## MORITA THEORY FOR NON-COMMUTATIVE NOETHERIAN SCHEMES

### IGOR BURBAN AND YURIY DROZD

ABSTRACT. In this paper, we study equivalences between the categories of quasi-coherent sheaves on non-commutative noetherian schemes. In particular, give a new proof of Caldararu's conjecture about Morita equivalences of Azumaya algebras on noetherian schemes. Moreover, we derive necessary and sufficient condition for two reduced non-commutative curves to be Morita equivalent.

#### 1. INTRODUCTION

A classical results of Gabriel (see [14, Section VI.3]) states that the categories of quasicoherent sheaves QCoh(X) and QCoh(Y) of two separated noetherian schemes X and Y are equivalent if and only if X and Y are isomorphic. To prove this result (and in particular to show how the scheme X can be reconstructed from the category QCoh(X)), Gabriel used the full power of methods of homological algebra, developed in his thesis [14].

In this work, we deal with similar types of questions for the so-called non-commutative noetherian schemes. By definition, these are ringed spaces  $\mathbb{X} = (X, \mathcal{A})$ , where X is a separated noetherian scheme and  $\mathcal{A}$  is a sheaf of  $\mathcal{O}_X$ -algebras, which is coherent viewed as an  $\mathcal{O}_X$ -module. A basic question arising in this context is to establish when the categories of quasi-coherent sheaves  $\mathsf{QCoh}(\mathbb{X})$  and  $\mathsf{QCoh}(\mathbb{Y})$  on two such non-commutative noetherian schemes  $\mathbb{X}$  and  $\mathbb{Y}$  are equivalent.

We show first that from the categorical perspective, X and Y can without loss of generality assumed to be central; see Subsection 2.4 for details. Following Gabriel's approach [14], based on a detailed study of indecomposable injective objects of QCoh(X), we prove that the central scheme X can be recovered from the category QCoh(X); see Theorem 4.4. Using this reconstruction result, we prove Morita theorem in the setting of central noncommutative noetherian schemes; see Theorem 4.6 and the discussion afterwards.

As a first application of this result, we get a new proof of Caldararu's conjecture about Azumaya algebras on noetherian schemes; see [9, Conjecture 1.3.17]. Namely, we show that if  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$  are two non-commutative noetherian schemes, such that  $\mathcal{A}$  and  $\mathcal{B}$  are Azumaya algebras on X and Y respectively, then  $\mathsf{QCoh}(\mathbb{X})$  and  $\mathsf{QCoh}(\mathbb{Y})$ are equivalent if and only if there exists an isomorphism  $Y \xrightarrow{f} X$  such that  $f^*([\mathcal{A}]) =$  $[\mathcal{B}] \in \mathsf{Br}(\mathsf{Y})$ , where  $\mathsf{Br}(\mathsf{Y})$  is the Brauer group of the scheme Y. This result was already proven by Antieau [1] (see also [31] and [10]) by much more complicated methods. Our main motivation to develop Morita theory in the setting of non-commutative algebraic geometry comes from the study of reduced non-commutative curves. By definition, these are central non-commutative noetherian schemes  $\mathbb{X} = (X, \mathcal{A})$ , for which X is a reduced excellent noetherian scheme of pure dimension one and  $\mathcal{A}$  is a sheaf of  $\mathcal{O}_X$ -orders. Our goal was to derive a handleable criterion to describe the Morita equivalence class of  $\mathbb{X}$ .

From the historical perspective, the so-called projective hereditary non-commutative curves, i.e. those  $\mathbb{X} = (X, \mathcal{A})$ , for which X is a projective curve over some field k and  $\mathcal{A}$  is a sheaf of hereditary orders, were originally of major interest. For  $\mathbb{X} = \mathbb{P}^1$ , they appeared (in a different form) in the seminal work of Geigle and Lenzing [15] on weighted projective lines. Tilting theory on these curves had a significant impact on the development of the representation theory of finite dimensional k-algebras. For an algebraically closed field k, projective hereditary non-commutative curves play a central role in the classification of abelian noetherian k-linear Ext-finite hereditary categories with Serre duality due to Reiten and van den Bergh [35] (see also [26, 21] for the case of arbitrary fields). In the case of a finite field k, such non-commutative curves appeared as a key technical tool in the work of Laumon, Rapoport and Stuhler [24] in the framework of the Langlands programme. The question of a classification of non-commutative hereditary curves up to Morita equivalence was clarified by Spieß in [33]. Namely, the Morita equivalence class of such a curve X (however, not X itself, viewed as a ringed space!) is determined by a central simple algebra  $\Lambda_{\mathbb{X}}$  (which is an analogue of the function field of a commutative curve) and the types of non-regular points of X; see Corollary 7.9 for details.

However, the case of non-hereditary orders happened to be more tricky. It turns out that even the central curve X, the class of the algebra  $\Lambda_X$  in the Brauer group of the function field of X and the isomorphism classes of non-regular points of X are not sufficient to recover X (up to Morita equivalence); see Example 7.12. In Theorem 7.8, we give necessary and sufficient conditions for two reduced non-commutative curves to be Morita equivalent.

Non-hereditary reduced non-commutative projective curves naturally arise as categorical resolutions of singularities of usual singular reduced commutative curves; see [7]. From the point of view of representation theory of finite dimensional k-algebras, the so-called tame non-commutative projective nodal curves seem to be of particular importance; see [5, 6]. Special classes of such curves appeared in the framework of the homological mirror symmetry (in a different language and under the name stacky chains/cycles of projective lines) in a work of Lekili and Polishchuk [25] as holomorphic mirrors of compact oriented surfaces with non-empty boundary; see also [6]. Getting a precise description of Morita equivalence classes of tame non-commutative nodal curves was another motivation to carry out this work.

Acknowledgement. The work of the first-named author was partially supported by the DFG project Bu-1866/4-1. The results of this paper were mainly obtained during the stay of the second-named author at the University of Paderborn in September 2018 and September 2019.

#### 2. Classical Morita theory and the categorical center

2.1. Notation for module theory and reminder of the classical Morita theorem. For any ring A, we denote by  $A^{\circ}$  the opposite ring, by Z(A) the center of A and by A - Mod (respectively, Mod - A) the category of all left (respectively, right) A-modules.

For a commutative ring R, an R-algebra is a pair (A, i), where A is a ring and  $R \xrightarrow{i} A$ an injective homomorphism such that  $i(R) \subseteq Z(A)$ . If A is a finitely generated Rmodule then one says that A is a *finite* R-algebra. Next, (A, i) is a *central* R-algebra if i(R) = Z(A). Usually, R will be viewed as a subset of A; in this case, the canonical inclusion map i will be suppressed from the notation. We denote by  $A^e := A \otimes_R A^\circ$ the enveloping R-algebra of A and identify the category of (A - A)-bimodules with the category  $A^e$  – Mod. The following result is well-known:

**Lemma 2.1.** If A is an R-algebra, then the canonical map  $Z(A) \longrightarrow \text{End}_{A^e}(A)$  is an isomorphism. Hence, if R is noetherian and A is a finite R-algebra, then

- for any multiplicative subset  $\Sigma \subset R$  we have:  $\Sigma^{-1}(Z(A)) \cong Z(\Sigma^{-1}A)$ ;
- for any  $\mathfrak{m} \in \mathsf{Max}(R)$  we have:  $\widehat{Z(A)}_{\mathfrak{m}} \cong Z(\widehat{A}_{\mathfrak{m}})$ .

