subspaces in L̃.

Let Õ := OuCc. Since I ⊆ L≥(n+1) and O ⊆ L≥−n, the relations (23) imply that[
x, y
]
L

=
[
x, y
]
L̃

for all x ∈ I and y ∈ O. Hence, I ⊂ Õ is a Lie ideal with respect to the Lie

bracket
[
−,−

]
L̃
. Embedding L̃ into ˜̃G via ϕ̃, we see that I ⊆ G̃+ and dimC

(
G̃+/ I

)
<∞.

By [32, Proposition 2.8], there exists an inner automorphism ψ̃ of G̃ and 0 ≤ i ≤ r such

that
[
P̃i, ψ̃(O)

]
⊆ P̃i. According to [32, Lemma 1.5], for any Lie subalgebra P̃ ⊂ ˜̃G

containing B̃+, there exists 0 ≤ i ≤ r such that P̃ ⊆ P̃i. Since the only proper ideals of˜̃G are G̃ and Z (see e.g. [32, Section 1.2]), we deduce from maximality of P̃i that

(25) N ˜̃G(P̃i

)
:=
{
x ∈ ˜̃G ∣∣ [x, y] ∈ P̃i for all y ∈ P̃i

}
= P̃i.

It follows that

(26) ψ̃(Õ) ⊆ N ˜̃G(P̃i

)
= P̃i.

Consider the automorphism G
ψ
−! G induced by ψ̃. Since ψ̃ is inner, ψ is R-linear.

Applying to (26) the projection G̃!! G and identifying G with L, we finally end up with
an inclusion O ⊆ φ

(
Pi

)
, where φ = ψ−1. �

Theorem 3.11. Let O ⊆ L be a bounded coisotropic Lie subalgebra of L. Then we have:
tO ⊆ O⊥, i.e. O is stable under the multiplication with the elements of C[t].

Proof. According to Proposition 3.10, there exists 0 ≤ i ≤ r and φ ∈ AutR(L) such that
O ⊆ φ(Pi). Since B

(
φ(f), φ(g)

)
= B(f, g) for all f, g ∈ L, we get (applying Lemma 3.8):

tO ⊆ tφ(Pi) = φ(tPi) ⊆ φ
(
P⊥i
)

=
(
φ(Pi)

)⊥ ⊆ O⊥ ⊆ O,

as asserted. �
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4. Twists of the standard Lie bialgebra structure on a twisted loop
algebra

Recall our notation: g is a simple complex Lie algebra of dimension q, σ ∈ AutC(g) is an

automorphism of order m and ε = exp
(2πi

m

)
. For any k ∈ Z we denote:

gk :=
{
a ∈ g

∣∣σ(a) = εka
}

and g‡k :=
{
a ∈ g

∣∣σ(a) = ε−ka
}
.

Let L = L(g, σ) =
⊕
k∈Z

gk z
k and L‡ = L(g, σ−1) =

⊕
k∈Z

g‡k z
k be the corresponding twisted

loop algebras and L×L
B
−! C, respectively L‡×L‡

B‡
−! C, be the corresponding standard

bilinear forms. Note that the linear map

(27) L −! L‡, azk 7!
(
azk
)‡

:= az−k for any k ∈ Z and a ∈ gk

is an isomorphism of Lie algebras as well as an isometry with respect to the bilinear forms

B and B†. Let us denote L+ =
⊕
k∈Z

gk z
k
+ and L− =

⊕
k∈Z

g‡k z
k
−. Then we put:

D := L+×L− ∼= L×L‡ .

Note that we have a non-degenerate invariant symmetric bilinear form

(28) D×D
F
−! C,

(
(f+, f−), (g+, g−)

)
7! B(f+, g+)−B‡(f−, g−).

We fix a triangular decomposition g0 = g+
0 ⊕ h⊕ g−0 = g‡0 and denote:

B+ := (g+
0 ⊕ h)⊕

( ∞⊕
k=1

gk z
k
+

)
and B− := (g−0 ⊕ h)⊕

( ∞⊕
k=1

g‡k z
k
−
)
.

Let B±
π±
−! h be the canonical projections. Then we put:

(29) W◦ :=
{

(f+, f−) ∈ B+×B−
∣∣π+(f+) + π−(f−) = 0

}
and C :=

{
(f, f ‡)

∣∣ f ∈ L
}
.

Similarly to Theorem 3.1, we have a Manin triple

(30) D = CuW◦ .

Let L
δ◦−! L∧L be the standard Lie bialgebra cobracket on L. According to Theorem 3.1,

δ◦ is determined by (30), where we use the identification L
∼=−! C, f 7! (f, f ‡)

For t =
n∑
i=1

ai ⊗ bi ∈ C⊗2, let W◦
ft
−! C, w 7!

n∑
i=1

F (w, ai)bi be the corresponding linear

map, δt = δ◦ + ∂t and Wt :=
{
w + ft(w) |w ∈W◦

}
.

Theorem 4.1. For t ∈ ∧2 L ∼= ∧2 C, the corresponding subspace Wt ⊂ D is a Lie
subalgebra if and only (L, δt) is a Lie bialgebra. Moreover, the corresponding map{

t ∈ ∧2 L
∣∣∣ (L, δt) is a Lie bialgebra

}
−! MT

(
D,C;W◦)

is a bijection and L
δt−! L∧L is determined by the Manin triple D = CuWt.
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Proof. By Proposition 3.4, L⊗3 does not contain any non-zero ad-invariant elements. Ac-
cording to Proposition 2.3, (L, δt) is a Lie bialgebra if and only if t satisfies the twist
equation (6). Hence, the result follows from Theorem 2.10. �

Let W ⊂ D be a Lie subalgebra as in Theorem 4.1 and W± ⊆ L± be its image under the
projections D!! L±. Starting with the embedding W ⊆W+×W−, we get:

W⊥+×W⊥− =
(
W+×W−)⊥ ⊆W⊥ = W ⊆W+×W− .

It follows that W⊥± ⊆W±, W⊥+×{0} ⊆W and {0} ×W⊥− ⊆W.

The assumption W �W◦ implies that there exists n ∈ N such that
(
L+

)
≥n×

(
L−
)
≥n ⊆W.

Hence, we obtain:(
L+

)
≥n ×

(
L−
)
≥n ⊆W = W⊥ ⊆

((
L+

)
≥n ×

(
L−
)
≥n

)⊥
⊆
(
L+

)
≥−n ×

(
L−
)
≥−n

It follows that
(
L±
)
≥n ⊆W± ⊆

(
L±
)
≥−n, i.e. W± are bounded coisotropic Lie subalgebras

of the twisted loop algebra L±.

Remark 4.2. Since the linear map (27) is an isomorphism of Lie algebras, compatible
with the standard bilinear forms, one can equally parametrize twists of the standard Lie

bialgebra cobracket L
δ◦−! ∧2(L) via Manin triples

L×L = CuW, W �W
◦

where C =
{

(f, f)
∣∣ f ∈ L

}
and W

◦
is given by (11). The usage of such Manin triples would

be quite in the spirit of the conventional notation [22, 19] of Theorem 3.1. However, as
we shall see later on, Manin triples from Theorem 4.1 are more natural from the algebro-
geometric viewpoint. ♦

We put: R = C[t, t−1], R± = C[t±, t
−1
± ] ⊃ L± = C[t±], where t = zm and t± = zm± . We

shall use the identifications R
∼=−! R±, t 7! t±1

± . Theorem 3.11 implies that

(31) t±W± ⊆W⊥± ⊆W± .

Lemma 4.3. The following results are true.

(a) The Lie algebra W± is a free module of rank q over L±. Moreover, the canonical
map R± ⊗L± W± −! L± is an isomorphism of Lie algebras.

(b) We have: (t+, t−)W = t+ W+×t−W− ⊆W, where (t+, t−) is the ideal in R+×R−
generated by t+ and t−. In particular, W is a finitely generated torsion free module
over the algebra O := C[t+, t−]/(t+t−).

(c) The linear map W /(t+, t−)W −!
(
W+ /t+ W+

)
×
(
W− /t−W−

)
is an injective

morphism of Lie algebras, whereas both maps W /(t+, t−)W −! W± /t±W± are
surjective morphisms of Lie algebras.

Proof. (a) We get from (31) that W± is a L±-submodule of L±. It follows from W± �
W◦± = B± that the canonical map R±⊗L±W± −! L± is an isomorphism of Lie algebras
as well as that W± is a free module of rank q over L±.
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(b) It follows from the embedding W ⊆W+×W− that (t+, t−)W ⊆ t+ W+×t−W−. On
the other hand, it follows from the inclusions (31) that

t+ W+×t−W− ⊆W⊥+×W⊥− ⊆W⊥ = W .

Abusing the notation, we can view O as the subalgebra of R+ × R− generated by the
elements t+ = (t+, 0) and t− = (0, t−). It follows from the assumption W � W◦ and
the fact that W◦ is finitely generated over O that W is a finitely generated torsion free
O-module, as asserted.

(c) Both results follow from the definition of W± and the previous statement. �

Lemma 4.4. Let V± be the preimage of W± under the isomorphism L! L± and (abusing
the notation) L± = C[t±1]. Then the following results are true:

(a) L = V+ +V−;

(b) the linear map V+ ∩V−
ı
−!

(
W+×W−

)
/W, f 7! (f, f ‡) is an isomorphism;

(c) V± is a free module of rank q over L± and both canonical maps R ⊗L± V± ! L
are isomorphisms of Lie algebras.

Proof. (a) Take any f ∈ L. It follows from the direct sum decomposition D = CuW that
there exist g ∈ L and (w+, w−) ∈W such that (f, 0) = (g, g‡) + (w+, w−). Let v± ∈ V be
the elements corresponding to w± ∈W± under the isomorphisms L! L±. It follows that
f = v+ − v− ∈ V+ +V−, as asserted.

(b) Let v ∈ V+ ∩V− be such that (v, v‡) = 0 in
(
W+×W−

)
/W. It follows that (v, v‡) ∈

C∩W = 0, hence v = 0, what implies injectivity of ı.

Consider an arbitrary element (w+, w−) ∈ W+×W−. Then there exist w ∈ L and
(w′+, w

′
−) ∈W such that (w+, w−) = (w,w‡)+(w′+, w

′
−). It follows that w = w+−w′+ ∈W+

and w‡ = w−−w′− ∈W−, thus (w+, w−) = (w,w‡) ∈
(
W+×W−

)
/W . We conclude that

ı is surjective, hence an isomorphism.

(c) This statement is a translation of the corresponding result from Lemma 4.3. �

Let L̂ = C((t)) and L̂ := L̂ ⊗R L. We identify elements of L̂ with formal power series∑
k�−∞

akz
k (where ak ∈ gk for all k ∈ Z). Obviously, we have an embedding of Lie algebras

L ↪−! L̂. We extend the standard form L×L B
−! C to a bilinear form L̂×L̂ B̂

−! C, defining

it by the same formula (14). Next, we put: D̂ := L̂× L̂
‡

and denote by D̂× D̂
F̂
−! C the

bilinear form given by the same recipe as in (28). Note that L ! D̂, f 7! (f, f ‡) is an

embedding of Lie algebras, whose image is an isotropic subspace with respect to F̂ .

Let B̂+ := (g+
0 ⊕ h)⊕

( ∞∏
k=1

gk z
k
+

)
and B̂− := (g−0 ⊕ h)⊕

( ∞∏
k=1

g‡k z
k
−
)
. We put:

Ŵ
◦

:=
{

(f+, f−) ∈ B̂+ × B̂−
∣∣π+(f+) + π−(f−) = 0

}
and C :=

{
(f, f ‡)

∣∣ f ∈ L
}
.

Analogously to (30), we have a Manin triple

(32) D̂ = C u Ŵ
◦
.

Our next goal is to reformulate the theory of twists of the standard Lie bialgebra structure
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on L in the terms of completed Manin triples.

For any n ∈ N, we define the linear map L̂
n
−! L as the composition

L̂ −!!
n⊕

k�−∞
gk z

k ↪−! L,

∞∑
k�−∞

akz
k 7!

n∑
k�−∞

akz
k.

Next, for any f, g ∈ L̂ there exists n0 ∈ N such that for all n ≥ n0 we have:

(33) B̂(f, g) = B
(
n(f), n(g)

)
.

Let D = CuW be a Manin triple from Theorem 4.1. According to Lemma 4.3, W is a

finitely generated O-module. We can definite the completed Lie algebra Ŵ as follows:

(34) Ŵ := lim −

(
W /mkW

) ∼= Ô ⊗O W ⊂ (L̂+ × L̂−)⊗O W ∼= D̂,

where m = (t+, t−), L̂± = C((t±)) and Ô = lim −O/m
k ∼= C[[t+, t−]]/(t+t−) ⊂ L̂+ × L̂−. It

follows from W � W◦ that Ŵ = W +mkŴ
◦

for all sufficiently large k ∈ N, which can

serve as an alternative definition of Ŵ.

Proposition 4.5. We have the following commutative diagram of bijections:

(35)

{
t ∈ ∧2 L

∣∣∣ (L, δt) is a Lie bialgebra
}

**UUUUUUUUUUUUUUUU

ttiiiiiiiiiiiiiiiii

MT
(
D,C;W◦) // MT

(
D̂,C; Ŵ

◦
)

.

Here, the left diagonal arrow is given in Theorem 4.1 and the horizontal arrow is given by

W 7! Ŵ. Moreover, if δt is a Lie bialgebra cobracket for some t ∈ ∧2 L, it is determined

by the Manin triple D̂ = C u Ŵt.

Proof. We first show that the Manin triple D̂ = CuŴ
◦

determines δ◦. By abuse of

notation, we write n((f, g‡)) = (n(f), n(g)‡) ∈ D for any (f, g‡) ∈ D̂, where g‡(z) =

g(z−1) ∈ L̂
‡

and f, g ∈ L̂. Let f ∈ C and g′, g′′ ∈ Ŵ
◦
. Then for all n ∈ N we have:

n(g′), n(g′′) ∈W◦ and

F̂
(
δ◦(f), g′ ⊗ g′′

)
= F

(
δt(f), n(g′)⊗ n(g′′)

)
= F

(
f,
[
n(g′), n(g′′)

])
,

where the last equality follows from Theorem 4.1. Taking n sufficiently large, we continue:

F
(
f,
[
n(g′), n(g′′)

])
= F

(
f, n

[
g′, g′′

])
= F̂

(
f, [g′, g′′]

)
,

what implies that F̂
(
δ◦(f), g′ ⊗ g′′

)
= F̂

(
f, [g′, g′′]

)
, as asserted.

By Proposition 3.4, L⊗3 does not contain any non-zero ad-invariant elements, hence ac-
cording to Proposition 2.3, (L, δt) is a Lie bialgebra if and only if t satisfies the twist
equation (6) and we obtain the right diagonal bijection using Theorem 2.10. It remains
to show that the diagram is commutative.
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Next, for any tensor t =
∑n

i=1 ai⊗ bi there exists k ∈ N such that for all w ∈ Ŵ
◦

we have

f̂t(w) :=
n∑
i=1

F̂ (w, ai)bi =
n∑
i=1

F (k(w), ai)bi.

Since F̂ extends F , we obtain: Wt =
{
w + f̂t(w) | w ∈W◦

}
. As a consequence,{

w + f̂t(w)
∣∣∣w ∈ Ŵ

◦}
= Wt +mk+1Ŵ

◦
= Ŵt,

showing that the diagram (35) is indeed commutative. �

5. On algebraic geometry of the classical Yang–Baxter equation

Let g be a finite dimensional simple Lie algebra over C of dimension q, g× g
κ
−! C be its

Killing form and γ ∈ g⊗ g the Casimir element.

5.1. Classical Yang–Baxter equation and associated Lie subalgebras of g((z)).

Recall that the germ of a tensor-valued meromorphic function
(
C2, 0

) r
−! g⊗ g is a skew-

symmetric solution of the classical Yang–Baxter equation (CYBE) if

(36)

{ [
r12(x, y), r13(x, z)

]
+
[
r13(x, z), r23(y, z)

]
+
[
r12(x, y), r23(y, z)

]
= 0

r12(x, y) = −r21(y, x).

The Killing form g× g
κ
−! C induces an isomorphism of vector spaces

(37) g⊗ g
κ̃
−! EndC(g), a⊗ b 7!