Let A, B be any rings and  $P = {}_{B}P_{A}$  be a (B - A)-bimodule. Recall that P is called *balanced*, if both structure maps

$$B \xrightarrow{\lambda^P} \mathsf{End}_A(P_A), b \mapsto \lambda_b^P \text{ and } A^\circ \xrightarrow{\rho^P} \mathsf{End}_B(BP), a \mapsto \rho_a^P$$

are ring isomorphisms, where  $\lambda_b^P(x) = bx$  and  $\rho_a^P(x) = xa$  for any  $x \in P$ ,  $a \in A$ ,  $b \in B$ . For an additive category  $\mathsf{C}$  and  $X \in \mathsf{Ob}(\mathsf{C})$ , we denote by  $\mathsf{add}(X)$  the full subcategory of  $\mathsf{C}$ , whose objects are direct summands of finite coproducts of X.

Let A be any ring and P be a finitely generated right A-module. Then P is a progenerator of Mod -A (or just right A-progenerator) if  $\operatorname{add}(P) = \operatorname{add}(A)$ . In this case, for any  $M \in$ Mod -A there exists a set I and an epimorphism  $P^{\oplus(I)} \longrightarrow M$ . Other characterizations of right progenerators can be for instance found in [22, Section 18B].

Note that for any (B - A)-bimodules  ${}_{B}P_{A}$  and  ${}_{B}Q_{A}$ , the canonical map

(1) 
$$\operatorname{Hom}_{B-A}({}_{B}P_{A}, {}_{B}Q_{A}) \longrightarrow \operatorname{Hom}({}_{B}P_{A} \otimes_{A} -, {}_{B}Q_{A} \otimes_{A} -)$$

is an isomorphism, where Hom in the right hand side of (1) denotes the abelian group of natural transformations between the corresponding additive functors.

**Theorem 2.2** (Morita theorem for rings). Let A, B be any rings and

$$A - \mathsf{Mod} \xrightarrow{\Phi} B - \mathsf{Mod}$$

be an equivalence of categories. Then we have:  $\Phi \cong {}_{B}P_{A} \otimes_{A} -$ , where P is a balanced (B - A)-bimodule, which is a right progenerator of A (in what follows, such bimodule will be called (B - A)-Morita bimodule). Moreover, if  ${}_{B}Q_{A}$  is another (B - A)-Morita bimodule representing  $\Phi$  then P and Q are canonically isomorphic as bimodules.

A proof of this standard result can be for instance found in [22, Chapter 18].

The goal of this work is to generalize Theorem 2.2 to various settings of non–commutative noetherian schemes.

## 2.2. Non-commutative noetherian schemes.

**Definition 2.3.** A non-commutative noetherian scheme (abbreviated as *ncns*) is a ringed space  $\mathbb{X} = (X, \mathcal{A})$ , where X is a commutative *separated noetherian* scheme and  $\mathcal{A}$  is a sheaf of  $\mathcal{O}$ -algebras *coherent* as  $\mathcal{O}$ -module (here,  $\mathcal{O} = \mathcal{O}_X$  denotes the structure sheaf of X). We say that  $\mathbb{X}$  is *central* if  $O_x = Z(A_x)$  for any  $x \in X$ , where  $O_x$  (respectively,  $A_x$ ) is the stalk of  $\mathcal{O}$  (respectively,  $\mathcal{A}$ ) at the point x.

For a ncns X, we shall denote by  $\mathsf{QCoh}(X)$  the category of quasi-coherent sheaves on X, i.e. the category of sheaves of left  $\mathcal{A}$ -modules which are quasi-coherent as sheaves of  $\mathcal{O}$ -modules. For an open subset  $U \subseteq X$  and  $\mathcal{F} \in \mathsf{QCoh}(X)$ , we shall use both notations  $\Gamma(U, \mathcal{F})$  and  $\mathcal{F}(U)$  for the corresponding group of local sections and write  $O(U) = \mathcal{O}(U)$  and  $A(U) = \mathcal{A}(U)$ . Note that A(U) is a finite O(U)-algebra. Moreover, for any pair of open affine subsets  $V \subseteq U \subseteq X$ , the canonical map  $O(V) \otimes_{O(U)} A(U) \to A(V)$  is an isomorphism of O(V)-algebras. Similarly, for any  $\mathcal{F} \in \mathsf{QCoh}(X)$ , the canonical map

(2) 
$$O(V) \otimes_{O(U)} \Gamma(U, \mathcal{F}) \longrightarrow \Gamma(V, \mathcal{F})$$

is an isomorphism of A(V)-modules.

For any open subset  $U \subseteq X$ , we get a new  $\mathbb{U} := (U, \mathcal{A}|_U)$ . Since X is assumed to be noetherian, it admits a *finite* open covering  $X = U_1 \cup \cdots \cup U_n$ , where  $U_i = \operatorname{Spec}(R_i)$ for some noetherian ring  $R_i$ . For any  $1 \leq i \leq n$ , let  $A_i := A(U_i)$ . As in [14, Chapitre VI], one can easily show that  $\operatorname{QCoh}(\mathbb{X})$  is equivalent to an iterated *Gabriel's recollement* of the abelian categories  $A_1 - \operatorname{Mod}, \ldots, A_n - \operatorname{Mod}$  (see also Definition 2.8 below). Since  $\mathcal{A}$  is a coherent  $\mathcal{O}$ -module, all rings  $A_1, \ldots, A_n$  are noetherian. As in [14, Chapitre VI, Théorème 1], one concludes that  $\operatorname{QCoh}(\mathbb{X})$  is a *locally noetherian* abelian category, whose subcategory of *noetherian objects* is the category  $\operatorname{Coh}(\mathbb{X})$  of coherent sheaves on  $\mathbb{X}$ ; see [14, Section II.4] for the corresponding definitions.

Let  $\mathbb{X}$  and  $\mathbb{Y}$  be two nons and  $\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\Phi} \mathsf{QCoh}(\mathbb{Y})$  be an equivalence of categories. It is clear that  $\Phi$  restricts to an equivalence  $\mathsf{Coh}(\mathbb{X}) \xrightarrow{\Phi_{|}} \mathsf{Coh}(\mathbb{Y})$  between the corresponding subcategories of noetherian objects. However, [14, Section II.4, Théorème 1] asserts that conversely, any equivalence  $\mathsf{Coh}(\mathbb{X}) \to \mathsf{Coh}(\mathbb{Y})$  admits a unique (up to an isomorphism of functors) extension to an equivalence  $\mathsf{QCoh}(\mathbb{X}) \to \mathsf{QCoh}(\mathbb{Y})$  (in [14], this result is attributed to Grothendieck and Serre). Hence, even being primarily interested in the study of the category  $\mathsf{Coh}(\mathbb{X})$ , it is technically more advantageous to work with a larger category  $\mathsf{QCoh}(\mathbb{X})$ . One of the main reasons for this is a good behavior of the set  $\mathsf{Sp}(\mathbb{X})$  of the isomorphism classes of indecomposable injective objects of  $\mathsf{QCoh}(\mathbb{X})$  (see [14, Section IV.2]), for which it is crucial that  $\mathsf{QCoh}(\mathbb{X})$  is locally noetherian. Note that if we assume X to be just *locally noetherian* then even the category QCoh(X) need not be locally noetherian in general; see [20, Section II.7]. Hence, dropping the assumption for a nens X to be noetherian would lead to significant technical complications.