(
c 7! κ(a, c) · b

)
.

A solution r of (36) is called non-degenerate, if for a generic point (x◦1, x
◦
2) in the domain

of definition of r, the linear map κ̃
(
r(x◦1, x

◦
2)
)
∈ EndC(g) is an isomorphism.

One can perform the following transformations with solutions of (36).

• Gauge transformations. For any holomorphic germ (C, 0)
φ
−! AutC(g), the func-

tion

(38) r(x, y) :=
(
φ(x)⊗ φ(y)

)
r(x, y).

is again a solution of (36).

• Change of variables. Let (C, 0)
η
−! (C, 0) be a non-constant map of germs. Then

(39) r(x, y) := r
(
η(x), η(y)

)
.

is again a solution of (36).

It is clear that both transformations (38) and (39) map non-degenerate solutions of (36)
into non-degenerate ones.

Belavin and Drinfeld proved in [7] that any non-degenerate solution of (36) can be trans-
formed by above transformations to a solution of the form

(40) r(x, y) =
1

x− y
γ + h(x, y), h(x, y) = −h21(y, x)

where
(
C2, 0

) h
−! g⊗ g is the germ of a holomorphic function. Moreover, they showed

that one can always find a gauge transformation φ and a change of variables η such that
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φ(x) ⊗ φ(y)

)
r
(
η(x), η(y)

)
= %(x − y) for some meromorphic (C, 0)

%
−! g⊗ g. In other

words, (36) reduces to the equation

(41)
[
%12(x), %13(x+ y)

]
+
[
%12(x), %23(y)

]
+
[
%13(x+ y), %23(y)

]
= 0

(the so-called CYBE with one spectral parameter). Belavin and Drinfeld proved in [6]
that any non–degenerate solution of (41) is automatically skew-symmetric, has a simple
pole at 0 with residue equal to a multiple of the Casimir element γ ∈ g⊗ g. Moreover,
% can be meromorphically extended on the entire plane C and its poles form an additive
subgroup Λ ⊆ C such that rk(Λ) ≤ 2; see [6, Theorem 1.1].

• If rk(Λ) = 2 than the corresponding solution % is elliptic. Elliptic solutions exist
only for g ∼= sln(C). A full list of them is given in [6, Section 5].
• If rk(Λ) = 1 than the corresponding solution % is trigonometric. A full classification

of these solutions is given in [6, Section 6], see also [8, Chapter 7].

• If Λ = 0 then % is a rational solution, i.e. %(x) =
γ

x
+ ξ(x), where ξ ∈ (g⊗ g)[x].

The problem of classification of all rational solutions for g = sln(C) contains a
representation-wild problem of classification of pairs of matrices a, b ∈ g such that
[a, b] = 0, see Remark 7.5 below. Nonetheless, the structure theory of rational
solutions was developed by Stolin in [48].

Among various constructions which attach to a solution of (36) a Lie bialgebra there is
the following universal one, which dates back to the works [26, 44].

Consider the Lie algebra of formal Laurent series R := g((z)). It is equipped with a
symmetric non-degenerate invariant form

(42) R×R
F
−! C, (azk, bzl) 7! δk+l+1,0 κ(a, b).

Let r be a solution of (36) having the form (40). We write its formal power series expansion

(43) r̃(x; y) =

∞∑
k=0

rk(x)yk ∈
(
R⊗ g

)
JyK, where rk(x) =

1

k!

∂kr

∂yk

∣∣∣∣
y=0

.

For any k ∈ N0 let Wk :=
〈
(1⊗ λ)rk(x)

∣∣λ ∈ g∗
〉
C ⊆ R. Then we put:

(44) W :=
∑
k∈N0

Wk ⊆ R .

More concretely, let (g1, . . . , gq) be an orthonormal basis of g with respect of κ. Then
γ = g1 ⊗ g1 + · · ·+ gq ⊗ gq and the power series expansion (43) can be written as

(45) r̃(x; y) =
∞∑
k=0

q∑
i=1

(
w(k,i) ⊗ gi

)
yk ∈

(
R⊗ g

)
JyK,

where w(k,i) = gix
−k−1 + vk,i for some vk,i ∈ gJxK. We have:

W :=
〈
w(k,i)

∣∣ 1 ≤ i ≤ q, k ∈ N0

〉
C ⊂ R .

Let Υ =
{

(k, i)
∣∣ k ∈ N0, 1 ≤ i ≤ q

}
and g(k,i) := gix

k for any (k, i) ∈ Υ. Then we have:

(46) F
(
w(k′,i′), g(k′′,i′′)

)
= δk′,k′′δi′,i′′ for all (k′, i′), (k′′, i′′) ∈ Υ.
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Let
(
C2, 0

) r
−! g⊗ g be of the form (40). Then (36) can be rewritten as the system of the

following constraints on the coefficients rk(x) ∈ R of the series r̃(x; y):

(47)
[
r13
k (x1) + r23

k (x2), r12(x1, x2)
]

=
∑

k′,k′′≥0
k′+k′′=k

[
r13
k′ (x1), r23

k′′(x2)
]

for all k ∈ N0.

In more concrete terms, (47) can be rewritten as the following equality:

(48)

q∑
i=1

[
w(k,i)(x1)⊗ 1 + 1⊗ w(k,i)(x2), r(x1, x2)

]
⊗ gi =∑

(k′,i′)∈Υ
(k′′,i′′)∈Υ
k′+k′′=k

w(k′,i′)(x1)⊗ w(k′′,i′′)(x2)⊗
[
gi′ , gi′′

]

in the vector space
(
(g⊗ g)((x1, x2))

)
⊗g, where the right-hand side of (48) is embedded into(

(g⊗ g)((x1, x2))
)
⊗ g via the canonical linear map g((x1))⊗ g((x2)) ↪−! (g⊗ g)((x1, x2)) (it

follows from (40) that the left-hand side belongs to g((x1))⊗g((x2))⊗g as well). Therefore,
we have a linear map

(49) W
δ
−!W⊗W, w(x) 7!

[
w(x1)⊗ 1 + 1⊗ w(x2), r(x1, x2)

]
.

The system of constraints (47) can be stated for any expression r(x, y) of the form (40)
with h(x, y) ∈ (g⊗ g)Jx, yK (without requiring the convergence of h(x, y) and even passing
from C to an arbitrary field k), so one may speak on formal solutions of CYBE.

We have the following result, see e.g. [24, Subsection 6.3.3]) for a proof.

Theorem 5.1. Let r =
1

x− y
γ + h(x, y) be any formal solution of CYBE. Then the

corresponding vector subspace W ⊆ R, given by (44), is a Lagrangian Lie subalgebra
with respect to the bilinear form (42). Moreover, we have a direct sum decomposition

R = gJzKuW and the map W
δ
−!W⊗W, given by (49), is a Lie bialgebra cobracket.

Conversely, let R = gJzKuW be a Manin triple. Then the linear map gJxK F̃
−!W∗ is an

isomorphism and there exists a uniquely determined family (w(k,i))(k,i)(x)∈Υ of elements of

W such that w(k,i) = gix
−k−1 + v(k,i) for some v(k,i) ∈ gJxK. This family forms a basis of

W, which is dual to the topological basis (g(k,i))(k,i)∈Υ of gJxK and the formal power series
(45) is a formal solution of CYBE.

In the notation of Theorem 5.1, we have the following result.

Proposition 5.2. The Lie bialgebra cobracket W
δ
−!W⊗W is determined by the corre-

sponding Manin triple R = gJxKuW.

Proof. We have to show the following identity for any w ∈W and f1, f2 ∈ gJxK:

(50) F
([
w(x1)⊗ 1 + 1⊗ w(x2), r(x1, x2)

]
, f1(x1)⊗ f2(x2)

)
= F

(
w(x),

[
f1(x), f2(x)

])
.

Note that for any w ∈W there exists n ∈ N such that

F
(
δ(w), f1 ⊗ f2

)
= 0 = F

(
w,
[
f1, f2

])
,
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provided f1 ∈ xn gJxK or f2 ∈ xn gJxK. Therefore, it is sufficient to prove that

F
(
δ(w(l,j)), g(k′,i′) ⊗ g(k′′,i′′)

)
= F

(
w(l,j),

[
g(k′,i′), g(k′′,i′′)

])
for all (l, j), (k′, i′), (k′′, i′′) ∈ Υ.

First note that we have a finite sum:
[
g(k′,i′), g(k′′,i′′)

]
=

∑
(k,i)∈Υ

λ
(k,i)
(k′,i′),(k′′,i′′)g(k,i), where

λ
(k,i)
(k′,i′),(k′′,i′′) ∈ C. It is clear that λ

(k,i)
(k′,i′),(k′′,i′′) 6= 0 only if k = k′ + k′′. In particular, for

any (k, i) ∈ Υ there exist only finitely many (k′, i′), (k′′, i′′) ∈ Υ such that λ
(k,i)
(k′,i′),(k′′,i′′) 6= 0.

Next, we can rewrite the classical Yang–Baxter equation (48) as∑
(k,i)∈Υ

δ
(
w(k,i)

)
⊗ g(k,i) =

∑
(k′,i′)∈Υ
(k′′,i′′)∈Υ

w(k′,i′) ⊗ w(k′′,i′′) ⊗
[
g(k′,i′), g(k′′,i′′)

]
,

implying that δ
(
w(k,i)

)
=

∑
(k′,i′)∈Υ
(k′′,i′′)∈Υ

λ
(k,i)
(k′,i′),(k′′,i′′)w(k′,i′) ⊗ w(k′′,i′′). Applying (46) we get

F
(
δ
(
w(l,j)

)
, g(k′,i′)⊗ g(k′′,i′′)

)
= λ

(l,j)
(k′,i′),(k′′,i′′) = F

(
w(l,j),

[
g(k′,i′), g(k′′,i′′)

])
, as asserted. �

5.2. Geometric CYBE datum. Now we make a quick review of the algebro-geometric
theory of the classical Yang–Baxter equation (36), following the work [14].

A Weierstraß curve is an irreducible projective curve over C of arithmetic genus one.

For g2, g3 ∈ C, let E(g2,g3) = V
(
u2 − 4v3 + g2v + g3

)
⊂ P2. It is well-known that any

Weierstraß curve E is isomorphic to E(g2,g3) for some g2, g3 ∈ C. Moreover, E(g2,g3) is

smooth if and only if g3
2 6= 27g2

3. If g3
2 = 27g2

3 then E(g2,g3) has a unique singular point s,
which is a nodal singularity if (g2, g3) 6= (0, 0) and a cuspidal singularity if (g2, g3) = (0, 0).
We have: Γ(E,Ω) ∼= C, where Ω is the sheaf of regular differential one-forms on E, taken
in the Rosenlicht sense if E is singular; see e.g. [4, Section II.6].

Assume that A is a coherent sheaf of Lie algebras on E such that:

(1) A is acyclic, i.e. H0(E,A) = 0 = H1(E,A);
(2) A is weakly g–locally free on the regular part U of E, i.e. A

∣∣
x
∼= g for all x ∈ U .

From the first assumption it follows that the sheafA is torsion free. The second assumption
on A implies that the canonical isomorphism of OU -modules A

∣∣
U
⊗ A

∣∣
U
! EndU

(
A
)
,

induced by the Killing forms of the Lie algebras of local sections of A, is an isomorphism.
As a consequence, the space AK of global sections of the rational envelope of A is a simple
Lie algebra over the field K of meromorphic functions on E.

Choosing a global regular one-form 0 6= ω ∈ Γ(E,Ω), we get the so-called residue short
exact sequence:

(51) 0 −! OE×U −! OE×U (Σ)
resωΣ−−! OΣ −! 0,

where Σ ⊂ E×U denotes the diagonal, see [14, Section 3.1]. Tensoring (51) with A�A
∣∣
U

and then applying the functor Γ(E × U, − ), we obtain a C–linear map

EndU (A)
Tω−! Γ

(
U × U \ Σ,A�A

)
,
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making the following diagram

(52)

Γ
(
U,A⊗A

)
∼=
��

Γ
(
E × U,A�A|U (Σ)

)∼=oo
� _

��

EndU (A)
Tω // Γ

(
U × U \ Σ,A�A

)
commutative. In this way, we get a distinguished section

(53) ρ := Tω(1) ∈ Γ
(
U × U \ Σ,A�A

)
,

called a geometric r–matrix attached to a pair (E,A) as above.

If the curve E is singular, we additionally require that

(3) A is isotropic at s, i.e. the germ As of the sheaf A at the singular point s is an
isotropic Lie subalgebra of AK with respect to the pairing

Fωs : AK×AK
K
−! K

resωs−! C,
where K is the Killing form of AK and resωs (f) = ress(fω) for f ∈ K (taken in the
Rosenlicht sense).

A pair (E,A) satisfying the properties (1)–(3) above will be called geometric CYBE datum.

We have the following result; see [14, Theorem 4.3].

Theorem 5.3. Let (E,A) be a geometric CYBE datum. Then we have:

1. The geometric r-matrix ρ satisfies the following sheaf-theoretic version of the classical
Yang–Baxter equation:

(54)
[
ρ12, ρ13

]
+
[
ρ12, ρ23

]
+
[
ρ13, ρ23

]
= 0,

where both sides of the above equality are viewed as meromorphic sections of A � A � A
over the triple product U × U × U .

2. Moreover, ρ is skew-symmetric and non-degenerate i.e.

(55) ρ(x1, x2)12 = −ρ(x2, x1)21 ∈
(
A�A

)∣∣
(x1,x2)

∼= A
∣∣
x1
⊗A

∣∣
x2

for any x1 6= x2 ∈ U

and there exists an open subset U ′ ⊆ U such that for any x1 6= x2 ∈ U ′, the tensor
ρ(x1, x2) ∈ A

∣∣
x1
⊗A

∣∣
x2

is non-degenerate.

In what follows, we write O = OE . Let V ⊆ U be an open affine subset, RV = Γ(V,O)
and AV := Γ(V,A). Assume that V is sufficiently small so that AV is free as RV -module.
Since A is weakly g-locally free, the Killing form AV ×AV ! RV is non-degenerate. Let
(c1, . . . , cq) be a basis of AV over RV and (c∗1, . . . , c

∗
q) be the dual basis. Then χ :=

c∗1 ⊗ c1 + · · ·+ c∗q ⊗ cq ∈ AV ⊗RV AV is the canonical Casimir element. Let χ̃ := c∗1 ⊗ c1 +
· · ·+ c∗q ⊗ cq ∈ AV ⊗CAV . Then χ̃ is a (non-canonical) lift of χ under the canonical map
AV ⊗CAV −!! AV ⊗RV AV . Choosing coordinates (u, v) on V × V , we may write:

(56) ρ
∣∣∣
(V×V )\Σ

=
f(v)

u− v
χ̃+ h(u, v)

for some h(u, v) ∈ AV ⊗CAV , where ω
∣∣∣
V

=
dv

f(v)
for some invertible element f ∈ RV .
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There are two consistent ways to proceed from the abstract geometric r-matrix ρ attached
to (E,A) to a concrete solution of (36), respectively (47).

1. Let us view E as a complex-analytic variety and A as a sheaf of Lie algebras in the
euclidean topology. As in [37, Lemma 2.1] one can show that for any p ∈ U there exists
an open neighbourhood p ∈ V ⊂ U together with a Γ(V,Oan)–linear isomorphism of Lie

algebras Γ(V,A)
ξ
−! g⊗CΓ

(
V,Oan

)
. Then the trivialized section ρξ can be viewed as a

meromorphic tensor-valued function V × V ρξ
−! g⊗ g. It follows from (54) and (55) that

after a choice of a local coordinate on V , we get a non-degenerate solution of (36). Another
choice of a trivialization ξ and a local coordinate on V leads to an equivalent solution (in
the sense of (38) and (39)). ♦

2. Let p ∈ E be an arbitrary point, Ôp (respectively Âp) be the completion of the stalk

of the structure sheaf O (respectively, of A) at p, Q̂p be the total ring of fractions of

Ôp , Ep := E \ {p}, Up := U \ {p}, Rp = Γ(Ep,O), R◦p = Γ(Up,O), A(p) := Γ(Ep,A),

A◦(p) := Γ(Up,A) and Ãp := Q̂p ⊗Ôp Âp
∼= Q̂p ⊗Rp A(p) .