## 2.3. Reminder on the categorical center of an additive category.

**Definition 2.4.** The *categorical center* Z(A) of an additive category A is the set of endomorphisms of the identity functor  $Id_A$ , i.e.

$$Z(\mathsf{A}) := \left\{ \eta = \left( \left( X \xrightarrow{\eta_X} X \right)_{X \in \mathsf{Ob}(\mathsf{A})} \right) \middle| \begin{array}{c} X \xrightarrow{\eta_X} X \\ f \middle| \qquad \qquad \downarrow f \\ X' \xrightarrow{\eta_{X'}} X' \end{array} \text{ is commutative for all } X \xrightarrow{f} X' \right\}.$$

It is easy to see that Z(A) is a commutative ring.

It is well-known (see e.g. [3, Proposition II.2.1]) that for any ring A, the map

(3) 
$$Z(A) \xrightarrow{v} Z(A), \ r \mapsto (\lambda_r^M)_{M \in \mathsf{Ob}(A)}$$

is a ring isomorphism, where A = A - Mod.

The following result must be well-known. Its proof reduces to lengthy but completely straightforward verifications and is therefore left to an interested reader.

**Proposition 2.5.** Let A and B be additive categories,  $\eta \in Z(A)$  and  $A \xrightarrow{\Phi} B$  be an additive functor satisfying the following conditions:

- $\Phi$  is essentially surjective.
- For any  $X_1, X_2 \in \mathsf{Ob}(\mathsf{A})$  and  $g \in \mathsf{Hom}_{\mathsf{B}}(\Phi(X_1), \Phi(X_2))$ , there exist  $X \in \mathsf{Ob}(\mathsf{A})$ and morphisms  $X_1 \xleftarrow{t} X \xrightarrow{f} X_2$  in  $\mathsf{A}$  such that  $\Phi(t)$  is an isomorphism and  $g = \Phi(f) \cdot (\Phi(t))^{-1}$ .

For any  $Y \in Ob(B)$  choose a pair  $(X_Y, \xi_Y)$ , where  $X_Y \in Ob(A)$  and  $\Phi(X_Y) \xrightarrow{\xi_Y} Y$  is an isomorphism. Then the following statements are true.

• The unique endomorphism  $\vartheta_Y \in \mathsf{End}_{\mathsf{B}}(Y)$ , which makes the diagram

$$\begin{array}{ccc}
\Phi(X_Y) \xrightarrow{\xi_Y} Y \\
\Phi(\eta_{X_Y}) \middle| & & & \downarrow \vartheta_Y \\
\Phi(X_Y) \xrightarrow{\xi_Y} Y
\end{array}$$

commutative, does not depend on the choice of the pair  $(X_Y, \xi_Y)$ .

• Let  $\vartheta = (\vartheta_Y)_{Y \in Ob(B)}$ , then we have:  $\vartheta \in Z(B)$  (in other words, for any  $\eta \in Z(A)$ , the family of endomorphisms  $(\Phi(\eta_X))_{X \in Ob(A)}$  in the category B can be uniquely extended to an element  $\vartheta \in Z(B)$ ). Moreover, the map  $Z(A) \xrightarrow{\Phi_c} Z(B)$ ,  $\eta \mapsto \vartheta$  is a ring homomorphism.

• Let  $A \xrightarrow{\Psi} B$  be a functor such that  $\Phi \cong \Psi$ . Then the induced maps of the corresponding categorical centers are equal:  $\Phi_c = \Psi_c$ . Finally, if  $A_1, A_2, A_3$  are additive categories and  $A_1 \xrightarrow{\Phi_1} A_2 \xrightarrow{\Phi_2} A_3$  additive functors, satisfying the conditions of this proposition then we have:  $(\Phi_2 \Phi_1)_c = (\Phi_2)_c (\Phi_1)_c$ .

From the point of view of applications in this paper, the following two classes of functors satisfying the conditions of Proposition 2.5 are of major interest:

- Equivalences of additive categories.
- Serre quotient functors  $A \rightarrow A/C$ , where C is a Serre subcategory of an abelian category A; see for instance [32, Section 4.3].

**Lemma 2.6.** Let A, B be any rings and P be a (B - A)-Morita bimodule. Then there exists a unique isomorphism of centers  $Z(A) \xrightarrow{\varphi} Z(B)$  making the diagram

(4) 
$$\begin{array}{c} \mathsf{End}_{A}(P) \prec^{\lambda^{P}} & B \\ \rho^{P} & & \uparrow \\ Z(A) \xrightarrow{\varphi} & Z(B) \end{array}$$

commutative. In other words, for any  $a \in Z(A)$  and  $x \in P$  we have:  $\varphi(a) \cdot x = x \cdot a$ . Moreover,  $\varphi = \Phi_c$ , where  $\Phi := P \otimes_A - : A - \mathsf{Mod} \longrightarrow B - \mathsf{Mod}$ .

Proof. Since P is a balanced (B - A)-bimodule, the map  $\lambda^P$  is bijective. This implies the uniqueness of  $\varphi$ . To show the existence, we prove that the induced map of centers  $Z(A) \xrightarrow{\Phi_c} Z(B)$  makes the diagram (4) commutative. Let  $a \in Z(A)$ ,  $b = \Phi_c(a)$  and  $\vartheta = \upsilon(b) \in Z(B - \text{Mod})$ , where  $\upsilon$  is the map from (3). Then we have:  $\vartheta_P = \lambda_b^P$ . Let  $P \otimes_A A \xrightarrow{\gamma} P$  be the canonical isomorphism, then the following diagram

$$\begin{array}{c|c} P \otimes_A A & \xrightarrow{\mathsf{id}_P \otimes \lambda_a^A} & P \otimes_A A \\ \gamma & & & & & & \\ \gamma & & & & & & \\ P & \xrightarrow{\lambda_b^P} & & & P \end{array}$$

is commutative (see Proposition 2.5), what implies the statement.

**Remark 2.7.** Let *A* and *B* be two rings, *P* be a (B-A)-Morita bimodule and  $\Phi = P \otimes_A -$  be the corresponding equivalence of categories. We may regard  $\Phi$  as a "virtual" ring homomorphism  $A \xrightarrow{\Phi} B$ . Then the commutativity of the diagram (4) can be rephrased by saying that the diagram

т

is "commutative". Assume additionally that A and B are central R-algebras. We call an equivalence  $\Phi = P \otimes_A - central$  if the induced map  $R \xrightarrow{\Phi_c} R$  is the identity. According to Lemma 2.6,  $\Phi$  is central if and only if for any r in R and  $x \in P$  we have:  $r \cdot x = x \cdot r$ .

**Definition 2.8.** Let A, B, D be abelian categories and  $A \xrightarrow{\Phi} D \xleftarrow{\Psi} B$  be exact functors. The *Gabriel's recollement*  $A_D^{\prod} B$  is the category, whose objects are triples

$$\left\{ (X, Y, f) \middle| \begin{array}{l} X \in \mathsf{Ob}(\mathsf{A}) \\ Y \in \mathsf{Ob}(\mathsf{B}) \end{array} \Phi(X) \xrightarrow{f} \Psi(Y) \text{ is an isomorphism in } \mathsf{D} \right\}$$

and a morphism  $(X, Y, f) \xrightarrow{(\alpha, \beta)} (X', Y', f')$  is given by morphisms  $X \xrightarrow{\alpha} X'$  and  $Y \xrightarrow{\beta} Y'$  such that  $\Psi(\beta)f = f'\Phi(\alpha)$  see [14, Section VI.1].

It is not difficult to check that the category  $C = A_D^{\prod} B$  is abelian. Assume additionally, that  $\Phi$  and  $\Psi$  are localization functors, i.e. that they induce equivalences of categories

$$\mathsf{A}/\mathsf{Ker}(\Phi) \overset{\overline{\Phi}}{\longrightarrow} \mathsf{D} \overset{\overline{\Psi}}{\longleftarrow} \mathsf{B}/\mathsf{Ker}(\Psi),$$

and admit right adjoint functors  $A \xleftarrow{\widetilde{\Phi}} D \xrightarrow{\widetilde{\Psi}} B$  (see [14, Section III.2]). Then we have a diagram of abelian categories and functors

where  $\Psi^{\dagger}(X, Y, f) = X$  and  $\Phi^{\dagger}(X, Y, f) = Y$ . Moreover,  $\Phi^{\dagger}$  and  $\Psi^{\dagger}$  are localization functors and  $\Phi\Psi^{\dagger} \cong \Psi\Phi^{\dagger}$ .

**Lemma 2.9.** In the above setting, let A, B, C, D be the centers of the categories A, B, Cand D, respectively. Then (6) induces a commutative diagram in the category of rings

c

which is moreover a pull-back diagram. In other words, we have:

$$C \cong A \times_D B := \{(a, b) \in A \times B \mid \Phi_c(a) = \Psi_c(b)\}$$

Comment to the proof. This statement is a consequence of Proposition 2.5.  $\Box$ We conclude this subsection with the following categorical version of the classical Skolem– Noether theorem. **Theorem 2.10.** Let  $\Bbbk$  be a field,  $\Lambda$  and  $\Gamma$  two semi-simple finite dimensional  $\Bbbk$ -algebras and  $\Lambda - \mathsf{Mod} \underbrace{\overset{\Phi}{\longrightarrow}}_{\Psi} \Gamma - \mathsf{Mod}$  two equivalences of categories such that  $\Phi_c = \Psi_c$ . Then we have:  $\Phi \cong \Psi$ .

*Proof.* Let  $K = Z(\Lambda)$ ,  $L = Z(\Gamma)$  and  $K \xrightarrow{\varphi} L$  be the common isomorphism of centers induced by the equivalences  $\Phi$  and  $\Psi$  (i.e.  $\Phi_c = \varphi = \Psi_c$ ). Next, let P and Q be  $(\Gamma - \Lambda)$ bimodules such that  $\Phi = P \otimes_{\Lambda} -$  and  $\Psi = Q \otimes_{\Lambda} -$ . Let  $\gamma = (\lambda_{\Gamma}^Q) \circ (\lambda_{\Gamma}^P)^{-1}$ . By Lemma 2.6, the following diagram of k-algebras and algebra homomorphisms

(8) 
$$\begin{array}{c} \Gamma \xrightarrow{\lambda_{\Gamma}^{P}} \operatorname{End}_{\Lambda}(P) \\ \downarrow \\ L \xleftarrow{\varphi} \\ \Gamma \xrightarrow{\varphi} \\ \Gamma \xrightarrow{\lambda_{\Gamma}^{Q}} \operatorname{End}_{\Lambda}(Q) \end{array}$$

is commutative. In particular, we have:  $\gamma \circ \varrho_K^P = \varrho_K^Q$ .

Since  $\Lambda$  is a semi-simple k-algebra, there exist simple algebras  $\Lambda_1, \ldots, \Lambda_t$  such that  $\Lambda \cong \Lambda_1 \times \cdots \times \Lambda_t$ . Moreover, for any  $1 \leq i \leq t$  there exists a finite dimensional skew field  $F_i$  over k such that  $\Lambda_i \cong \operatorname{Mat}_{m_i}(F_i)$  for some  $m_i \in \mathbb{N}$ . If  $K_i := Z(F_i)$  then we have:  $K \cong K_1 \times \cdots \times K_t$ . Let  $U_i$  be a finite dimensional simple right  $\Lambda_i$ -module (which is unique up to an isomorphism). Then we have:  $F_i \cong \operatorname{End}_{\Lambda_i}(U_i)$ . Moreover, we have direct sum decompositions  $P \cong U_1^{\oplus p_1} \oplus \cdots \oplus U_t^{\oplus p_t}$  and  $Q \cong U_1^{\oplus q_1} \oplus \cdots \oplus U_t^{\oplus q_t}$ . Then we get:

 $\operatorname{End}_{\Lambda}(P) \cong \operatorname{Mat}_{p_1}(F_1) \times \cdots \times \operatorname{Mat}_{p_t}(F_t) \quad \text{and} \quad \operatorname{End}_{\Lambda}(Q) \cong \operatorname{Mat}_{q_1}(F_1) \times \cdots \times \operatorname{Mat}_{q_t}(F_t).$ 

It follows from (8) that there exists an isomorphism of K-algebras (and not just of  $\Bbbk$ algebras)  $\mathsf{Mat}_{p_1}(F_1) \times \cdots \times \mathsf{Mat}_{p_t}(F_t) \longrightarrow \mathsf{Mat}_{q_1}(F_1) \times \cdots \times \mathsf{Mat}_{q_t}(F_t)$ , what implies that  $p_i = q_i$  for all  $1 \leq i \leq t$ . In particular, P and Q are isomorphic, at least as right  $\Lambda$ -modules. Let  $P \xrightarrow{h} Q$  be any isomorphism of right  $\Lambda$ -modules. Then the following diagram

$$\operatorname{End}_{\Lambda}(P) \xrightarrow{\operatorname{Ad}_{h}} \operatorname{End}_{\Lambda}(Q)$$

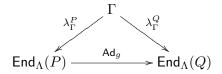
$$\rho_{K}^{P} \bigwedge_{K} \xrightarrow{\operatorname{id}} K$$

$$K \xrightarrow{\operatorname{id}} K$$

is commutative, i.e. the isomorphism  $\mathsf{Ad}_h$  is central. Indeed, for any  $f \in \mathsf{End}_{\Lambda}(P)$  we have:  $\mathsf{Ad}_h(f)h = hf$ . For any  $\lambda \in K$  consider the endomorphism  $\varrho_{\lambda}^P \in \mathsf{End}_{\Lambda}(P)$ . Since h is K-linear, we have:  $h\varrho_{\lambda}^P = \varrho_{\lambda}^Q h$ . Hence,  $\varrho_{\lambda}^Q = \mathsf{Ad}_h(\varrho_{\lambda}^P)$  for any  $\lambda \in K$ .

Consider the map  $\delta := \operatorname{Ad}_h \cdot \gamma^{-1} : \operatorname{End}_{\Lambda}(Q) \longrightarrow \operatorname{End}_{\Lambda}(Q)$ . From what was said above it follows that  $\delta$  is an isomorphism of K-algebras. Now we can finally apply the classical

Skolem–Noether theorem: there exists  $\bar{h} \in \operatorname{End}_{\Lambda}(Q)$  such that  $\delta = \operatorname{Ad}_{\bar{h}}$ . Consider the isomorphism of right  $\Lambda$ –modules  $g = \bar{h}^{-1}h : P \longrightarrow Q$ . Then we have:  $\gamma = \operatorname{Ad}_{\bar{h}}^{-1}\operatorname{Ad}_{h} = \operatorname{Ad}_{g}$ . It follows from commutativity of (8) that the diagram



is commutative, too. Hence,  $P \xrightarrow{g} Q$  is also  $\Gamma$ -linear. Summing up, g is an isomorphism of  $(\Gamma - \Lambda)$ -bimodules and  $\Phi \cong \Psi$ , as asserted.

2.4. Centralizing a non-commutative noetherian schemes. The goal of this subsection is to show, that any nons can be replaced by a Morita equivalent central nons.