From now on suppose that p ∈ U . Then we have the bilinear form Ãp × Ãp
F̃ωp
−! C given

as the composition

(57) Ãp × Ãp
K̃p
−! Q̃p

resωp
−! C,

where K̃p denotes the Killing form of Ãp. Since the differential form ω is non-vanishing at

p, there exists a unique isomorphism Ôp
ϑ
−! CJyK identifying ω̂p with the differential form

dy. Moreover, the assumption that A is g-weakly locally free implies that there exists a

Ôp–CJyK–equivariant isomorphism of Lie algebras Âp
ζ
−! gJyK; see [28]. This isomorphism

induces a Q̂p–C((y))–equivariant isomorphism of Lie algebras Ãp
ζ̃
−! g((y)). In this way,

we identify the bilinear form F̃ωp with the bilinear form F given by (42).

The following sequence of vector spaces and linear maps

(58) 0 −! H0(E,A) −! A(p) ⊕ Âp −! Ãp −! H1(E,A) −! 0

is exact, see e.g. [42, Proposition 3] (it is a version of the Mayer–Vietoris exact sequence).

Since H0(E,A) = 0 = H1(E,A), it follows that A(p) ∩ Âp = 0 and A(p) + Âp = Ãp, where

we identify the Lie algebras A(p) and Âp with their images in Ãp under the corresponding
canonical embeddings. It follows from the isotropy assumption (3) on the sheaf A that

A(p) and Âp are isotropic Lie subalgebras of Ãp with respect to the bilinear form F̃ωp , i.e.

Ãp = Âp u A(p) is a Manin triple. Identifying Ãp with R, Âp with gJyK and A(p) with its
image W in R, we end up with a Manin triple R = gJyKuW as in Theorem 5.1.

We have a family of compatible linear maps Γ
(
(E × U) \ Σ,A � A

) υn−! W⊗ g[y]/(yn)
given as the composition

Γ
(
(E × U) \ Σ,A�A

) νn−! A(p)⊗
(
Âp/m

n
p Âp

) ζn
−!W⊗ g[y]/(yn).
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Here, ζn is induced by the trivializations ζ and ζ̃ and νn := (i× ιn)∗, where the morphism

Spec(Ôp/m
n)

ιn−! E maps the unique closed point of Spec(Ôp/m
n) to p and Ep

i
−! E is

the canonical inclusion. Taking the projective limit of (υn)n∈N, we get a linear map

Γ
(
(E × U) \ Σ,A�A

) υ
−! (W⊗ g)JyK.

In [14, Theorem 6.4] it was shown that

r̃ζ(x; y) := υ(ρ) =

∞∑
k=0

(
q∑
i=1

w(k,i)(x)⊗ gi

)
yk =

γ

x− y
+

∞∑
k=0

(
q∑
i=1

v(k,i)(x)⊗ gi

)
yk,

where w(k,i) = gix
−k−1 + v(k,i) ∈W are such that v(k,i) ∈ gJxK for all (k, i) ∈ Υ. It follows

from Theorem 5.1 that r̃ζ(x; y) is a formal skew-symmetric solution of CYBE (47). ♦

Remark 5.4. According to Theorem 5.1, A(p) is a Lie bialgebra. Now we give a sheaf-

theoretic description of the corresponding Lie bialgebra cobracket A(p)
δp
−! A(p)⊗A(p).

Let % ∈ Γ
(
E × U,A � A(Σ)

)
the preimage of ρ under the canonical restriction map (it

follows from (52) that such preimage exists and is unique). Then we have a linear map

(59) A(p)
δ
(l)
p
−! Γ

(
Ep × Up, (A�A)(Σ)

)
, f 7!

[
f ⊗ 1 + 1⊗ f, %

∣∣
Ep×Up

]
.

Analogously, we have a distinguished section %] ∈ Γ
(
U × E,A�A(Σ)

)
such that

%]
∣∣∣
(x,y)

=

(
%
∣∣∣
(y,x)

)21

∈ A
∣∣∣
x
⊗A

∣∣∣
y

for all x 6= y ∈ U.

Consider the linear map

(60) A(p)
δ
(r)
p
−! Γ

(
Up × Ep, (A�A)(Σ)

)
, f 7!

[
f ⊗ 1 + 1⊗ f,−%]

∣∣
Up×Ep

]
.

It follows from the skew-symmetry of ρ that both maps δ
(l)
p and δ

(r)
p can be glued to a

linear map A(p)
δ
(t)
p
−! Γ

(
Ep × Ep, (A�A)(Σ)

)
. Let δ̃

(t)
p be the composition

A(p)
δ
(t)
p
−! Γ

(
Ep × Ep, (A�A)(Σ)

)
↪−! Γ

(
(Ep × Ep) \ Σ,A�A

)
.

Consider the linear map

A◦(p)
δ
(ρ)
p
−! Γ

(
(Up × Up) \ Σ,A�A

)
, f 7!

[
f ⊗ 1 + 1⊗ f, ρ

∣∣
Up×Up

]
.
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For any f ∈ A◦(p) the section δ
(ρ)
p (f) has no pole along the diagonal; see [14, Proposition

4.12]. It follows from the commutative diagram

(61)

A(p)

δ̃
(t)
p
//

_�

��

Γ
(
(Ep × Ep) \ Σ,A�A

)
� _

��

A◦(p)
δ
(ρ)
p
//

δ
(ρ)
p ((QQQQQQQQQQQQQQQ Γ
(
(Up × Up) \ Σ,A�A

)

Γ
(
Up × Up,A�A

)� ?

OO

that δ̃
(t)
p can be extended to a linear map A(p)

δp
−! Γ

(
(Ep×Ep)\{(s, s)},A�A

)
. It remains

to note that Rp ⊗C Rp is a reduced Cohen–Macaulay C–algebra of Krull dimension two
and A(p)⊗CA(p) is a maximal Cohen–Macaulay (Rp ⊗C Rp)–module. As a consequence,
the canonical restriction map

A(p)⊗A(p)
∼= Γ

(
Ep × Ep,A�A

)
−! Γ

(
(Ep × Ep) \ {(s, s)},A�A

)
is an isomorphism; see e.g. [13, Section 3]. It follows that δp can be extended to a linear

map A(p)
δp
−! A(p)⊗A(p). According to [14, Proposition 4.12], A◦(p)

δ
(ρ)
p
−! A◦(p)⊗A◦(p) is a Lie

bialgebra cobracket. It follows that (A(p), δp) is a Lie bialgebra, too. Moreover, identifying

the Manin triples Ãp = ÂpuA(p) and R = gJyKuW, the cobracket δp gets identified with
the cobracket (49) on the Lie algebra W. ♦

Proposition 5.5. Let (E,A) be a geometric CYBE datum and p ∈ U . Then the Lie

bialgebra cobracket A(p)
δp
−! A(p)⊗A(p) is determined by the Manin triple Ãp = ÂpuA(p).

Proof. It is a consequence of Proposition 5.2. �

5.3. Manin triples and geometric CYBE data on singular Weierstraß curves.
Let (E,A) be a geometric CYBE datum, where E is a singular Weierstraß curve. As in
the previous subsection, let s be the singular point of E and U = E \ {s}. To simplify

the notation, we denote: Ô = Ôs, Q̂ = Q̂s and R = R(s) as well as Â = Âs, A = A(s) and

Ã = Ãs. Moreover, let P1 ν
−! E be the normalization map.

Apart of Remark 5.8, we assume in this subsection that E is nodal. Let s± ∈ P1 be

such that ν(s±) = s. Next, let Ô± be the completion of the stalk of OP1 at s± and

Q̂± be the fraction field of Ô±. Then we have an injective homomorphism of C–algebras

Ô
ν∗
−! Ô+×Ô−, which induces an isomorphism of the corresponding total rings of fractions

Q̂
ν∗
−! Q̂+ × Q̂−.

We choose homogeneous coordinates (w+ : w−) on P1 so that s+ = (0 : 1) and s− = (1 : 0).

Then the rational functions u = u+ :=
w+

w−
and u− :=

w−
w+

are local parameters at the
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points s+ and s−, respectively. In these terms we have an algebra isomorphism

R = Γ(U,O)
ν∗
−! Γ

(
ν−1(U),OP1

) ∼= C
[
u, u−1

]
as well as Ô± ∼= CJu±K, Q̂± ∼= C((u±)), Q̂ ∼= C((u+))×C((u−)) and Ô ∼= CJu+, u−K/(u+u−).
We shall view the following rational differential one-form on P1

ω :=
du

u
=
du+

u+
= −du−

u−

as a generator of Γ(E,Ω). It follows from the assumption that A is weakly g-locally free

that the Killing form A×A
K
−! Q̂ is non-degenerate. Hence, the Killing form Ã×Ã K̃

−! Q̂

is non-degenerate, too. Recall that the Rosenlicht residue map Q̂
resωs−−! C with respect to

the form ω is given by the formula

(62) resωs (f) = ress+
(
f+ω) + ress−

(
f−ω) = res0

(
f+
du+

u+

)
− res0

(
f−
du−
u−

)
,

where we use the identifications f = (f+, f−) ∈ Q̂ ∼= Q̂+ × Q̂− ∼= C((u+)) × C((u−)).

Similarly to (57), we get an invariant symmetric bilinear form Ã× Ã
F̃ωs−! C given by

(63) Ã× Ã
K̃
−! Q̂

resωs−! C.

It is easy to see that F̃ωs is non-degenerate.

It can be shown that the Mayer–Vietoris sequence (58) is exact at the singular point s as
well; see e.g. [25, Theorem 3.1]. It follows from the cohomology vanishing H0(E,A) = 0 =

H1(E,A) that we have a Manin triple Ã = Âu A. According to [14, Proposition 4.12]

(64) A
δ
−! A⊗A, f 7! [f ⊗ 1 + 1⊗ f, ρ]

is a Lie bialgebra cobracket, where ρ ∈ Γ
(
(U × U) \ Σ,A�A

)
is the geometric r-matrix.

Theorem 5.6. Let (E,A) be a geometric CYBE datum, where E is a nodal Weierstraß

curve. Then the Lie bialgebra cobracket (64) is determined by the Manin triple Ã = ÂuA.

Proof. For any k ∈ N we put:

• P (k) := Ô/mk ⊗C R, P̃
(k)
± := Ô±/m

k
± ⊗C R and P̃ (k) := P̃

(k)
+ × P̃ (k)

− .

• X(k) := Spec(P (k)), X̃
(k)
± := Spec(P̃

(k)
± ) and X̃(k) := X̃

(k)
+ t X̃(k)

− .

Then we set: P := lim −(P (k)), P̃± := lim −(P̃
(k)
± ), P̃ = P̃+ × P̃−, X := Spec(P ), X̃± :=

Spec(P̃±) and X̃ := Spec(P̃ ) = X̃+ t X̃−. Note that P ∼= C[v, v−1]Ju+, u−K/(u+u−) and

P̃± ∼= C[v, v−1]Ju±K. Finally, let D := C
[
u, u−1, v, v−1

]
, S± := C[v, v−1]((u±)), Y± :=

Spec(S±), S := S+ × S− and Y := Y+ t Y−. Consider the algebra homomorphism

D
ψ
−! S, u 7! (u+, u

−1
− ), v 7! (v, v).

The formulae (u+−v)
∞∑
k=0

v−k−1uk+ = −1 and (u−1
− −v)

∞∑
k=0

vkuk+1
− = 1 imply that ψ(u−v)

is a unit in S. As a consequence, ψ can be extended to the algebra homomorphism
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C
[
u, u−1, v, v−1,

1

u− v

]
ψ̃
−! S. Note that

(65) ψ̃

(
v

u− v

)
=

(
−
∞∑
k=0

v−kuk+,
∞∑
k=1

vkuk−

)
.

Next, we have a family of morphisms of schemes
(
X(k) εk−! (E × U) \ Σ

)
k∈N

. Taking the

corresponding direct limit, we get a morphism X
ε
−! (E × U) \ Σ. In a similar way,

we have a family of morphisms
(
X̃(k) ε̃k−! (P1 × U) \ Σ

)
k∈N

as well as the corresponding

direct limit X̃
ε̃
−! (P1×U) \Σ. Summing up, we get the following commutative diagram

in the category of schemes:

(66)

(E × U) \ Σ (P1 × U) \ Σ
ν̃oo (U × U) \ Σ? _ıoo � � // U × U

X(k)

εk

OO

πk

��

X̃(k)ν̄koo

ε̃k

OO

π̃k
��

X

ε

CC

X̃
ν̄oo

ε̃

[[

Y
η

oo

̃

OO



AA�������������������

where ν̃ is the restriction of ν × id on (P1 ×U) \Σ and ν̄k, ν̄, η,  and ̃ are morphisms of

affine schemes corresponding to the algebra embeddings P (k) ↪! P̃ (k), P ↪! P̃ , P̃ ↪! S, ψ

and ψ̃, respectively.

Since A is torsion free, we get an injective map

Γ
(
(E × U) \ Σ,A�A

) ε∗
−! Â⊗C A := lim −

(
Â/mkÂ⊗C A

)
∼= Γ

(
X, ε∗

(
A�A

∣∣
(E×U)\Σ

))
.

Let Υ be a countable set and (al)l∈Υ be a basis of A over C. Then there exists a uniquely

determined family (bl)l∈Υ of elements of Â such that for any k ∈ N there exists a finite
subset Υk ⊂ Υ satisfying the following properties:

• the class b
(k)
l of bl in Â/mkÂ is zero for all l /∈ Υk (i.e. bl ∈ mkÂ for l /∈ Υk) and

• ε∗k(%) =
∑
l∈Υk

b
(k)
l ⊗ al.

In these terms we may informally write: ε∗(%) =
∑
l∈Υ

bl ⊗ al ∈ Â⊗C A.

Let Υ =
{

(k, i)
∣∣ k ∈ Z, 1 ≤ i ≤ q

}
, (c1, . . . , cq) be a basis of A viewed as module over

R = C
[
v, v−1

]
and a(k,i) := civ

k for (k, i) ∈ Υ. Then (a(k,i))(k,i)∈Υ is a basis of A viewed
as a vector space over C. From what was said above it follows that there exists a uniquely

determined family of elements (b(k,i))(k,i)∈Υ of Â such that

(67) ε∗(%) =
∑

(k,i)∈Υ

b(k,i) ⊗ a(k,i).
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Let (c∗1, . . . , c
∗
q) be the dual basis of A with respect to the Killing form A×A

K
−! R. Then

the tensor c∗1 ⊗ c1 + · · ·+ c∗q ⊗ cq ∈ A⊗CA is mapped to the Casimir element of A under

the canonical projection A⊗CA !! A⊗R A. Since ω
∣∣
U

=
dv

v
, the geometric r-matrix ρ

has the following presentation:

(68) ρ =
v

u− v

q∑
i=1

c∗i ⊗ ci + h(u, v) ∈ Γ ((U × U) \ Σ,A�A) ,

where h ∈ A⊗CA; see (56). It follows from (65) that we have the following expansion

̃∗(ρ) =
∑

(k,i)∈Υ

(w(k,i) + h(k,i))⊗ a(k,i),

where h(k,i) ∈ A ⊂ Ã = Ã+× Ã− are determined by the expression h =
∑

(k,i)∈Υ

h(k,i)⊗a(k,i)

(which is a finite sum in A⊗CA) and

(69) Ã+ × Ã− 3 w(k,i) =

{ (
0, uk−c

∗
i ) if k ≥ 1(

−u−k+ c∗i , 0
)

if k ≤ 0.

It follows from (66) that (ν̄η)∗
(
ε∗(%)

)
= ̃∗(ρ). Hence, for any (k, i) ∈ Υ we have:

(70) Â 3 b(k,i) = w(k,i) + h(k,i) ∈ Ã = Ã+ × Ã−.

Since all h(k,i) but finitely many are zero, b(k,i) = w(k,i) for all but finitely many (k, i) ∈ Υ.