**Proposition 2.11.** Let  $\mathbb{X} = (X, \mathcal{A})$  be a new. For all open subsets  $U \subseteq X$  we put:

(9) 
$$\Gamma(U, \mathcal{Z}_{\mathcal{A}}) := \left\{ \alpha \in \Gamma(U, \mathcal{A}) \mid \alpha \mid_{V} \in Z(\Gamma(V, \mathcal{A})) \text{ for all } V \subseteq U \text{ open} \right\}$$

Then  $\mathcal{Z} = \mathcal{Z}_{\mathcal{A}}$  is a coherent sheaf on X such that  $\mathcal{Z}_x \cong Z(A_x)$  for any  $x \in X$ . Moreover, the canonical map

(10) 
$$\Gamma(X, \mathcal{Z}) \xrightarrow{\mathcal{O}_{X}} Z(\mathsf{QCoh}(X))$$

is a ring isomorphism.

*Proof.* It is clear that  $\mathcal{Z}_{\mathcal{A}}$  is a presheaf of commutative rings, which is a sub-presheaf of  $\mathcal{A}$ . We have to check the sheaf property of  $\mathcal{Z}$ . Let  $U \subseteq X$  be any open subset,  $U = \bigcup_{i \in I} U_i$  an open covering and

$$(\alpha_i \in \Gamma(U_i, \mathcal{Z}))_{i \in I}$$
 be such that  $\alpha_k |_{U_k \cap U_l} = \alpha_l |_{U_k \cap U_l}$  for all  $k, l \in I$ .

Then there exists a unique section  $\alpha \in \Gamma(U, \mathcal{A})$  such that  $\alpha|_{U_i} = \alpha_i$  for all  $i \in I$ . We have to show that  $\alpha|_V \in Z(\Gamma(V, \mathcal{A}))$  for any open subset  $V \subseteq U$ . Consider any  $\beta \in \Gamma(V, \mathcal{A})$ . We have to prove that  $[\alpha|_V, \beta] = 0$ . Indeed, we have:  $V = \bigcup_{i \in I} V_i$ , where  $V_i = V \cap U_i$ . Since  $\alpha|_{V_i} = \alpha_i|_{V_i}$  and  $\alpha_i \in \Gamma(U_i, \mathcal{Z}_{\mathcal{A}})$ , we conclude that  $\alpha|_{V_i} \in Z(\Gamma(V_i, \mathcal{A}))$ . It implies that  $[\alpha|_V, \beta]|_{V_i} = 0$  for all  $i \in I$ . Hence,  $[\alpha|_V, \beta] = 0$ .

Let  $\alpha \in \Gamma(X, \mathbb{Z})$ . Then for any  $\mathcal{F} \in \mathsf{Ob}(\mathsf{QCoh}(\mathbb{X}))$ , we have an endomorphism  $\alpha_{\mathcal{F}} \in \mathsf{End}_{\mathbb{X}}(\mathcal{F})$  given for any open subset  $U \subseteq X$  by the rule

$$\Gamma(U,\mathcal{F}) \xrightarrow{\alpha_{\mathcal{F}}} \Gamma(U,\mathcal{F}), \ f \mapsto \alpha \big|_U \cdot \varphi.$$

It is clear that the collection of endomorphisms  $(\alpha_{\mathcal{F}})$  defines an element of  $Z(\mathsf{QCoh}(\mathbb{X}))$ , which we denote by  $v_{\mathbb{X}}(\alpha)$  (it is how the canonical map  $v_{\mathbb{X}}$  from (10) is actually defined). If  $\alpha \neq 0$  then  $\alpha_{\mathcal{A}} \neq 0$ , too. Hence, the map  $v_{\mathbb{X}}$  is at least injective.

To show the surjectivity of  $v_{\mathbb{X}}$ , assume first that X is affine. Let  $A := \Gamma(X, \mathcal{A})$ , then the functor of global sections  $\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\Gamma} A - \mathsf{Mod}$  is an equivalence of categories and the

induced map of centers  $Z(A) \longrightarrow Z(\mathsf{QCoh}(\mathbb{X}))$  is an isomorphism. In the same way as above one can show that  $\alpha|_V \in Z(\Gamma(V, \mathcal{A}))$  for any open subset  $V \subseteq X$  and  $\alpha \in Z(A)$ . Next, note that we have a sheaf isomorphism  $\mathcal{Z}|_U \cong \mathcal{Z}_{\mathcal{A}|_U}$  for any open subset  $U \subseteq X$ . If U is moreover affine, it follows that  $\Gamma(U, \mathcal{Z}) = Z(\Gamma(U, \mathcal{A}))$ .

Now, we prove by induction on the minimal number of affine open charts of an affine open covering of X that  $v_X$  is an isomorphism. The case of an affine scheme X is already established. Assume that this statement is true for any nccs, which can be covered by n affine charts. Suppose that we have an affine open covering  $X = U_1 \cup \cdots \cup U_n \cup U_{n+1}$ . Let  $U = U_1 \cup \cdots \cup U_n$  and  $V = U_{n+1}$ . Since X is separated,  $(U_1 \cap V) \cup \cdots \cup (U_n \cap V)$  is an affine open covering of  $W := U \cap V$  and the category  $\mathsf{QCoh}(X)$  is equivalent to Gabriel's recollement with respect to the diagram

$$\operatorname{\mathsf{QCoh}}(\mathbb{U}) \xrightarrow{\left(\varrho^U_W\right)^*} \operatorname{\mathsf{QCoh}}(\mathbb{W}) \xleftarrow{\left(\varrho^V_W\right)^*} \operatorname{\mathsf{QCoh}}(\mathbb{V}).$$

Let  $R := Z(\operatorname{\mathsf{QCoh}}(\mathbb{U}))$ ,  $S := Z(\operatorname{\mathsf{QCoh}}(\mathbb{V}))$ ,  $C := Z(\operatorname{\mathsf{QCoh}}(\mathbb{X}))$  and  $T = Z(\operatorname{\mathsf{QCoh}}(\mathbb{W}))$ . Then Lemma 2.9 implies that  $C \cong R \times_T S$ .

On the other hand, we have a commutative diagram of rings and ring homomorphisms

$$\begin{array}{c|c} \Gamma(U,\mathcal{Z}) \longrightarrow \Gamma(W,\mathcal{Z}) \longleftarrow \Gamma(V,\mathcal{Z}) \\ v_{\mathbb{U}} & \downarrow & v_{\mathbb{W}} \\ R \longrightarrow T \longleftarrow S \end{array}$$

in which all vertical maps are isomorphisms due to the hypothesis of induction. The sheaf property of  $\mathcal{Z}$  implies that the map  $v_{\mathbb{X}}$  is surjective, hence bijective.

The fact that the sheaf  $\mathcal{Z}$  is coherent and that we have isomorphism  $\mathcal{Z}_x \cong Z(A_x)$  for any  $x \in X$  are now easy consequences of Lemma 2.1.

**Corollary 2.12.** Let X = (X, A) be a new and  $V \subseteq U \subseteq X$  be open subsets. Then the following diagram of rings and ring homomorphisms

(11) 
$$\begin{array}{c|c} \Gamma(U, \mathcal{Z}) & \xrightarrow{v_{\mathbb{U}}} & Z\left(\mathsf{QCoh}(\mathbb{U})\right) \\ & \varrho_{V}^{U} & & & & \downarrow \varphi_{V}^{U} \\ & & & & & & \Gamma(V, \mathcal{Z}) & \xrightarrow{v_{\mathbb{V}}} & Z\left(\mathsf{QCoh}(\mathbb{V})\right) \end{array}$$

is commutative, where  $\varphi_V^U$  is the morphism of centers induced by the localization functor  $QCoh(\mathbb{U}) \rightarrow QCoh(\mathbb{V})$ . Moreover, the horizontal maps in (11) are isomorphisms.