As A is an isotropic subalgebra of Ã, we deduce from (69) the following relation:

(71) F
(
b(k′,i′), a(k′′,i′′)

)
= F

(
w(k′,i′), a(k′′,i′′)

)
= F

(
w(k′,i′),

(
uk
′′

+ ci′′ , u
−k′′
− ci′′

))
= −δk′k′′δi′i′′ ,

where F = F̃ωs is the form given by (63). This formula in particular implies that the ele-
ments (b(k,i))(k,i)∈Υ are linearly independent. It follows from the direct sum decomposition

Ã = Âu A that (b(k,i))(k,i)∈Υ is in fact a topological basis of Â.

After establishing these preparatory results, we can proceed to the proof of the actual

statement: F
(
δ(a), b′ ⊗ b′′

)
= F

(
a, [b′, b′′]

)
for all a ∈ A and b′, b′′ ∈ Â. Arguing as in the

proof of Proposition 5.2, we conclude that it is sufficient to prove the formula

(72) F
(
δ(a), b(k′,i′) ⊗ b(k′′,i′′)

)
= F

(
a,
[
b(k′,i′), b(k′′,i′′)

])
for any (k′, i′), (k′′, i′′) ∈ Υ. In order to use the expansion (67), we embed Ã ⊗ Ã into a

larger vector space Ã⊗ Ã defined as follows.

Let T+
± := C((v+))((u±)), T−± := C((v−))((u±)), T± := T+

± × T−± and T := T+× T−. Clearly,

we have injective algebra homomorphisms S± ↪−! T±, u± 7! u±, v 7!
(
v+, v

−1
−
)

which
define the embedding S ↪−! T . Summing up, we have two chains of algebra embeddings

P ↪−! P̃ ↪−! S ↪−! T and D ↪−! S ↪−! T.
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Now we put: Ã⊗ Ã := T ⊗D
(
A⊗CA

)
and Ã⊗ A := S ⊗P

(
Â⊗ A

)
. It is clear that

Ã⊗ Ã ∼= T⊗S
(
Ã⊗ A

)
. Moreover, we have canonical injective linear maps Ã⊗Ã ↪! Ã⊗ Ã

and Â⊗ A ↪! Ã⊗ Ã, which are moreover morphisms of A-modules with respect to the
adjoint action of A.

Consider the following residue map:

(73) C((v))((u))
res
−! C,

∑
k≥−∞

fk(v)uk 7! res0

(
f0(v)

dv

v

)
.

The Killing form A×A
K
−! R together with the linear map T

res
−! C defined by (73)

define the bilinear form Ã⊗ Ã× Ã⊗ Ã
F
−! C, which extends

(
Ã⊗ Ã

)
×
(
Ã⊗ Ã

) F
−! C.

Using the power series expansion (67), we can write δ(a) = [a⊗ 1 + 1⊗ a, ρ] ∈ A⊗A as

δ(a) =
∑

(k,i)∈Υ

[
a, b(k,i)

]
⊗ a(k,i) +

∑
(k,i)∈Υ

b(k,i) ⊗
[
a, a(k,i)

]
∈ Ã⊗ Ã,

Since Â is an isotropic subspace of Ã, it follows that F (t, b′ ⊗ b′′) = 0 for any t ∈ Â⊗ A

and b′, b′′ ∈ Â. As a consequence, we have:

F
(
δ(a), b(k′,i′) ⊗ b(k′′,i′′)

)
= F

 ∑
(k,i)∈Υ

[
a, b(k,i)

]
⊗ a(k,i), b(k′,i′) ⊗ b(k′′,i′′)

 .

Taking into account the orthogonality relation (71) as well as invariance of the form F ,
we finally get:

F
(
δ(a), b(k′,i′) ⊗ b(k′′,i′′)

)
= −F

(
[a, b(k′′,i′′)], b(k′,i′)

)
= F

(
a,
[
b(k′,i′), b(k′′,i′′)

])
,

as asserted. �

Note that in the course of the proof of Theorem 5.6 we have shown the following result.

Theorem 5.7. Let (E,A) be as in Theorem 5.6, (c1, . . . , cq) be a basis of A viewed as

module over R, (c∗1, . . . , c
∗
q) be its dual basis with respect to the Killing form A×A

K
−!

R, Υ :=
{

(k, i)
∣∣ k ∈ Z, 1 ≤ i ≤ q

}
, a(k,i) := civ

k for (k, i) ∈ Υ and
(
b(k,i)

)
(k,i)∈Υ

be the

topological basis of Â dual to (−a(k,i))(k,i)∈Υ. Then for any (k, i) ∈ Υ we have: b(k,i) =
w(k,i) + h(k,i), where w(k,i) are given by the formula (69), h(k,i) ∈ A and all but finitely
many elements h(k,i) are zero. Moreover, the geometric r-matrix corresponding to (E,A)
is given by the following expression:

(74) ρ =
v

u− v

q∑
i=1

c∗i ⊗ ci +
∑

(k,i)∈Υ

h(k,i)(u)⊗ vkci.

Remark 5.8. Let (E,A) be a geometric CYBE datum, where E is a cuspidal plane cubic

curve. Then the cobracket A
δ
−! A⊗A is determined by the Manin triple Ã = Âu A.

Fix an isomorphism R = Γ(U,OE) ∼= C[v]. Then ω = dv is a generator of Γ(E,ΩE). Let
(c1, . . . , cq) be a basis of A and (c∗1, . . . , c

∗
q) be the dual basis of A with respect to the Killing
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form A×A
K
−! R. Now we put: Υ =

{
(k, i)

∣∣ k ∈ N0, 1 ≤ i ≤ q
}

. Then a(k,i) := civ
k for

(k, i) ∈ Υ form a basis of A over C. Let
(
b(k,i)

)
(k,i)∈Υ

be the topological basis of Â dual to(
a(k,i)

)
(k,i)∈Υ

. Then for any (k, i) ∈ Υ we have a decomposition b(k,i) = c∗i v
−k−1 +h(k,i) for

some uniquely determined h(k,i) ∈ A. Again, all but finitely many elements h(k,i) are zero.
The geometric r-matrix corresponding to (E,A) is given by the following expression:

(75) ρ =
1

u− v

q∑
i=1

c∗i ⊗ ci +
∑

(k,i)∈Υ

h(k,i)(u)⊗ vkci.

The corresponding proofs are completely analogous to the ones of Proposition 5.2 and
Theorem 5.6 and therefore are left to an interested reader. ♦

Remark 5.9. Let (E,A) be a geometric CYBE datum, where E is an arbitrary Weierstraß
curve. There are also other natural ways to attach to (E,A) Lie bialgebras and Manin
triples. For example, let p+ 6= p− ∈ E be any pair of points such that s ∈

{
p+, p−

}
provided E is singular, Rp+,p− := Γ

(
E \ {p+, p−},O

)
and A(p+,p−) := Γ

(
E \ {p+, p−},A

)
.

Then we have a Manin triple A(p+,p−) = A(p+) u A(p−), where the underlying bilinear
form A(p+,p−)×A(p+,p−) ! C is given by the composition

A(p+,p−)×A(p+,p−)
K
−! Rp+,p−

resωp+
−! C.

Here, as usual, K is the Killing form of A(p+,p−), viewed as a Lie algebra over Rp+,p− . ♦

6. Geometrization of twists of the standard Lie bialgebra structure on
loop algebras and trigonometric solutions of CYBE

6.1. Some basic facts on torsion free sheaves on a nodal Weierstraß curve. Let
E be a nodal Weierstraß curve, s be its singular point, P1 ν

−! E be a normalization
morphism and ν−1(s) = {s+, s−}. Then the following diagram in the category of schemes

(76)

{s+, s−} �
� η̃

//

ν̃
����

P1

ν

����

{s} �
� η

// E

is bicartesian, i.e. it it both pullback and pushout diagram. For any torsion free coherent

sheaf F on E, we get the locally free sheaf F̃ := ν∗F/t(ν∗F) on P1, where t(ν∗F) denotes
the torsion part of ν∗F . It is not hard to show that

• the canonical linear map F
∣∣∣
s
−! F̃

∣∣∣
s+
⊕ F̃

∣∣∣
s−

is injective.

• the canonical morphism of (C× C)–modules θF given as the composition

ν̃∗(F
∣∣∣
s
) −! η̃∗(ν∗F) −! η̃∗(F̃) = F̃

∣∣∣
s+
⊕ F̃

∣∣∣
s−

is surjective;
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• the following diagram in the category Coh(E) of coherent sheaves on E

F //

��

F
∣∣∣
s

��

ν∗(F̃) // F̃
∣∣∣
s+
⊕ F̃

∣∣∣
s−

is a pullback diagram, where all morphisms are the canonical ones and skyscraper
sheaves supported at s are identified with their stalks.

Consider the comma category Tri(E) associated with a pair of functors

VB(P1)
F //

(
C× C

)
−mod C−mod

Goo ,

where F(G) := G
∣∣∣
s+
⊕ G

∣∣∣
s−

for any G ∈ VB(P1) and G = (C × C) ⊗C − . By definition,

any object of Tri(E) is a triple
(
G, V, θ

)
, where G is a locally free coherent sheaf on P1, V

is a finite dimensional vector space over C and G(V )
θ
−! F(G) is given by a pair of linear

maps V
θ±
−! G

∣∣∣
s±

. The definition of morphisms in Tri(E) is straightforward.

The following result is a special case of [9, Theorem 16]; see also [11, Theorem 3.2].

Theorem 6.1. The functor TF(E)
E
−! Tri(E), F 7!

(
F̃ ,F

∣∣
s
, θF

)
is fully faithful. The

essential image Tri(E) of TF(E) consists of those triples
(
G, V, θ

)
, for which both linear

maps θ± are surjective and the linear map θ̃ =

(
θ+

θ−

)
: V −! G

∣∣∣
s+
⊕ G

∣∣∣
s−

is injective,

whereas the essential image of the category VB(E) consists of those triples
(
G, V, θ

)
, for

which θ is an isomorphism. In other words, the functor TF(E)
E
−! Tri(E) is an equivalence

of categories. Conversely, given an object T =
(
G, V, θ

)
of Tri(E), consider the torsion

free sheaf F on E defined as a pullback

(77)

F //

��

V

θ̃
��

ν∗(G) // G
∣∣∣
s+
⊕ G

∣∣∣
s−

in the category Coh(E). Then we have: E(F) ∼= T .

Remark 6.2. Let (B, a, θ) be an object of Tri(E), for which B is a sheaf of Lie algebras on
P1, a is a Lie algebra and θ is a morphism of Lie algebras. Then the torsion free coherent
sheaf A defined by the pullback diagram (77) corresponding to (B, a, θ) is a sheaf of Lie
algebras on E. It follows from (77) that the following sequences of vector spaces is exact:

(78) 0! Γ(E,A)! Γ(P1,B)⊕a

(
ev+ θ+
ev− θ−

)
−−−−−−−! B

∣∣∣
s+
⊕B

∣∣∣
s−
! H1(E,A)! H1(P1,B)! 0,
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where Γ(P1,B)
ev±
−! B

∣∣∣
s±

denotes the canonical evaluation map at the point s±. ♦

6.2. Geometrization of twists of the standard Lie bialgebra structure on twisted
loop algebras. Now we return to the setting of Section 3. Let D = CuW be a Manin
triple as in Theorem 4.1. Let V± ⊂ L be Lie subalgebras from Lemma 4.4. Recall that
V± is a free module of rank q over L± = C

[
t±
]
⊂ R = C

[
t, t−1

]
, where t± = t±1. In what

follows, we shall view the projective line P1 as the pullback of the pair of morphisms

Spec(L+) −! Spec(R) − Spec(L−),

identifying Spec(L±) with open subsets U± ⊂ P1 and Spec(R) with U := U+ ∩ U−. Let
s± ∈ U± be the point corresponding to the maximal ideal (t±) ⊂ L±, then t± is a local
parameter at s±.

Proposition 6.3. There exists a unique coherent sheaf of Lie algebras B on P1 such that
Γ(V,B) ⊂ C(t) ⊗R L for any open subset V ⊆ P1 and such that the following diagram of
Lie algebras

(79)

Γ(U+,B) �
�

//

=

��

Γ(U,B)

=

��

Γ(U−,B)? _oo

=

��

V+
� � // L V−?

_oo

is commutative. We have:

(80) Γ(P1,B) = V+ ∩V− and H1(P1,B) = 0.

The completion of the stalk of B at s± is naturally isomorphic to Ŵ± as a Lie algebra

over L̂± = CJt±K, where W± is the Lie algebra from Lemma 4.4. In particular, we can

identify the fiber B
∣∣∣
s±

with the Lie algebra w± := Ŵ±/t±Ŵ±.

Proof. Existence and uniqueness of B characterized by (79) is clear. We have the Mayer–
Vietoris exact sequence

0 −! Γ(P1,B) −! Γ(U+,B)⊕ Γ(U−,B) −! Γ(U,B) −! H1(P1,B) −! 0.

According to Lemma 4.4, we have: L = V+ +V−. If follows from (79) that the formulae
(80) are true. The remaining statements are obvious. �

Next, we can define E via the pushout diagram (76). It follows that E is a nodal Weierstraß

curve. Let Ô± be the completion of the stalk of OP1 at s±, Ô be the completion of the

stalk of OE at s and Q̂ be the total ring of quotients of Ô. Then we have: Ô± ∼= CJt±K,
Ô ∼= CJt+, t−K/(t+t−) and Q̂ = C((t+))×C((t−)). According to Lemma 4.3, the completed

Lie algebra Ŵ is an Ô–module. We put:

w := Ŵ/(t+, t−)Ŵ ⊂ Ŵ+/t+Ŵ+ × Ŵ+/t+Ŵ− = w+×w− .

Again, according to Lemma 4.3, the morphism of Lie algebras w
θ±
−! w± defined as the

composition w ↪! w+×w− !! w± is surjective. It follows that (B,w, θ) is an object of
the category Tri(E) from Theorem 6.1.
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Proposition 6.4. Let A be the sheaf of Lie algebras on E, corresponding to the triple
(B,w, θ). Then (E,A) is a geometric CYBE datum.

Proof. We keep the notation of Subsection 5.3. First observe that the canonical map
A = Γ(U,A) ! Γ

(
U, ν∗(B)

)
= L is an isomorphism of Lie algebras. This implies that A

is g–weakly locally free; see Proposition 3.4. Next, by Lemma 4.4, the linear map

(
V+ ∩V−

)
⊕w = Γ(P1,B)⊕w

(
ev+ θ+
ev− θ−

)
−−−−−−−! B

∣∣∣
s+
⊕ B

∣∣∣
s−

∼= w+⊕w−

is an isomorphism. Since H1(P1,B) = 0, the exact sequence (78) implies that H0(E,A) =
0 = H1(E,A). Moreover, it follows from the construction of A that the canonical mor-

phism of Lie algebras Â = Âs
ν∗
−! B̂s+ × B̂s− ∼= Ŵ+× Ŵ− is injective and its image is the

Lie algebra Ŵ. Hence, Ã = Q̂⊗
Ô
Â can be identified with the Lie algebra D̂.

It follows from the construction of E that the differential form ω =
dt

t
is a generator

of Γ(E,ΩE). The following observation is crucial: under the isomorphism Ã ! D̂ the

bilinear form Ã × Ã
F̃ωs−! C given by (63) gets identified (up to an appropriate rescaling)

with the bilinear form D̂× D̂
F̂
−! C, given by (28)! Summing up, Ã = Âu A is a Manin

triple, isomorphic to the Manin triple D̂ = Ŵ u C. In particular, Â is an isotropic Lie

subalgebra of Ã.

All together, we have proven that A is an acyclic, g–weakly locally free isotropic coherent
sheaf of Lie algebras on E, as asserted. �

Let (E,A) be a geometric datum as in Proposition 6.4 above and ρ ∈ Γ
(
U ×U \Σ,A�A

)
the corresponding geometric r–matrix. Recall that the construction of A also provides an

isomorphism of Lie algebras A
∼=−! L. Let Ũ = Spec(R)

π
−! U = Spec(R) be the étale

covering corresponding to the algebra extension R ⊆ R. By Proposition 3.4, we have an

isomorphism of Lie algebras Γ
(
Ũ , π∗(A)

) ∼= R⊗R L ∼= L. The pullback

(81) ρ̃ := (π × π)∗(ρ) ∈ Γ
(
Ũ × Ũ \ Σ̃, π∗(A)� π∗(A)

)
satisfies the equalities (54) and (55), where Σ̃ = (π × π)−1(Σ). Trivializing π∗(A) as
above, we get from ρ̃ a genuine skew-symmetric non-degenerate solution of the classical
Yang–Baxter equation (36). Our next goal is to compute this solution explicitly.

6.3. Geometric r–matrix corresponding to twists of the standard Lie bialgebra
structure of a twisted loop algebra. Recall our notation: g is a finite dimensional
complex simple Lie algebra of dimension q, σ ∈ AutC(g) is an automorphism of order
m, g = ⊕m−1

k=0 gk the corresponding decomposition of g into a direct sum of eigenspaces

of σ, γ =
m−1∑
k=0

γk the decomposition of the Casimir element γ ∈ g⊗ g with components

γk ∈ gk⊗ g−k. Let g0 = g+
0 ⊕ h⊕ g−0 be a triangular decomposition as in Remark 3.6. We

denote by γ0
0 and γ±0 the projections of γ0 on h⊗ h and g±0 ⊗ g∓0 , respectively.
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Proposition 6.5. Let D = CuW◦ be the Manin triple (30), corresponding to the standard

Lie bialgebra cobracket L
δ◦−! ∧2(L) and (E,A◦) be the corresponding geometric CYBE

datum defined in Proposition 6.4. Then the trivialization of the corresponding geometric
r-matrix (81) gives the following solution of (36):

(82) r◦(x, y) =

(
γ0

0

2
+ γ−0

)
+

ym

xm − ym
m−1∑
k=0

(
x

y

)k
γk.

Proof. Let qk = dimC
(
gk
)

for k ∈ Z. By Lemma 3.2, we can choose a basis
(
g

(1)
k , . . . , g

(qk)
k

)
of gk such that κ

(
g

(i)
k , g

(j)
−k

)
= δij for all 1 ≤ i, j ≤ qk. For k = 0 we make an additional

choice: let (h1, . . . , hr) be a basis of h and (e±1 , . . . , e
±
p ) a basis of g±0 such that

κ(hı, h) = δı for all 1 ≤ ı,  ≤ r and κ(e+
ı , e

−
 ) = δı for all 1 ≤ ı,  ≤ p.

Then we have the following basis of L =
⊕
k∈Z

gk z
k viewed as a module over R = C

[
t, t−1

]
:

(83)
(
e+

1 , . . . , e
+
p , h1, . . . , hr, e

−
1 , . . . , e

−
p , g

(1)
1 z, . . . , g

(q1)
1 z, . . . , g

(1)
m−1z

m−1, . . . , g
(qm−1)
m−1 zm−1

)
where t = zm. As usual, let L×L

K
−! R be the Killing form. For any λ ∈ C∗, let(

R/(t−λ)
)
⊗RL

ελ−! g be the Lie algebra isomorphism from Proposition 3.4 and R
evλ−! C

be the evaluation map. Then the diagram

L×L
K //

ελ×ελ
��

R

evλ

��

g× g
κ // C

is commutative and(
e−1 , . . . , e

−
p , h1, . . . , hr, e

+
1 , . . . , e

+
p , g

(1)
−1z

−1, . . . , g
(q1)
−1 z

−1, . . . , g
(1)
1−mz

1−m, . . . , g
(qm−1)
1−m z1−m)

is the basis of L over R which is dual to (83) with respect to the Killing form K. Hence,

χ =

(
p∑
ı=1

(
e+
ı ⊗ e−ı + e−ı ⊗ e+

ı

)
+

r∑
l=1

hl ⊗ hl

)
+

m−1∑
k=1

qk∑
j=1

g
(j)
k zk ⊗ g(j)

−kz
−k

 ∈ L⊗R L

is the canonical Casimir element of L (viewed as a Lie algebra over R).

We identify ρ with ρ̃ ∈ Γ
(
Ũ × Ũ \ Σ̃, π∗(A) � π∗(A)

)
. To proceed with computations,

we make the following choices: let (u, v) be coordinates on C∗ × C∗ ∼= U × U and (x, y)

be coordinates on the étale covering C∗ × C∗ ∼= Ũ × Ũ . We have: u = xm and v = ym.
Consider the following expression:

χ̃ :=
m−1∑
k=0

γk

(
x

y

)k
∈ L⊗C L ⊆ (g⊗ g)

[
x, x−1, y, y−1

]
.

It is easy to see that χ̃ is mapped to χ under the canonical linear map L⊗C L!! L⊗R L.
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Recall that the geometric r-matrix ρ corresponding to (E,A) is given by the formula (74).

For any (k, i) ∈ Υ we have w(k,i) ∈ D̂, given by the formula (69) with respect to the R-basis

of L fixed above. Then there exist uniquely determined b(k,i) ∈ Ŵ
◦

and h(k,i) ∈ L ∼= C
such that b(k, i) = w(k, i) + h(k, i). It is not hard to see that h(k,i) = 0 for all k 6= 0. For
k = 0, we have the following decompositions:

Ŵ
◦
3


(0, e−ı ) = (−e−ı , 0) + (e−ı , e

−
ı )

(−e+
ı , 0) = (−e+

ı , 0) + (0, 0)(
−1

2hl,
1
2hl
)

= (−hl, 0) +
(

1
2hl,

1
2hl
)
.

All together, taking into account the formulae (69), (70) and (71), we obtain from (74)
the following explicit expression:

r◦(x, y) =
ym

xm − ym
m−1∑
k=0

(
x

y

)k
γk +

(
p∑
ı=1

e−ı ⊗ e+
ı +

r∑
l=1

1

2
hl ⊗ hl

)
,

which coincides with the formula (82), as asserted. �

We get the following corollary, which seems to be well-known to the experts (another,
more direct proof, can be found in [1]).

Corollary 6.6. We have the following formula for the standard Lie bialgebra cobracket:

L
δ◦−! L∧L, f(z) 7!

[
f(x)⊗ 1 + 1⊗ f(y), r◦(x, y)

]
,

where r◦(x, y) is the standard r-matrix given by (82).

Remark 6.7. Let g = n+uh̃ u n− be a fixed triangular decomposition of the finite
dimensional simple complex Lie algebra g corresponding to a Dynkin diagram Γ. Then
any φ ∈ Aut(Γ) defines an automorphism φ̃ ∈ AutC(g). Let σ ∈ AutC(g) be a Coxeter
automorphism corresponding to φ and m be the order of σ; see [6, Section 6] for an

explicit description of σ. Then we have: L := L(g, σ) ∼= L(g, φ̃); see [31, Proposition 8.1].
An advantage to use the Coxeter automorphism σ to define twisted loop algebra is due to
the fact that the fixed point Lie algebra

{
a ∈ g

∣∣σ(a) = a
}

is abelian. In particular, the
standard r-matrix (82) takes the following shape:

(84) r◦(x, y) =
γ0

2
+

ym

xm − ym
m−1∑
k=0

(
x

y

)k
γk =

γ0

2
+

1

exp(w)− 1

m−1∑
k=0

exp

(
kw

m

)
γj ,

where exp
(w
m

)
=
x

y
. For φ = id, this solution was discovered for the first time by Kulish

(see [38, formula (38)]) and generalized by Belavin and Drinfeld (see [6, Proposition 6.1])
for an arbitrary φ.

Remark 6.8. Let g = n+uh̃ u n− be again a fixed triangular decomposition of g, Φ+

be the set of positive roots of (g, h) and σ = id. Then L = L(g, σ) = g
[
z, z−1

]
and the

standard r-matrix (82) takes the following form:

(85) r◦(x, y) =
1

2

(x+ y

x− y
γ +

∑
α∈Φ+

e−α ∧ eα
)
,
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which can be for instance found in [36]. It can be shown that the solution (85) is equivalent
(in the sense of (38) and (39)) to the solution (84) (for the identity automorphism of the
Dynkin diagram of g); see for instance [1] for details. ♦

Theorem 6.9. For any skew-symmetric tensor t ∈ ∧2 L ⊂ (g⊗ g)
[
x, x−1, y, y−1

]
we put:

(86) δt = δ◦ + ∂t and rt(x, y) = r◦(x, y) + t(x, y).

Then L
δt−! L∧L is a Lie bialgebra cobracket if and only if rt(x, y) is a solution of the

classical Yang–Baxter equation (36). In this case, let D = WtuC be the corresponding
Manin triple (see Theorem 4.1) and (E,At) be the corresponding geometric CYBE datum
(see Proposition 6.4). Then the geometric r-matrix ρt of (E,At) with respect to the
trivialization, described at the end of Subsection 6.2, coincides with rt(x, y).

Proof. By Proposition 3.4, L⊗3 does not have any non-zero ad-invariant elements. Hence,
Proposition 2.3 implies that δt is a Lie bialgebra cobracket if and only if t satisfies the
twist equation (6). On the other hand, since r◦ solves the CYBE, we can rewrite the
CYBE for rt as

[[t, t]] +
[
r12
◦ , t

13 + t23
]

+
[
r13
◦ , t

23 + t21
]

+
[
r23
◦ , t

21 + t31
]

= 0.

We have:
[
r12
◦ , t

13 + t23
]

= −(δ◦ ⊗ 1)(t). It follows that rt solves the CYBE if and only

if alt
(
(δ◦ ⊗ 1)(t)

)
= [[t, t]], implying the first statement.

As it was explained in the proof of Proposition 6.4, the Manin triple D̂ = Ŵt u C is

isomorphic to the geometric Manin triple Ã = ÂtuA. Let r̃t(x, y) be the trivialization of
the geometric r-matrix ρt with respect to the trivialization A ∼= L introduced at the end
of Subsection 6.2. Then we get the geometric Lie bialgebra cobracket

L
δ
−! L∧L, f(z) 7!

[
f(x)⊗ 1 + 1⊗ f(y), r̃t(x, y)

]
.

On the other hand, Corollary 6.6 implies that

δt(f) := δ◦(f) +
[
f(x)⊗ 1 + 1⊗ f(y), t(x, y)

]
=
[
f(x)⊗ 1 + 1⊗ f(y), r◦(x, y) + t(x, y)

]
.

According to Proposition 4.5 and Theorem 5.6, both Lie bialgebra cobrackets δ and δt
are determined by the same Manin triple D̂ = Ŵt u C. It follows that δ = δt. Since L⊗2

has no non-zero ad-invariant elements (see Proposition 3.4), we conclude that r̃t(x, y) =
r◦(x, y) + t(x, y) = rt(x, y), as asserted. �

6.4. On the theory of trigonometric solutions of CYBE. Consider the setting of
Remark 6.7. Let g = n+uh̃ u n− be a triangular decomposition of g, Γ be the Dynkin
diagram of g and φ ∈ Aut(Γ). Let σ ∈ AutC(g) be a Coxeter automorphism corresponding
to φ, m be the order of σ and L := L(g, σ). Recall that g0 = h is an abelian Lie algebra.
For 1 ≤ k ≤ m− 1 and α ∈ h∗, let gαk :=

{
x ∈ gk

∣∣ [h, x] = α(h)x for all h ∈ h
}
. We put

Λk :=
{
α ∈ h∗

∣∣ gαk 6= 0
}

and Ξ :=
{

(α, k)
∣∣ 1 ≤ k ≤ m− 1 and α ∈ Λk

}
.

Then we have a direct sum decomposition

(87) g = h⊕
⊕

(α,k)∈Ξ

gαk ,

and the vector space gαk is one-dimensional for any (α, k) ∈ Ξ.
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The main advantage to define the twisted loop algebra L corresponding to ν ∈ Aut(Γ)
using a Coxeter automorphism (even for φ = id) is due to the following special structure
of the set Π of positive simple roots of (L, h): Π =

{
(α, 1)

∣∣α ∈ Λ1

}
. In particular, we

have:
∣∣Λ1

∣∣ = r+1 = dimC(h)+1 and the elements of Λ1 are in a bijection with the vertices

of the affine Dynkin diagram Γ̂ such that L ∼= G
Γ̂

via the Gabber–Kac isomorphism (20).

Recall that a Belavin–Drinfeld triple is a tuple
(
Γ1,Γ2, τ

)
, where Γi $ Λ1 for i = 1, 2 are

subsets and Γ1
τ
−! Γ2 is a bijection satisfying the following conditions:

• κ
(
τ(α), τ(β)

)
= κ(α, β) for all α, β ∈ Γ1;

• for any α ∈ Γ1 there exists l = l(α) ∈ N such that α, . . . , τ l−1(α) ∈ Γ1 but
τ l(α) /∈ Γ1.

For i = 1, 2, let ni be the Lie subalgebra of g generated by the vector subspace ⊕α∈Γi g
α
1 .

Then ni is isomorphic to the positive part of the semisimple Lie algebra defined by the
Dynkin diagram Γi and we have a direct sum decomposition

(88) ni =
⊕

(α,k)∈Ξi

gαk .

for an appropriate subset Ξi ⊂ Ξ. Fixing non-zero elements in (gα1 )α∈Λ1
, one can extend

the bijection Γ1
τ
−! Γ2 to an isomorphism of Lie algebras n1

τ̃
−! n2.

Let g
ϑ
−! g be a linear map defined as the composition g

π
−!! n1

τ̃
−! n2

ı
↪−! g, where π

and ı are the canonical projection and embedding with respect to the direct sum decom-
positions (87) and (88). Then ϑ is nilpotent and ϑ(gk) ⊂ gk for all 1 ≤ k ≤ m − 1. Let

ψ =
ϑ

1− ϑ
=
∞∑
l=1

ϑl. It follows that ψ(gk) ⊂ gk for all 1 ≤ k ≤ m− 1 as well.

For any Belavin–Drinfeld triple
(
Γ1,Γ2, τ

)
, the system of linear equations

(89)
(
τ(α)⊗ 1+ 1⊗ α

)(
s +

γ0

2

)
= 0 for all α ∈ Γ1

for s ∈ h∧ h is consistent; see [6, Lemma 6.8]. According to [6, Theorem 6.1], trigonometric
solutions of (41) are parametrized by Belavin–Drinfeld quadruples Q =

((
Γ1,Γ2, τ

)
, s
)
,

where
(
Γ1,Γ2, τ

)
is a Belavin–Drinfeld triple and s ∈ h∧ h satisfies (89). The solution of

(41) corresponding to Q is given by the following formula:

(90) %Q(w) = %◦(w) + s +

m−1∑
j=1

(
− exp

(
jw

m

)
(ψ ⊗ 1)γj + exp

(
−jw
m

)
(1⊗ ψ)γ−j

)
,

where %◦(w) is given by (84).

Let us rewrite the formula (90) in different terms. Choose elements
(
g(α,k) ∈ gαk

)
(α,k)∈Ξ

such that κ
(
g(α,k), g(β,l)

)
= δα+β,0δk+l,0. Then for any 1 ≤ k ≤ m − 1 we have: γ±k =
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α∈Ξ±k

g(±α,±k) ⊗ g(∓α,∓k). It follows that


(ψ ⊗ 1)(γk) =

∞∑
l=1

∑
α∈Ξk

ϑl
(
g(α,k))⊗ g(−α,−k)

(1⊗ ψ)(γ−k) =
∞∑
l=1

∑
α∈Ξk

g(−α,−k) ⊗ ϑl
(
g(α,k)).

Consider the following expression

(91) tQ(x, y) := s+

∞∑
l=1

∑
(α,k)∈Ξ

(
−ϑl

(
g(α,k)

)
⊗g(−α,−k)

(
x

y

)k
+g(−α,−k)⊗ϑl

(
g(α,k)

) (y
x

)k)
.

Then we have:

(92) rQ(x, y) := r◦(x, y) + tQ(x, y) = %Q(w)

where x, y and w are related by the formula
x

y
= exp

(w
m

)
. In other words, rQ is the

solution of the classical Yang–Baxter equation (36) corresponding to the Belavin–Drinfeld
quadruple Q =

(
(Γ1,Γ2, τ), s

)
.

Corollary 6.10. For azk, bzl ∈ L we put: azk ∧ bzl := axk ⊗ byl − bxl ⊗ ayk ∈ L ∧ L.
Then tQ given by (91) can be viewed as an element of ∧2(L). As a consequence, the
trigonometric solution rQ(x, y) is of the form (86) and can be realized as the geometric
r-matrix defined by an appropriate geometric CYBE datum (E,A), where E is a nodal
Weierstraß curve.