**Remark 2.13.** Let  $\mathbb{X} = (X, \mathcal{A})$  be a nons. For any open subset  $V \subseteq X$ , consider the map  $\Gamma(V, \mathcal{Z}) \longrightarrow \operatorname{End}_{\mathcal{A}(V)^e}(\mathcal{A}(V)), \ \alpha \mapsto (\beta \mapsto \alpha \cdot \beta).$ 

These maps define a morphism of sheaves of  $\mathcal{O}$ -algebras  $\mathcal{Z} \to End_{\mathcal{A}^e}(\mathcal{A})$ , where  $\mathcal{A}^e := \mathcal{A} \otimes_{\mathcal{O}} \mathcal{A}^\circ$ . If X is noetherian then it is an isomorphism. However, we do not know whether the equality  $\Gamma(U, \mathcal{Z}) = Z(\mathcal{A}(U))$  is true for an *arbitrary* open subset  $U \subseteq X$ . Nevertheless,

Proposition 2.11 implies that X is central if and only if the canonical morphism  $\mathcal{O} \to \mathcal{Z}$  is an isomorphism.

**Remark 2.14.** Let  $\mathbb{X} = (X, \mathcal{A})$  be a ncns. Since  $\mathcal{Z}$  is a coherent sheaf of commutative  $\mathcal{O}$ -algebras, there exists a commutative noetherian scheme  $\widetilde{X} = \text{Spec}(\mathcal{Z})$  over X; see [18, Proposition 1.3.1]. Let  $\widetilde{X} \xrightarrow{\phi} X$  be the corresponding structure morphism and  $\widetilde{\mathcal{A}} := \phi^{-1}\mathcal{A}$ . Then the non-commutative scheme  $\widetilde{\mathbb{X}} = (\widetilde{X}, \widetilde{\mathcal{A}})$  is central. Moreover, the functor  $\text{QCoh}(\widetilde{\mathbb{X}}) \xrightarrow{\phi_*} \text{QCoh}(\mathbb{X})$  is an equivalence of categories. Thus, we get the following important conclusion: any ncns  $\mathbb{X}$  can be replaced by a *Morita equivalent central* ncns  $\widetilde{\mathbb{X}}$ .

# 3. INDECOMPOSABLE INJECTIVE QUASI-COHERENT SHEAVES ON NON-COMMUTATIVE NOETHERIAN SCHEMES

The goal of this section is to clarify the structure of indecomposable injective objects of the category  $\mathsf{QCoh}(\mathbb{X})$ , where  $\mathbb{X}$  is a ncns.

3.1. Prime ideals in non-commutative rings. Let A be any ring. Unless explicitly stated otherwise, by an ideal in A we always mean a two-sided ideal.

Recall that an ideal P in A is *prime* if for any ideals I, J in A such that  $IJ \subseteq P$  holds:  $I \subseteq P$  or  $J \subseteq P$ . Equivalently, for any  $a, b \in A$  such that  $aAb \subseteq I$  we have:  $a \in I$  or  $b \in I$ . We refer to [23, Proposition 10.2] for other characterizations of prime ideals in non-commutative rings. Note that any maximal ideal is automatically prime.

Similarly to the commutative case, Max(A) (respectively, Spec(A)) denotes the set of maximal (respectively, prime) ideals in A.

**Lemma 3.1.** Let  $P \in \text{Spec}(A)$  and I be an ideal in A such that  $I \not\subseteq P$ . Then for any  $a \in A \setminus P$  there exists  $b \in I$  such that  $ba \notin P$ .

*Proof.* Since  $I \not\subseteq P$  and  $AaA \not\subseteq P$ , we conclude that  $IaA \not\subseteq P$ , hence  $Ia \not\subseteq P$ . Therefore, there exists  $b \in I$  such that  $ba \notin P$ .

**Lemma 3.2.** Let  $P_1, \ldots, P_n \in \text{Spec}(A)$  be such that  $P_i \not\subseteq P_j$  for all  $1 \leq i \neq j \leq n$  and  $P := P_1 \cap \cdots \cap P_n$ . Then the canonical ring homomorphism  $A/P \xrightarrow{j} A/P_1 \times \cdots \times A/P_n$  is an essential extension of A-modules.

Proof. It is sufficient to show that for any  $0 \neq x \in A/P_1 \times \cdots \times A/P_n$ , there exists  $\lambda \in A$  such that  $0 \neq \lambda x \in \text{Im}(j)$ . Without loss of generality assume that  $x = (\bar{a}_1, \ldots, \bar{a}_n)$  and  $a_1 \notin P_1$ . Since  $P_2 \not\subseteq P_1$ , Lemma 3.1 implies that there exists  $\mu \in P_2$  such that  $\mu a_1 \notin P_1$ . Proceeding inductively, we construct  $\lambda \in P_2 \cap \cdots \cap P_n$  such that  $\lambda a_1 \notin P_1$ . Then we get:  $\lambda x = (\overline{\lambda a_1}, 0, \ldots, 0) \in \text{Im}(j)$ , implying the statement.

**Proposition 3.3.** Let R be a commutative noetherian ring and A be a finite R-algebra. Then the following statements are true.

- For any  $P \in \operatorname{Spec}(A)$  we have:  $P \cap R \in \operatorname{Spec}(R)$ .
- The map  $\operatorname{Spec}(A) \xrightarrow{\varrho} \operatorname{Spec}(R), P \mapsto P \cap R$ , is surjective and has finite fibers.

## IGOR BURBAN AND YURIY DROZD

- Let  $P \in \text{Spec}(A)$  and  $\mathfrak{p} = \varrho(P)$ . Then we have:  $P_{\mathfrak{p}} \in \text{Max}(A_{\mathfrak{p}})$ .
- Le p, q ∈ Spec(R) and P ∈ Spec(A) be such that p ⊆ q and ρ(P) = p. Then there exists Q ∈ Spec(A) such that P ⊆ Q and ρ(Q) = q.
- Let  $P, Q \in \text{Spec}(A)$  be such that  $P \subseteq Q$  and  $\varrho(P) = \varrho(Q)$ . Then we have: P = Q.
- Let  $\mathfrak{p} \in \operatorname{Spec}(R)$ ,  $A \xrightarrow{j} A_{\mathfrak{p}}$  be the canonical ring homomorphism,  $Q \in \operatorname{Max}(A_{\mathfrak{p}})$  and  $\widetilde{Q} := j^{-1}(Q)$ . Then we have:  $\widetilde{Q} \in \operatorname{Spec}(A)$  and  $\widetilde{Q}_{\mathfrak{p}} = Q$ . If  $\varrho^{-1}(\mathfrak{p}) = \{P_1, \ldots, P_n\}$ , where  $P_i \neq P_j$  for all  $1 \leq i \neq j \leq n$ , then we have:  $\operatorname{Max}(A_{\mathfrak{p}}) = \{(P_1)_{\mathfrak{p}}, \ldots, (P_n)_{\mathfrak{p}}\}$  and  $(P_i)_{\mathfrak{p}} \neq (P_j)_{\mathfrak{p}}$  for all  $1 \leq i \neq j \leq n$ .

Proofs of all these results are analogous to the commutative case; see [14, Section V.6].

**Lemma 3.4.** Let  $(R, \mathfrak{m})$  be a local commutative noetherian ring, A be a finite R-algebra, J be its Jacobson radical and  $Max(A) = \{P_1, \ldots, P_n\}$ . Then we have:  $J = P_1 \cap \cdots \cap P_n$ .

Proof. Recall that  $J = \bigcap_U \operatorname{Ann}_A(U)$ , where the intersection is taken over the annihilators of all simple left A-modules; see [11, Proposition 5.13]. Note that any such  $\operatorname{Ann}_A(U)$  is a prime ideal; see [17, Proposition 3.15]. On the other hand,  $\mathfrak{m} \subseteq J$ ; see [11, Proposition 5.22]; hence  $\mathfrak{m} \subseteq \operatorname{Ann}_A(U)$ . By Proposition 3.3,  $\operatorname{Ann}_A(U)$  is a maximal ideal in A. Conversely, for any  $P \in \operatorname{Max}(A)$  there exists a simple left A-module U such that  $P = \operatorname{Ann}_A(U)$ ; see [17, Proposition 3.15]. This implies the statement.  $\Box$ 

**Proposition 3.5.** In the notation of Lemma 3.4, let  $E_i = E_A(A/P_i)$  be the injective envelope of  $A/P_i$  for all  $1 \le i \le n$ . Then we have:  $\operatorname{End}_A(E_1 \oplus \cdots \oplus E_n) \cong \widehat{A}^\circ$ , where  $\widehat{A}$  is the  $\mathfrak{m}$ -adic completion of the algebra A.

Proof. Let E be the injective envelope of the left A-module T := A/J. Lemma 3.2 implies that  $E \cong E_1 \oplus \cdots \oplus E_n$ . Let  $\widehat{J}$  be the Jacobson radical of  $\widehat{A}$ . Then we have:  $\widehat{J} = J\widehat{A}$ and  $A/J \cong \widehat{A}/\widehat{J}$ . The Matlis Duality functor  $\mathbb{D}$  (see [29, Corollary 4.3]) establishes an anti-equivalence between the categories of noetherian right  $\widehat{A}$ -modules and artinian left  $\widehat{A}$ -modules. Since T is semi-simple and of finite length, we have:  $\mathbb{D}(T_{\widehat{A}}) \cong_{\widehat{A}}T$ . Moreover,  $\mathbb{D}$  maps the projective cover of T (which is just  $\widehat{A}_{\widehat{A}}$ ) to the injective envelope of T. However, the injective envelope of T, viewed as a left  $\widehat{A}$ -module, can be identified with E and  $\operatorname{End}_A(E) \cong \operatorname{End}_{\widehat{A}}(E)$ ; see e.g. [28, Theorem 18.6] (the proof of [28] can be literally generalized to the non-commutative setting). Since  $\operatorname{End}_{\widehat{A}}(\widehat{A}_{\widehat{A}}) \cong \widehat{A}$ , we conclude that  $\operatorname{End}_A(E) \cong \widehat{A}^\circ$ .

3.2. Prime ideals and indecomposable injective modules. Recall the following standard results about indecomposable injective modules.

**Lemma 3.6.** Let A be any ring, I be an injective A-module and  $H = \text{End}_A(I)$ . Then the following statements are true.

• I is indecomposable if and only if H is local. Moreover, in this case  $f \in H$  is a unit if and only if Ker(f) = 0.

• Assume additionally that A is left noetherian. If I is indecomposable then any  $f \in H$  is either a unit or locally nilpotent (i.e. for any  $x \in I$  there exists  $n \in \mathbb{N}$  such that  $f^n(x) = 0$ ).

Comment to the proof. For the first statement, see [29, Proposition 2.6]. For the second result, see [14, Lemme 2, page 428].  $\Box$ 

From now on in this subsection, we assume that R is a commutative noetherian ring and A is a finite R-algebra. We denote by Sp(A) the set of the isomorphism classes of indecomposable injective A-modules.

**Proposition 3.7.** For any  $P \in \text{Spec}(A)$  there exist uniquely determined  $I_P \in \text{Sp}(A)$  and  $m_P \in \mathbb{N}$  such that  $E_A(A/P) \cong I_P^{\oplus m_P}$ . Moreover, the assignment

$$\mathsf{Spec}(A) \xrightarrow{\varepsilon} \mathsf{Sp}(A), \ P \mapsto I_P$$

is a bijection.

Comment to the proof. This result is proven in [14, Section V.4]. In fact, any indecomposable injective A-module I has a uniquely determined associated prime ideal P; see also [22, Section 3F] for further details.

Composing the inverse of  $\varepsilon$  with the map  $\rho$  from Proposition 3.3, we get a map

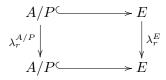
$$\mathsf{Sp}(A) \xrightarrow{\alpha} \mathsf{Spec}(R).$$

It turns out, that  $\alpha$  has a clear conceptual meaning: it assigns to an indecomposable injective A-module its uniquely determined associated prime ideal in R.

**Proposition 3.8.** Let  $I \in \text{Sp}(A)$  and  $\mathfrak{p} = \alpha(I)$ . For any  $r \in R$ , let  $\lambda_r^I \in \text{End}_A(I)$  be the *(left) multiplication map with r. Then the following statements are true.* 

- (1) If  $r \in \mathfrak{p}$  then  $\lambda_r^I$  is locally nilpotent, i.e. for any  $x \in I$  there exists  $n \in \mathbb{N}$  such that  $r^n x = 0$ .
- (2) If  $r \in R \setminus \mathfrak{p}$  then  $\lambda_r^I$  is invertible.
- (3)  $\mathfrak{p}$  is the unique associated prime ideal of I viewed as an R-module.
- (4) We have:  $\operatorname{Supp}(I) = \overline{\{\mathfrak{p}\}} \subset \operatorname{Spec}(R)$ .

*Proof.* Let  $P \in \text{Spec}(A)$  be the associated prime ideal of I and E be the injective envelope of A/P. Then there exists  $m \in \mathbb{N}$  such that  $E \cong I^{\oplus m}$ . For any  $r \in R$ , we have a commutative diagram of A-modules



Note that  $\lambda_r^E = \operatorname{diag}(\lambda_r^I, \dots, \lambda_r^I).$ 

(1) If  $r \in \mathfrak{p}$  then  $\lambda_r^{A/P} = 0$ . Hence,  $\operatorname{Ker}(\lambda_r^E) \neq 0$  and  $\operatorname{Ker}(\lambda_r^I) \neq 0$ , too. According to Lemma 3.6, the endomorphism  $\lambda_r^I$  is locally nilpotent.

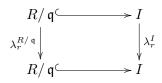
(2) Let  $r \in R \setminus \mathfrak{p}$ . Since *P* is prime, the map  $\lambda_r^{A/P}$  is injective. Since the extension  $A/P \subset E$  is essential, we have:  $\operatorname{Ker}(\lambda_r^E) = 0$ . Hence,  $\operatorname{Ker}(\lambda_r^I) = 0$  and Lemma 3.6 implies that  $\lambda_r^I$  is an isomorphism.

(3) We have a non-zero map of *R*-modules  $R/\mathfrak{p} \xrightarrow{\beta} I$ , obtained as the composition

$$R/\mathfrak{p} \hookrightarrow A/P \hookrightarrow E \twoheadrightarrow I,$$

where the last map is an appropriate projection of E onto one of its indecomposable direct summands. It follows from part (2) that  $\beta$  is automatically injective, hence **p** is an associated prime ideal of R.