A proof of the following result is analogous to [7] and [36, Theorem 19].

Proposition 6.11. Let r(x, y) =
ym

xm − ym
m−1∑
j=0

(
x

y

)j
γj + g(x, y) be a solution of (36),

where C2 g
−! g⊗ g is a holomorphic function. Then r is equivalent (in the sense of

Subsection 5.1) to a trigonometric solution of (41).

Proof. For a, b, c, d ∈ g put: [〈a⊗ b, c⊗ d〉] := [a, c]⊗ [b, d]. Proceeding similarly to [7], one
can deduce from (36) the following identities:

[〈r(x, y), r(x, y)〉] + [r(x, y), 1⊗ f(y)] +
y

m

∂r

∂y
(x, y) = 0

[〈r(x, y), r(x, y)〉]− [r(x, y), f(x)⊗ 1]− x

m

∂r

∂x
(x, y) = 0,

where f(z) := bg(z, z) + 1
m

m−1∑
k=1

kγkc (here, ba⊗ bc = [a, b] for a, b ∈ g). It follows that

[
f(x)⊗ 1 + 1⊗ f(y), r(x, y)

]
=

x

m

∂r

∂x
(x, y) +

y

m

∂r

∂y
(x, y).

Let r̃(u, v) := r
(

exp
( u
m

)
, exp

( v
m

))
and h(u) := f

(
exp

( u
m

))
. Then C2 r̃

−! g⊗ g is a

meromorphic solution of (36) equivalent to r (whose set of poles is given by the union of
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lines
{

(u, v) ∈ C2
∣∣u− v = 2πik

}
for k ∈ Z), C h

−! g is a holomorphic function and

[
h(u)⊗ 1 + 1⊗ h(v), r̃(u, v)

]
=

(
∂

∂u
+

∂

∂v

)
r̃(u, v).

Let (C, 0)
ϕ
−! EndC(g) the germ of a holomorphic function satisfying the differential

equation ϕ̇ = adh ◦ϕ and the initial condition ϕ(0) = 1, where C adh−! EndC(g) is given
by the rule

(
adh(u)

)
(ξ) =

[
h(u), ξ

]
for u ∈ C and ξ ∈ g. Then ϕ can be extended to

a holomorphic function on the entire complex plane (see [36, Theorem 19]). The initial
condition ϕ(0) = 1 and the continuity of ϕ imply that det

(
ϕ(u)

)
= 1 for all u ∈ C (see

the proof of [6, Proposition 2.2]). Hence, we have an entire function C ϕ
−! AutC(g). Let

ρ̃(u, v) :=
(
ϕ(u)−1 ⊗ ϕ(v)−1

)
r̃(u, v)

It follows that

(
∂

∂u
+

∂

∂v

)
ρ̃(u, v) = 0, i.e. ρ̃(u, v) = %(u − v) for some meromorphic

solution C %
−! g⊗ g of (41), whose set of poles is 2πiZ. It follows that % is a trigonometric

solution of (41). �

6.5. Concluding remarks on the geometrization of trigonometric solutions. Let
(E,A) be a geometric CYBE datum as in Proposition 6.4. Within that construction, we
additionally made the following choices.

• P1 ν
−! E is a fixed normalization map. We have fixed homogeneous coordinates

(w+ : w−) on P1 such that ν−1(s) = {s+, s−}, where s+ = (0 : 1) and s− = (1 : 0).
• We have an algebra isomorphism Γ(U,O) ∼= C

[
u, u−1

]
as well as an Γ(U,O)-

C
[
u, u−1

]
-equivariant isomorphism of Lie algebras A ∼= L =

⊕
k∈Z

gk x
k, where u =

w+

w−
= xm. We also put: ω =

du

u
.

Let p := ν
(
(1 : 1)

)
∈ E. Equipping U ⊂ E with the usual group law (on the set

of smooth point of a singular Weierstraß curve) with p being neutral element, the map
C∗ ! U, t 7! ν

(
1 : t

)
becomes a group isomorphism.

Consider the algebra homomorphism C
[
u, u−1

]
! CJzK, u 7! exp(z). As (exp(z) − 1) ∈

CJzK is a local parameter, we get an induced algebra isomorphism Ôp ! CJzK. In
these terms, the differential form ω̂p gets identified with dz. Moreover, the linear map

Âp ! gJzK, axk 7! a exp
( z
m
k
)

is a (Ôp–CJzK)–equivariant isomorphism of Lie alge-

bras. Consider the étale covering C∗ = Ũ ! U = C∗ of degree m, given by the formula

x 7! xm = u. It extends to a finite morphism P1 π̃
−! P1, (w+ : w−) 7! (wm+ : wm− ).

Since π̃(s±) = s± and (76) is a pulldown diagram, we obtain an induced finite morphism
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E
π
−! E. Let Ã = π∗(A). Then we have the following commutative diagram.

(93)

Γ
(
(E × Ũ) \ Σ̃, Ã� Ã

) � � // Γ
(
(Ũ × Ũ) \ Σ̃, Ã� Ã

)

Γ
(
(E × U) \ Σ,A�A

) � � //
?�

OO

_�

��

Γ
(
(U × U) \ Σ,A�A

)� ?

OO

� _

��

A(p)⊗Âp �
�

//

u�

((QQQQQQQQQQQQQ
A◦(p)⊗Âp
iI

vvmmmmmmmmmmmmm

Ã(p) ⊗ Âp

Then % ∈ Γ
(
(E × U) \Σ,A�A

)
, ρ ∈ Γ

(
(U × U) \Σ,A�A

)
, ρ̃ ∈ Γ

(
(Ũ × Ũ) \ Σ̃, Ã� Ã

)
and ρ̄ ∈ Ã(p) ⊗ Âp are identified with each other under the corresponding maps. Taking

the trivialization Γ(Ũ ,A) ∼= L = g
[
x, x−1

]
, we get a solution of (36)

r(x, y) = r◦(x, y) + t(x, y) =

(
ym

xm − ym
m−1∑
k=0

(
x

y

)k
γk

)
+
γ0

2
+ t(x, y),

where t ∈ ∧2 L ⊂ (g⊗ g)
[
x, x−1, y, y−1

]
. Making the substitutions x = exp

( z
m

)
and

y = exp
(w
m

)
, we obtain the solution

(94) r(z, w) =

(
1

exp(z − w)− 1

m−1∑
k=0

exp

(
z − w
m

k

)
γk

)
+
γ0

2
+t
(

exp
( z
m

)
, exp

(w
m

))
.

The corresponding element of
(
g((z))⊗ g

)
JwK viewed as a solution of (47), coincides with

the image of ρ̄ under the isomorphism Ã(p) ⊗ Âp ∼=
(
g((z))⊗ g

)
JwK.

Remark 6.12. The set of Manin triples L×L‡ = C u W from Theorem 4.1 admits a
natural involution W 7!W‡ induced by the Lie algebra automorphism

(95) L×L‡ −! L×L‡, (f, g) 7! (g‡, f ‡)

Note that (95) is an involution which fixes the Lie subalgebra C. Let (E,A) end (E,A‡) be

the geometric CYBE data from Proposition 6.4, corresponding to W and W‡, respectively.

It is not hard to see that A‡ ∼= ı∗(A), where E
ı
−! E is the involution, induced by the

involution P1 ! P1, (w+ : w−) 7! (w− : w+). It is clear that ı(p) = p. Moreover, the

solutions r(z, w) and r‡(z, w) corresponding to W and W‡ and given by (94) are related
by the formula: r‡(z, w) = r(−z,−w). ♦

Summary. Let t ∈ ∧2 L be a twist of the standard Lie bialgebra cobracket L
δ◦−! L∧L.

Then rt(x, y) = r◦(x, y)+t(x, y) is a solution of (36), which is equivalent to a trigonometric
solution %t of (41) with respect to the equivalence relations (38) and (39). On the other
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hand, any trigonometric solution of (41) is equivalent to a solution rt(x, y) for some
t ∈ ∧2 L. Moreover, it was shown in [1] that for two twists t′, t′′ ∈ ∧2 L of δ◦ the
corresponding Lie bialgebras (L, δt′) and (L, δt′′) are related by an R–linear automorphism
of L if and only if the solutions %t′ and %t′′ are equivalent.

Remark 6.13. The presented way of geometrization of twists of the standard Lie bialge-
bra structure can be viewed as an alternative approach to classification of trigonometric
solutions of (41). On the other hand, methods developed in this work are adaptable for
a study of analogues of trigonometric solutions of (41) for simple Lie algebras defined
over algebraically non-closed fields like R (what is interesting because of applications to
classical integrable systems [3, 44]) or C((h)) (motivated by the problem of quantization of
Lie bialgebras; see [23, 33, 34]). We are going to return to these questions in the future.♦

7. Explicit computations

7.1. On explicit geometrization of certain solutions for sln(C). Let P be a simple
vector bundle on a Weierstraß curve E (i.e. EndE(P) = C) of rank n and degree d.
Then gcd(n, d) = 1 and for any other simple vector bundle Q with the same rank and
degree there exists a line bundle L ∈ Pic0(E) such that Q ∼= P ⊗ L. Conversely, for any
(n, d) ∈ N × Z satisfying the condition gcd(n, d) = 1, there exists a simple vector bundle
of rank n and degree d on E; see [2, 12, 10] for the case when E is elliptic, nodal and
cuspidal, respectively. In what follows, we put c := n− d.

Let A = AdE(P) be the sheaf of Lie algebras on E given by the short exact sequence

(96) 0 −! A −! EndE(P)
tr
−! O −! 0.

From what was said above we see that A = A(c,d) does not depend (up to an automor-
phism) on the particular choice of simple vector bundle P and is uniquely determined by
the pair (c, d). For any p ∈ E we have: A

∣∣
p
∼= g = sln(C). Simplicity of P implies that

H0(E,A) = 0 = H1(E,A). It follows that the pair (E,A) is a geometric CYBE datum.

Let K = K(c,d) :=

(
0 Id
Ic 0

)
and T = T(c,d)(u−) =

(
Ic 0
0 u−1

− Id

)
, where c = n−d. We

put: c(c,d) :=
{(
a,AdK(a)

) ∣∣ a ∈ g
}

(where AdK(a) := KaK−1) and

Ŵ
trg

(c,d) =
(
1× AdT

)((
u+ gJu+K× {0}

)
+
(
{0} × u− gJu−K

)
+ c(c,d)

)
⊆ D̂ = L̂+ × L̂−,

where L̂± = g((u±)).

Theorem 7.1. Let E be a nodal Weierstraß curve, s be its singular point and A = A(c,d)

be a sheaf of Lie algebras attached to the pair (c, d), where c, d ∈ N are coprime. Then the

Manin triple Ãs = Âs u A(s) is isomorphic to the Manin triple D̂ = Ŵ
trg

(c,d) u C.

Proof. Let us first recall our notation and give an explicit description of the sheaf A.
We choose homogeneous coordinates (w+ : w−) on P1 and view them as global sections:
w± ∈ Γ

(
P1,OP1(1)

)
. Let s± ∈ P1 be the point of vanishing of w±, i.e. s+ = (0 : 1)

and s− = (1 : 0). We put: U± := P1 \ {s±}, U = U+ ∩ U− and u± :=
w±
w∓

. It is clear

that s± ∈ U± and that the rational function u± is a local parameter at s±. We put:
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L± := Γ
(
U±,OP1

) ∼= C[u±]. Let Ô± be the completion of the stalk of OP1 at s± and

Q̂± be the corresponding quotient field. Then we have: Ô± ∼= CJu±K and Q̂± ∼= C((u±))
Finally, let R := Γ

(
U,OP1

) ∼= C
[
u±, u

−1
±
]

= C
[
u, u−1

]
, where u = u+ = u−1

− . We fix the
following trivializations:

(97) Γ
(
U±,OP1(1)

) ξ±
−! L±, f 7!

f

w∓
∣∣
U±

.

As a consequence, for any c, d ∈ N0 and G = G(c,d) := O⊕cP1 ⊕
(
OP1(1)

)⊕d
we have the

induced trivializations Γ
(
U±,G

) ξG±
−! L⊕n± , where n = c + d. Let B = B(c,d) := Ad(G).

Then ξG± induces trivializations Γ
(
U±,B

) ξB±
−! g[u±]. Let B̂± be the completion of the

stalk of B at s±, B̃± its rational envelope and B
∣∣
s±

the fiber of B over s±. Then we get

induced isomorphisms

B̂±
ξ̂B±
−! gJu±K, B̃±

ξ̃B±
−! g((u±)) and B

∣∣
s±

ξ̄B±
−! g .

We define a nodal Weierstraß curve E via the pushout diagram (76). We recall now the
description of the sheaf A given in [15, Proposition 3.3] (see also [17, Section 5.1.2]).

Consider the embedding of Lie algebras g
θ̃(c,d)
−! g× g, a 7!

(
a,AdK(a)

)
. Then A is defined

via the following pullback diagram in the category Coh(E):

(98)

A //

��

g� _

θ̃(c,d)
��

ν∗(B)
ξ̄
// g× g

where we view g and g× g as skyscraper sheaves supported at s and ξ̄ is the composition

ν∗(B)
ev
−! B

∣∣∣
s+
× B

∣∣∣
s−

ξ̄B+×ξ̄B−
−−−−! g× g .

In the notation of Theorem 6.1,
(
B, g, (1,AdK)

)
is a triple corresponding to A. Let Ô be

the completion of the stalk of OE at s and Q̂ be the corresponding total ring of fractions.

Then we have: Γ
(
U,OE

) ∼= Γ
(
ν−1(U),OP1

) ∼= C
[
u, u−1

]
, Ô ∼= CJu+, u−K/(u+u−) and

Q̂ ∼= Q̂+ × Q̂− = C((u+))× C((u−)).

From (98) we get the following commutative diagram of Lie algebras:

(99)

Âs //
_�

��

g� _

θ̃(c,d)
��

B̂+ × B̂− // //

ξ̂B+×ξ̂B−
��

B
∣∣∣
s+
× B

∣∣∣
s−

ξ̄B+×ξ̄B−
��

gJu+K× gJu−K // // g× g .
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It follows that the image of Âs in gJu+K×gJu−K under the composition of two left vertical
maps in (99) is the Lie algebra

(
u+ g[u+]×{0}

)
+
(
{0}×u− g[u−]

)
+ c(c,d). Passing to the

rational hulls, we end up with the embedding of Lie algebras

Âs ↪−! Ãs
∼=−! B̃+ × B̃−

ξ̃B+×ξ̃B−
−−−−! g((u+))× g((u−)).

On the other hand, the trivialization Γ
(
U+,B

) ξB+
−! g[u] restricts to an isomorphism

Γ(U,B)
ξB◦−! g

[
u, u−1

]
and induces the isomorphisms of Lie algebras Γ(U,A)

ξ
−! g

[
u, u−1

]
given as the composition Γ(U,A)

ν∗
−! Γ(U,B)

ξB◦−! g
[
u, u−1

]
. We get the induced isomor-

phism B̃+ × B̃−
ξ̃B+×ξ̆B+
−−−−! g((u+))× g((u−)) as well as the following commutative diagram:

Γ(U,A)
_�

��

ν∗ // Γ(U,B)
ξB◦ //

� _

��

g
[
u, u−1

]
� _

��

Ãs // B̃+ × B̃−
ξ̃B+×ξ̆B+

// g((u+))× g((u−)).

It follows that the image of Γ(U,A) under the embedding

Γ(U,A) ↪−! Ãs ↪−! B̃+ × B̃−
ξ̃B+×ξ̆B+
−−−−! g((u+))× g((u−))

is the Lie algebra C =
{

(aun+, au
n
−)
∣∣ a ∈ g, n ∈ Z

}
.

The formal trivializations ξ̃B− and ξ̆B+ are related by the following commutative diagram

B̃−
ξ̆B+

##FFFFFFFFF
ξ̃B−

||xxxxxxxxx

g((u−))
AdT // g((u−)).

It follows that the image of Âs under the embedding

Âs ↪−! Ãs ↪−! B̃+ × B̃−
ξ̃B+×ξ̆B+
−−−−! g((u+))× g((u−)),

is the Lie algebra Ŵ
trg

(c,d) =
(
1 × AdT

)((
u+ gJu+K × {0}

)
+
(
{0} × u− gJu−K

)
+ c(c,d)

)
, as

asserted. �

Example 7.2. Let g = sl2(C) and h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
. Then

Ŵ
trg

(1,1) =
(
u+ gJu+K× {0}

)
+
(
{0} × u2

− gJu−K
)

+ u, where

u =
〈
(0, u−h), (0, u−f), (0, f), (f, u−e), (e, u

−1
− f), (h,−h)

〉
C.

The formula (74) gives the following solution of (36):

(100) rtrg
(1,1)(u, v) =

1

4

u+ v

u− v
h⊗ h+

u

u− v
f ⊗ e+

v

u− v
e⊗ f + (v − u)f ⊗ f.
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Remark 7.3. Let E be a Weierstraß curve and A = A(n,d) be the sheaf of Lie algebras
attached to a pair (n, d), where 0 < d < n and gcd(n, d) = 1. Explicit expressions for the
corresponding geometric r-matrix ρE(n,d) are known.

1. Let E be an elliptic curve. The corresponding solution rell
(c,d)(x, y) of (36) is an elliptic

solution discovered by Belavin [5]; see e.g. [16, Theorem 5.5]. For any p ∈ E, we have

the Manin triple Ãp = Âp u A(p), which can be identified with a Manin triple of the

form g((z)) = gJzK uWell
(c,d) for an appropriate Lagrangian subalgebra Well

(c,d) ⊂ g((z)).

This Manin triple appeared for the first time in the work of Reyman and Semenov-Tyan-
Shansky [44]. A description of the Lie algebra Well

(c,d) via generators and relations was

given for (c, d) = (1, 1) by Golod [29], and for arbitrary (c, d) by Skrypnyk [46].

2. Let E be nodal. The (quasi-)trigonometric solution rtrg
(c,d)(x, y) of (36) was computed

in [15, Theorem A]. We recall the corresponding formula. Let

Φ̄ :=
{

(i, j) ∈ N2
∣∣ 1 ≤ i, j ≤ n} ∼= Zn × Zn and Φ+ :=

{
(i, j) ∈ Φ̄

∣∣ i < j
}
.

Then we have a permutation Φ̄
τ
−! Φ̄, (i, j) 7! (i+ c, j + c) of order n. For any α ∈ Φ+,

let p(α) = min
{
k ∈ N

∣∣ τk(α) /∈ Φ+

}
. For any 1 ≤ i ≤ n− 1, we put: qi := τ i(ε)− τ i−1(ε)

and fi := 1
2

(
τ i(ε) + τ i−1(ε)

)
− 1

nI, where I is the identity matrix and ε = e11 is the first
matrix unit. Then (q1, . . . , qn−1) is a basis of the standard Cartan part h of the Lie algebra
g. Let (q∗1, . . . , q

∗
n−1) be the dual basis of h with respect to the trace form. The solution

of (36) corresponding to (E,A) is given by the formula

(101) rtrg
(c,d)(x, y) = r◦(x, y) + t(c,d)(x, y),

where r◦(x, y) is the standard trigonometric r-matrix (85) and

t(c,d)(x, y) =
∑
α∈Φ+

((p(α)−1∑
k=1

eτk(α)∧e−α
)

+xeτp(α)(α)⊗e−α−ye−α⊗xeτp(α)(α)

)
+

n−1∑
i=1

q∗i ⊗fi.

For (c, d) = (1, 1) we recover the formula (100) above.

3. Let E be cuspidal. The corresponding rational solution rrat
(c,d)(x, y) of (36) was computed

in [16, Theorem 9.6 and Example 9.7]. The Manin triple Ãs = Âs u A(s) (where s is the

singular point of E) has the form g((z−1)) = Ŵ
rat

(c,d)ug[z] and the corresponding Lagrangian

subalgebra Ŵ
rat

(c,d) ⊂ g((z−1)) was explicitly described in [16, Lemma 9.2]. ♦

7.2. Explicit geometrization of quasi-constant solutions of CYBE. Let g be a
simple Lie algebra. According to the Whitehead’s lemma, we have: H1

(
g,∧2(g)

)
= 0.

Moreover, it can be shown that any Lie bialgebra structure g
δ
−! g⊗ g is of the form

δ = ∂t, where t ∈ g⊗ g is such that

(102) [t12, t13] + [t12, t23] + [t13, t23] = 0 and t12 + t21 = λγ

for some λ ∈ C, i.e. t is a solution of the classical Yang–Baxter equation for constants
(cCYBE); see e.g. [24, Section 5.1]. Of course, without loss of generality we may assume
that λ ∈ {0, 1}.
The following result is due to Stolin [49].
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Theorem 7.4. Solutions of cCYBE can be described in the following terms.

(a) Tensors t ∈ g⊗ g satisfying

(103) [t12, t13] + [t12, t23] + [t13, t23] = 0 and t12 + t21 = γ

stand in bijection with Manin triples d = cuw, where

c =
{

(a, a) | a ∈ g
}
⊂ d := g× g

and the bilinear form d× d
F
−! C is given by the rule:

F
(
(a′, b′), (a′′, b′′)

)
= κ(a′, a′′)− κ(b′, b′′).

(b) Tensors t ∈ g⊗ g satisfying

(104) [t12, t13] + [t12, t23] + [t13, t23] = 0 and t12 + t21 = 0

stand in bijection with Manin triples d = cuw, where

c =
{
a | a ∈ g

}
⊂ d := g[ε]/(ε2)

and the bilinear form bilinear form d× d
F
−! C is given by the rule:

F
(
(a′ + εb′), (a′′ + εb′′)

)
= κ(a′, b′′) + κ(a′′, b′).

Comment to the proof. The correspondence between solutions of cCYBE and Manin triples
is as follows. Let (g1, . . . , gq) be a basis of g.

(a) Let ((w+
1 , w

−
1 ), . . . , (w+

q , w
−
q )
)

be the basis of w ⊂ d = g× g, which is dual to the

basis
(
(g1, g1), . . . , (gq, gq)

)
of c. Then the solution of (103) corresponding to w is

given by the formula

(105) t :=

q∑
i=1

gi ⊗ w+
i ;

see [49, Section 6].
(b) Similarly, let

(
h1 + εg∗1, . . . , hq + εg∗q

)
be the basis of w ⊂ d = g[ε]/(ε2), which is

dual to the basis
(
g1, . . . , gq) of c. Then the solution of (104) corresponding to w

is given by the formula

(106) t :=

q∑
i=1

gi ⊗ hi = −
q∑
i=1

hi ⊗ gi;

see [49, Theorem 3.12].

Remark 7.5. All solutions of (103) were classified by Belavin and Drinfeld in [8, Section
6]. On the other hand, let g = sln(C) and a, b ∈ g be such that [a, b] = 0. Then t = a ∧ b
satisfies (104). This implies that classification of all solutions of (104) is a representation-
wild problem; see [27]. ♦

Remark 7.6. Any solution t ∈ g⊗ g of cCYBE defines a solution of CYBE.

(a) If t ∈ g⊗ g satisfies (103) then r(x, y) =
y

x− y
γ + t satisfies (36).

(b) If t ∈ g⊗ g satisfies (104) then r(x, y) =
1

x− y
γ + t satisfies (36).
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Such solutions of CYBE are called quasi-constant. ♦

Theorem 7.7. Let g× g = cuw be a Manin triple as in Theorem 7.4 and t ∈ g⊗ g
be the corresponding solution of (103), given by the formula (105). Choose homogeneous
coordinates on P1 and define a nodal Weierstraß curve E via the pushout diagram (76),
where s+ = (0 : 1) and s− = (1 : 0). Define the sheaf of Lie algebras A as the pullback

(107)

A //

��

w� _

��

B ev // g× g

in the category Coh(E), where B := g⊗C
(
ν∗(OP1)

)
, whereas w and g× g are considered as

skyscraper shaves supported at the singular point s ∈ E and ev is induced by the canonical

isomorphisms OP1

∣∣∣
s±

∼= C. Then (E,A) is a geometric CYBE datum and the correspond-

ing geometric r-matrix is the quasi-constant solution r(x, y) =
y

x− y
γ + t of (36).

Proof. It follows from the definition of A that A = Γ(U,A) = Γ(U,B) ∼= L = g
[
z, z−1

]
.

Next, Γ(E,B) ∼= g and H1(E,B) = 0. From (107) we obtain an exact sequence

0 −! H0(E,A) −! cuw
∼=−! (g× g) −! H1(E,A) −! 0,

which implies that H0(E,A) = 0 = H1(E,A). From (58) we get a direct sum decompo-

sition Ã = Â u A, where Â is the completion of the stalk of A at s and Ã is its rational

hull. We have: Ã ∼= g((x+))× g((x−)) and A ∼=
{(
axk+, ax

−k
−
) ∣∣ a ∈ g, k ∈ N0

}
. Moreover, it

follows from (107) that Â ∼= x+ gJx+K + x− gJx−K + w . In particular, Â is a Lagrangian

Lie subalgebra of Ã and (E,A) is a geometric CYBE datum, as asserted.

The recipe to compute the geometric r-matrix of (E,A) is given by (74). Let (g1, . . . , gq)
be a basis of g, (g∗1, . . . , g

∗
q ) be the corresponding dual basis with respect to the Killing

form and
(
a(k,i) = giz

k | 1 ≤ i ≤ q, k ∈ Z
)

be the corresponding basis of L. Note that
the elements w(k, i) defined by (69) belong to x+ gJx+K + x− gJx−K + w for k 6= 0. As a
consequence, the elements h(k,i) given by (70) are zero for k 6= 0.

Let
(
(w+

1 , w
−
1 ), . . . , (w+

q , w
−
q )
)

be a basis of w dual to the basis
(
(g1, g1), . . . , (gq, gq)

)
of

c. For any 1 ≤ i ≤ q there exists a uniquely determined element vi ∈ g such that
(−g∗i , 0) + (vi, vi) = (−w+

i ,−w
−
i ). It follows from (70) that h(0,i) = vi = −w−i for all

1 ≤ i ≤ q and w+
i = g∗i +w−i (here we use that K

(
gi, g

∗
j ) = κ(gi, g

∗
j ) = δij). From (74) we

conclude that

r(x, y) =
y

x− y
γ +

q∑
i=1

w−i ⊗ gi =
y

x− y
γ +

q∑
i=1

(w+
i − g

∗
i )⊗ gi =

x

x− y
γ −

q∑
i=1

w+
i ⊗ gi.

Since r(x, y) is skew-symmetric, we have:

r(x, y) = −r21(y, x) =
y

x− y
γ +

q∑
i=1

gi ⊗ w+
i ,

as asserted. �
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Remark 7.8. An analogous statement is true for the rational quasi-constant solutions.
Let g[ε]/(ε2) = cuw be a Manin triple as in Theorem 7.4 and t ∈ g⊗ g be the corre-
sponding solution of (104). Choose homogeneous coordinates on P1 and define a cuspidal
Weierstraß curve E via the pulldown diagram

(108)

Spec
(
C[ε]/(ε2)

) � � η̃
//

ν̃
����

P1

ν

����

Spec(C) �
� η

// E

where the image of η̃ is the scheme supported at (1 : 0). Similarly to the nodal case, we
define the sheaf of Lie algebras A as the pullback

(109)

A //

��

w� _

��

B ev // g[ε]/(ε2)

where B := g⊗C
(
ν∗(OP1)

)
. Let U be the regular part of E. Then we have: A = Γ(U,A) ∼=

g[z]. As in the nodal case, it follows that Ãs = Âs u A(s) is a Manin triple, which can be

identified with the Manin triple g((z−1)) = Âu g[z], where the symmetric non-degenerate

bilinear form Ãs × Ãs
Fωs−! C can be identified with

(110) g((z−1))× g((z−1))
F
−! C, (azk, bzl) 7! δk+l+1,0κ(a, b).

In these terms, we have: Â = z−2 gJz−1K + w, where we identify w ⊆ g[ε]/(ε2) with a
subspace of g+z−1 g. It is precisely the setting of Stolin’s theory of rational solutions
[48]. As in the nodal case, one can derive from the formula (75) that the corresponding
geometric r-matrix is given by the formula

r(x, y) =
1

x− y
γ − t =

1

x− y
γ +

q∑
i=1

hi ⊗ gi,

where
(
h1 + εg∗1, . . . , hq + εg∗q

)
is the basis of w ⊂ d = g[ε]/(ε2) dual to

(
g1, . . . , gq).

8. Appendices

8.1. Road map to this work. Let K be the Kac–Moody Lie algebra over C associated
with an arbitrary symmetrizable generalized Cartan matrix A. It is well-known K admits
a natural triangular decomposition K = K+⊕H⊕K− . Moreover, K has finite dimensional
root spaces as well as an essentially unique non-degenerate symmetric invariant bilinear

form K×K
B
−! C (which coincides with the Killing form if K is finite dimensional); see

[31]. As discovered by Drinfeld [22], K has a structure of a Lie bialgebra K
δ◦−! K⊗K,

called in this paper standard. Existence of δ◦ follows from the root space decomposition
of K and as well as invariancy and non-degeneracy of the bilinear form B. The action of
δ◦ on the Cartan–Weyl generators of K can be expressed purely in terms of the entries of
the matrix A.
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The Lie algebra E = K×K is also equipped with a symmetric non-degenerate invariant
bilinear form

E×E
F
−! C,

(
(a1, b1), (a2, b2)

)
7! B(a1, a2)−B(b1, b2).

Identifying K with the diagonal in E, we get a direct sum decomposition E = KuW◦,
where W◦ =

{(
(c+, h), (c−,−h)

)
∈ (K+⊕H) × (K−⊕H)

∣∣ c± ∈ K±, h ∈ H
}
. Moreover, K

and W◦ are Lagrangian Lie subalgebras of E with respect to the form F . The Manin triple
E = KuW◦ “determines” the cobracket δ◦ in the following sense:

F
(
δ◦(c), w1 ⊗ w2

)
= B

(
c, [w1, w2]

)
for all c ∈ K and w1, w2 ∈W◦ .

Following the work of Karolinsky and Stolin [35], we study “twisted” Lie bialgebra co-
brackets of the form δt = δ◦+∂t, where t ∈ ∧2(K) and ∂t(a) =

[
a⊗1+1⊗a, t

]
for a ∈ K.

By Proposition 2.3 (see also [35, Theorem 7]), δt is a Lie bialgebra cobracket if and only
if the tensor (

alt
(
(δ◦ ⊗ 1)(t)

)
− [t12, t13]− [t12, t23]− [t13, t23] ∈ K⊗3

is ad-invariant, where alt(a ⊗ b ⊗ c) := a ⊗ b ⊗ c + c ⊗ a ⊗ b + b ⊗ c ⊗ a for a, b, c ∈ K.
In Section 2, we elaborate a general framework to study twists of a given Lie bialgebra
structure (generalizing and extending results known in the finite dimensional case [35])
and prove that such t are parametrized by Manin triples of the form E = KuW, where
W is a Lie subalgebra of E commensurable with W◦; see Theorem 2.10.

From the point of view of applications in the theory of classical integrable systems as
well as from the purely algebraic point of view, the most interesting and rich case is when

K = ˜̃G is an affine Kac–Moody algebra. Then the center Z of the Lie algebra ˜̃G is one-

dimensional. Let G = G̃/Z be the “reduced” affine Lie algebra, where G̃ =
[ ˜̃G, ˜̃G]. It

follows from the explicit formulae for δ◦ that one gets an induced Lie bialgebra cobracket

G
δ◦−! G⊗G. An inconspicuous but decisive advantage to pass from K to G is due to the

fact that for any n ∈ N, the n-fold tensor product G⊗n does not have non-zero ad-invariant
elements; see Proposition 3.4. As a consequence, t ∈ ∧2(G) defines a twisted Lie bialgebra

cobracket G
δt−! G⊗G if and only if it satisfies the twist equation(

alt
(
(δ◦ ⊗ 1)(t)

)
− [t12, t13]− [t12, t23]− [t13, t23] = 0

introduced in [35], which is an incarnation of the classical Yang–Baxter equation[
r12(x1, x2), r23(x2, x3)

]
+
[
r12(x1, x2), r13(x1, x3)

]
+
[
r13(x1, x3), r23(x2, x3)

]
= 0.

To see the latter statement, recall that the “reduced” affine Lie algebra G is isomorphic
to a twisted loop algebra L = L(g, σ), where g is a finite dimensional simple Lie algebra
and σ is an automorphism of its Dynkin diagram [18, 31].

Let us for simplicity assume that the affine Cartan matrix A corresponds to an extended
Dynkin diagram. In this case, the automorphism σ is trivial and L = g

[
z, z−1

]
is the usual

loop algebra. We have a non-degenerate invariant bilinear form

L×L
B
−! C, B(azk, bzl) = κ(a, b)δk+l,0,

where κ denotes the Killing form of g. A theorem due to Gabber and Kac asserts that

there exists an isomorphism of Lie algebras G
∼=−! L identifying both non-degenerate
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invariant bilinear forms on G and L up to a rescaling; see [31, Theorem 8.5]. We show
(see Corollary 6.6) that under this identification, the standard Lie bialgebra cobracket δ◦
on L is given by the formula

L
δ◦−! ∧2(L), f(z) 7!

[
f(x)⊗ 1 + 1⊗ f(y), r◦(x, y)

]
,

where r◦(x, y) =
1

2

(x+ y

x− y
γ +

∑
α
e−α ∧ eα

)
is the “standard” solution of CYBE. As a

consequence, twists of the standard Lie bialgebra cobracket L
δ◦−! ∧2(L) have the form

L
δt−! ∧2(L), f(z) 7!

[
f(x)⊗ 1 + 1⊗ f(y), rt(x, y)

]
,

where t(x, y) ∈ (g⊗ g)
[
x, x−1, y, y−1

]
is such that rt(x, y) = r◦(x, y)+t(x, y) is a solution

of CYBE; see Theorem 6.9. It turns out that any such solution of CYBE is equivalent
(with respect to the equivalence relation given by (38) and (39)) to a trigonometric solution
of CYBE with one spectral parameter (41); see Proposition 6.11. Trigonometric solutions
of CYBE were completely classified by Belavin and Drinfeld [6]. However, our work is
completely independent of that classification and in particular provides an alternative
approach to the theory of trigonometric solutions of CYBE.

The latter point is explained by the algebro-geometric perspective on Lie bialgebra
structures on twisted loop algebras. To proceed to this, we first show that twists t ∈ ∧2(L)

of the standard Lie bialgebra cobracket L
δ◦−! ∧2(L) are in bijection with Manin triples

D = C u W, W �W◦,

where D = L+×L− = L×L‡ and C =
{

(f, f ‡) | f ∈ L
}

; see Theorem 4.1. If L =

L(g, σ) ⊆ g
[
z+, z

−1
+

]
then L‡ := L

(
g, σ−1

)
⊆ g

[
z−, z

−1
−
]

and
(
azk+)‡ = az−k− . The key

statement is that W is stable under multiplications by the elements of the algebra

C[t+, t−]/(t+t−) ∼=
{

(f+, f−) ∈ C
[
t+]× C[t−] | f+(0) = f−(0)

}
,

where t± = zm± and m is the order of the automorphism σ; see Lemma 4.3. Its proof uses
the fact that any bounded coisotropic Lie subalgebra of L is stable under the multiplication
by the elements of C[t]; see Theorem 3.11. In its turn, the proof of Theorem 3.11 is based on
properties of affine root systems as well as on the result of Kac and Wang [32, Proposition
2.8].

The crux of our work is that Manin triples D = C u W, W �W◦ are of algebro-geometric
nature. Projecting the Lie algebra W to each factor L± of D, we get a pair of Lie
algebras W± ⊂ L±, which can be glued to a Lie algebra bundle B on the projective line
P1, whose generic fibers are isomorphic to the Lie algebra g; see Proposition 6.3. Let

w = W /(t+, t−)W, w± = W± /t±W and w
θ
↪! w+×w− be the canonical embedding.

Using the theory of torsion free sheaves on singular projective curves developed in [9, 11],
we attach to the datum (B,w, θ) a sheaf of Lie algebras A on a plane nodal cubic curve

E = V (u2 − v3 − v2) ⊂ P2; see Proposition 6.4. This sheaf has the following properties.

• A
∣∣
p
∼= g for all p ∈ Ĕ, where Ĕ is the smooth part of E.

• A has vanishing cohomology: H0(E,A) = 0 = H1(E,A).
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• As is a Lagrangian Lie subalgebra of the rational hull of A (which is a simple Lie
algebra over the field of rational functions of E), where s is the unique singular
point of E.

The constructed geometric datum (E,A) fits precisely into the framework of the algebro-
geometric theory of solutions of CYBE developed by Burban and Galinat [14, Theorem
4.3]. In that work, the authors constructed a canonical section (called geometric r-matrix)

ρ ∈ Γ
(
Ĕ × Ĕ \ Σ,A�A), where Σ ⊂ Ĕ × Ĕ is the diagonal,

which satisfies a sheaf-theoretic version of the classical Yang–Baxter equation:[
ρ12, ρ13

]
+
[
ρ13, ρ23

]
+
[
ρ12, ρ23

]
= 0 and ρ(p1, p2) = −ρ21(p2, p1) for p1, p2 ∈ Ĕ.

In [14, Proposition 4.12] it was shown that Γ(Ĕ,A) is a Lie bialgebra: the linear map

Γ(Ĕ,A)
δρ
−! Γ(Ĕ,A)⊗ Γ(Ĕ,A), f(t) 7!

[
f(u)⊗ 1 + 1⊗ f(v), ρ(u, v)

]
is a skew-symmetric one-cocycle satisfying the co-Jacobi identity. It follows from the
construction of (E,A) that Γ(Ĕ,OE) ∼= C

[
t, t−1

]
and Γ(Ĕ,A) ∼= L. In Theorem 6.9

we show that Lie bialgebras
(
Γ(Ĕ,A), δρ

)
and (L, δt) are isomorphic. This statement

also allows to identify the trivialized geometric r-matrix ρ with the solution rt(x, y) =
r◦(x, y) + t(x, y) of CYBE. The latter fact in particular means that any trigonometric
solution of CYBE arises from an appropriate geometric datum (E,A), concluding the
geometrization programme started in [14].

In Section 7, we deal with concrete examples. In Theorem 7.7, we describe Manin triples

g((z+))× g((z−)) = g
[
z, z−1

]
u Ŵ,

corresponding to quasi-constant trigonometric solutions of CYBE. In Theorem 7.1, we

describe the corresponding Lagrangian subalgebras Ŵ for a special class of (quasi)-trigono-
metric solutions of CYBE for g = sln(C), which were obtained in [15, Theorem A].

8.2. Infinite dimensional Lie bialgebras. As usual, let g be a finite dimensional simple
complex Lie algebra and r(x, y) be a solution of the classical Yang–Baxter equation (36).
There are several essentially different possibilities to attach to r(x, y) a Lie bialgebra.

1. There is a “universal procedure”, applicable for all three types of solutions of (41):
elliptic, trigonometric and rational. As was explained in Subsection 5.1, any solution of
(47) defines a Manin triple of the form g((z)) = gJzKuW and the linear map

W
δr−!W⊗W, w(z) 7!

[
w(x)⊗ 1 + 1⊗ w(y), r(x, y)

]
is a Lie bialgebra cobracket on W. For elliptic solutions, such Manin triples appeared for
the first time in [44]. A description of the corresponding Lie algebras W via generators
and relations was given in [29, 46].

2. Let %(z) be a trigonometric solution of CYBE with the lattice of poles 2πiZ. Then
there exists σ ∈ AutC(g) such that

%(z + 2πi) =
(
σ ⊗ 1g

)
%(z) =

(
1g ⊗ σ−1

)
%(z).

Moreover, there exists m ∈ N such that σm = 1g; see [6, Theorem 6.1]. It turns out that
(after an appropriate change of coordinates) % defines a Lie bialgebra cobracket on the
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twisted loop algebra L = L(g, σ), which is a twist of the standard Lie bialgebra structure
on L. In this paper we prove that such twists are classified by Manin triples of the form

L×L‡ = CuW, W �W◦,

where C =
{

(f, f ‡)
∣∣ f ∈ L

} ∼= L and W◦ is the Lie algebra corresponding to the standard
Lie bialgebra cobracket on L. From this perspective, the theory of trigonometric solutions
of CYBE appears in a parallel way to the theory of of solutions of cCYBE. Methods
developed in this work should be applicable to study analogues of trigonometric solutions
of CYBE for simple Lie algebras defined over arbitrary fields.

3. Lie bialgebra structures on the Lie algebra gJzK were studied in [40]. For any

(111) r(x, y) ∈

0,
1

2

(x+ y

x− y
γ +

∑
α∈Φ+

e−α ∧ eα
)
,

1

x− y
γ,

xy

x− y
γ


we have the corresponding Lie bialgebra cobrackets gJzK δr−! gJxK⊗gJyK. It turns out that

for any other Lie bialgebra cobracket gJzK δ
−! gJxK ⊗ gJyK, the corresponding Drinfeld

double D
(
gJzK, δ

)
is isomorphic to D

(
gJzK, δr

)
for some r(x, y) from the list (111); see [40,

Theorem 2.10].

4. Let r(x, y) = rst(x, y) + p(x, y) be a solution of CYBE, where p(x, y) ∈ (g⊗ g)[x, y] and

rst(x, y) =


γ

x− y
rational case

y

x− y
γ quasi-trigonometric case

xy

x− y
γ quasi-rational case.

For any such r(x, y) we have a Lie bialgebra cobracket g[z]
δr−! g[x] ⊗ g[y]. Such Lie

bialgebra structures of g[z] are controlled by Manin triples of different shapes (depending
on rst(x, y)). According to [48], rational solutions of (36) are parametrized by Manin
triples of the form

g((z−1)) = g[z]uW, W � z−1 gJz−1K.

The theory of Manin triples for quasi-trigonometric and quasi-rational solutions od CYBE
is given in [36] and [50], respectively. It turns out that any quasi-trigonometric solution
is equivalent (with respect to the transformation rules (38) and (39)) to a trigonometric
solution of (41); see [36]. Therefore, quasi-trigonometric solutions of CYBE can be used
to define Lie bialgebra cobrackets both on g[z] and g

[
z, z−1

]
.

5. A relation between trigonometric and quasi-trigonometric solutions was also explored in
[1, Section 4.2 and Section 4.3]. In particular, let g = sln(C) and %(z) be a trigonometric
solution of (41) such that the corresponding monodromy automorphism σ ∈ AutC(g)
induces the trivial automorphism of the Dynkin diagram of g. Then %(z) is equivalent to
a quasi-trigonometric solution; see [1, Lemma 4.10 and Remark 4.11].
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8.3. Twists of the standard Lie bialgebra structure on a twisted loop algebra.
Let g be a finite dimensional simple complex Lie algebra, σ ∈ AutC(g) be an automorphism
of finite order m and L = L(g, σ) be the corresponding twisted loop algebra. In [1] it is
shown that results of this work (in particular, Proposition 6.11 and Theorem 6.9) can be
used to extend the Belavin–Drinfeld classification of trigonometric solutions of CYBE to

a classification of twists of the standard Lie bialgebra cobracket L
δ◦−! ∧2(L). The key

observation is thereby that for two classical twists t, t′ ∈ ∧2(L) of δ◦ the Lie bialgebras
(L, δt) and (L, δt′) are isomorphic via some R–linear automorphism of L if and only if

there exists a holomorphic germ (C, 0)
φ
−! AutC(g) such that

(112) rt′
(

exp
( u
m

)
, exp

( v
m

))
= (φ(u)⊗ φ(v))rt

(
exp

( u
m

)
, exp

( v
m

))
;

see [1, Theorem 3.7 and Theorem 5.8]. A proof of this statement uses the algebro-geometric
theory of the CYBE developed in Section 5 and Theorem 6.9. In particular, as an inter-
mediate step it is shown that the sheaves of Lie algebras At and At′ from Theorem 6.9
are isomorphic in this case.

In the setting of Remark 6.7 (i.e. when σ is a Coxeter automorphism of a diagram au-
tomorphism of g) this fact already yields the desired classification of classical twists of
δ◦. Combining Proposition 6.11 with the classification of trigonometric solutions of (41)
presented in Section 6.4 it follows that rt is equivalent to rQ given by formula (92) for an
appropriate Belavin–Drinfeld quadruple Q. It follows that (L, δt) is isomorphic to (L, δQ),
where δQ = δ◦ + ∂tQ and tQ is given by (91).

For an arbitrary automorphism σ this classification needs a slight adjustment; see [1,
Lemma 3.2] as well as [6, Lemma 6.22]. We keep the notation of Subsection 3.2. In this
setting, a Belavin–Drinfeld quadruple Q =

(
(Γ1,Γ2, τ), s

)
consists of (possibly empty)

proper subsets Γ1,Γ2 of the set Π ⊂ h∗×N0 of simple roots of (L, h), a bijection Γ1
τ
−! Γ2

and a tensor s ∈ ∧2(h) satisfying the following conditions:

• κ
(
τ(α), τ(α′)

)
= κ(α, α′) for all (α, k), (α′, k′) ∈ Γ1;

• for any (α, k) ∈ Γ1 there exists l ∈ N such that (α, k), . . . , τ l−1(α, k) ∈ Γ1 but
τ l(α, k) /∈ Γ1;

•
(
β ⊗ 1+ 1⊗ α

)(
s +

γ0

2

)
= 0 for all (α, k) ∈ Γ1, where τ(α, k) = (β, t).

For i ∈ {1, 2} consider Lie algebras s±i := 〈〈x±j
∣∣ j ∈ Γi〉〉 ⊂ L and si := 〈〈x+

j , x
−
j

∣∣ j ∈ Γi〉〉 ⊂
L, where x±j ∈ L(±αj ,±sj) = g±αj z

±sj are Chevalley generators of L corresponding to

(±αj ,±sj) ∈ Π±. Since Γi is a proper subset of Π, the Lie algebra si is finite dimensional

and semisimple. It is clear that τ induces an isomorphism s1
τ̃
−! s2 given by the formula

x±j 7−! x±τ(j) for all j ∈ Γ1 (where we identify Π with
{

0, 1, . . . , r
}

). We have: τ̃(s±1 ) = s±2 .

It is clear that there exists a finite subset Φi ⊂ Φ \ {(0, 0)} and a Lie subalgebra hi ⊂ h
such that si = hi⊕ ⊕(α,k)∈Φi L(α,k) and s±i = ⊕(α,k)∈Φ±i

L(α,k), where Φ±i = Φi ∩ Φ±. Let

ϑ be the nilpotent C-linear endomorphism of L given as the composition

L
π
−!! s+

1
τ̃
−! s+

2

ı
↪−! L,
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where π and ı are the canonical projection and embedding with respect to the direct sum

decomposition L = ⊕(α,k)∈Φ L(α,k). We put: ψ =
ϑ

1− ϑ
=
∞∑
l=1

ϑl ∈ EndC(L). Finally, let

us choose a family
(
b(α,k) ∈ L(α,k)

)
(α,k)∈Φ1

such that B
(
b(α,k), b(β,t)

)
= δα+β,0 δk+t,0 for all

(α, k), (β, t) ∈ Φ1. The following statement is one of main results of [1].

Theorem. Let Q =
(
(Γ1,Γ2, τ), s

)
be a Belavin–Drinfeld quadruple and

tQ = s +
∑

(α,k)∈Φ+
1

b(−α,−k) ∧ ψ(b(α,k) ∈ ∧2(L).

Then δQ = δ◦ + ∂tQ is a twist of the standard Lie bialgebra cobracket L
δ◦−! ∧2(L).

Conversely, let t ∈ ∧2(L) be such L
δt−! ∧2(L) is a Lie bialgebra cobracket. Then there

exists a Belavin–Drinfeld quadruple Q and an R-linear automorphism of L giving an
isomorphism of Lie bialgebras (L, δt) and (L, δQ).

Note that

rQ(x, y) =

(
γ0

0

2
+ γ−0

)
+

ym

xm − ym
m−1∑
k=0

(
x

y

)k
γk + s +

∑
(α,k)∈Φ+

1

b(−α,−k) ∧ ψ(b(α,k).

is a solution of CYBE. In [1] these solutions are called σ-trigonometric.
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