Next, assume that  $\mathfrak{q} \neq \mathfrak{p}$  is another associated prime ideal of I. Then there exists an inclusion of R-modules  $R/\mathfrak{q} \longrightarrow I$ . Note that for any  $r \in R$ , the following diagram



is commutative. If  $r \in \mathfrak{q} \setminus \mathfrak{p}$  then  $\lambda_r^{R/\mathfrak{q}} = 0$  and  $\lambda_r^I$  is invertible (by part (2)). If  $r \in \mathfrak{p} \setminus \mathfrak{q}$  then  $\lambda_r^{R/\mathfrak{q}}$  is injective and  $\lambda_r^I$  is locally nilpotent (by part (1)). In both cases, we get a contradiction.

(4) The inclusion  $\overline{\{\mathfrak{p}\}} \subseteq \operatorname{Supp}(I)$  follows from part (3). If  $\mathfrak{q} \in \operatorname{Spec}(R)$  is such that  $\mathfrak{p} \not\subseteq \mathfrak{q}$  then there exists  $r \in \mathfrak{p} \setminus \mathfrak{q}$ . By part (1), for any  $x \in I$  there exists  $n \in \mathbb{N}$  such that  $r^n x = 0$ . This implies that  $I_{\mathfrak{q}} = 0$ .

**Lemma 3.9.** Let  $I, J \in Sp(A)$  be such that  $Hom_A(I, J) \neq 0$ . Then we have:  $\mathfrak{p} \subseteq \mathfrak{q}$ , where  $\mathfrak{p} = \alpha(I)$  and  $\mathfrak{q} = \alpha(J)$ .

Conversely, let  $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$  be such that  $\mathfrak{p} \subseteq \mathfrak{q}$ . Then there exist  $I, J \in \operatorname{Sp}(A)$  such that  $\operatorname{Hom}_A(I, J) \neq 0$ ,  $\mathfrak{p} = \alpha(I)$  and  $\mathfrak{q} = \alpha(J)$ .

*Proof.* Let  $I \xrightarrow{f} J$  be a non-zero homomorphism of A-modules and  $x \in I$  be such that  $y := f(x) \neq 0$ . Assume that there exists  $r \in \mathfrak{p} \setminus \mathfrak{q}$ . Then  $\lambda_r^I$  is locally nilpotent, so we can find  $n \in \mathbb{N}$  such that  $r^n x = 0$ . Hence,  $r^n y = 0$ , too. On the other hand, the  $\lambda_r^J$  is invertible. Contradiction.

To prove the second part, take any  $P, Q \in \text{Spec}(A)$  such that  $P \subseteq Q, P \cap R = \mathfrak{p}$  and  $Q \cap R = \mathfrak{q}$  (such P and Q exist by Proposition 3.3). Then we have a non-zero homomorphism of A-modules  $A/P \xrightarrow{g} E_A(A/Q)$ , defined as the composition  $A/P \xrightarrow{g} A/Q \xrightarrow{} E_A(A/Q)$ , where  $E_A(A/Q)$  is the injective hull of A/Q. By injectivity of  $E_A(A/Q)$ , there exists a non-zero morphism  $E_A(A/P) \xrightarrow{\tilde{g}} E_A(A/Q)$  extending g. Since  $E_A(A/P) \cong I_P^{\oplus m_P}$  and  $E_A(A/Q) \cong I_Q^{\oplus m_Q}$  for some  $m_P, m_Q \in \mathbb{N}$ , we conclude that  $\operatorname{Hom}_A(I_P, I_Q) \neq 0$ .

**Corollary 3.10.** For any  $\mathfrak{p} \in \operatorname{Spec}(R)$  we put:  $I(\mathfrak{p}) := \bigoplus_{\substack{I \in \operatorname{Sp}(A) \\ \alpha(I) = \mathfrak{p}}} I$ . Then for any  $\mathfrak{p}, \mathfrak{q} \in \mathfrak{p}$ 

Spec(R) we have: Hom<sub>A</sub>( $I(\mathfrak{p}), I(\mathfrak{q})$ )  $\neq 0$  if and only if  $\mathfrak{p} \subseteq \mathfrak{q}$ .

**Lemma 3.11.** Let  $P \in \text{Spec}(A)$ ,  $\mathfrak{p} := P \cap R \in \text{Spec}(R)$  and E be the injective hull of the  $A_{\mathfrak{p}}$ -module  $A_{\mathfrak{p}}/P_{\mathfrak{p}}$ . Then we have an isomorphism of A-modules  $E \cong E_A(A/P)$  and  $\text{End}_{A_{\mathfrak{p}}}(E) \cong \text{End}_A(E)$ .

Proof. The forgetful functor  $A_{\mathfrak{p}} - \mathsf{Mod} \xrightarrow{\Phi_{\mathfrak{p}}} A - \mathsf{Mod}$  admits an exact left adjoint functor  $A - \mathsf{Mod} \longrightarrow A_{\mathfrak{p}} - \mathsf{Mod}$  given by the localization with respect to  $\mathfrak{p}$ . It is easy to see that the corresponding adjunction counit is an isomorphism. This implies that  $\Phi_{\mathfrak{p}}$  is fully faithful and maps injective objects to injective objects. Hence, E is an injective A-module and  $\mathsf{End}_{A_{\mathfrak{p}}}(E) \cong \mathsf{End}_{A}(E)$ . Next, it is not difficult to see that both inclusions  $A/P \longrightarrow (A/P)_{\mathfrak{p}} \longrightarrow E$  are essential extensions of A-modules. Hence, E can be identified with the injective hull of A/P, implying the result.

**Corollary 3.12.** For any  $\mathfrak{p} \in \operatorname{Spec}(R)$ , let  $\overline{\operatorname{Sp}}(A_{\mathfrak{p}})$  be the set of the isomorphism classes of indecomposable injective artinian  $A_{\mathfrak{p}}$ -modules. Then we have the following description of indecomposable injective A-modules:

$$\mathsf{Sp}(A) = \bigsqcup_{\mathfrak{p}\in\mathsf{Spec}(R)} \overline{\mathsf{Sp}}(A_{\mathfrak{p}}) = \bigsqcup_{\mathfrak{p}\in\mathsf{Spec}(R)} \mathsf{Max}(A_{\mathfrak{p}}),$$

where we view  $I \in \overline{\mathsf{Sp}}(A_{\mathfrak{p}})$  as an element of  $\mathsf{Sp}(A)$  via the forgetful functor  $\Phi_{\mathfrak{p}}$ .

The following two results play the key role in the proof of the Morita theorem for ncns.

**Proposition 3.13.** For any  $\mathfrak{p} \in \operatorname{Spec}(R)$ , the ring  $\operatorname{End}_A(I(\mathfrak{p}))$  is a finite  $\widehat{R}_{\mathfrak{p}}$ -module. In particular,  $\operatorname{End}_A(I(\mathfrak{p}))$  is noetherian.

Proof. In the notation of Proposition 3.3, let  $\rho^{-1}(\mathfrak{p}) = \{P_1, \ldots, P_n\}$ , where  $P_i \neq P_j$  for all  $1 \leq i \neq j \leq n$ . Then  $J := (P_1)_{\mathfrak{p}} \cap \cdots \cap (P_n)_{\mathfrak{p}}$  is the Jacobson radical of  $A_{\mathfrak{p}}$ . Let  $E_i := E_A(A/P_i)$  and  $E := E_{A_{\mathfrak{p}}}(A_{\mathfrak{p}}/J)$ . By Proposition 3.5 we have:  $\operatorname{End}_{A_{\mathfrak{p}}}(E) \cong \widehat{A}_{\mathfrak{p}}^{\circ}$ . In particular,  $\operatorname{End}_{A_{\mathfrak{p}}}(E)$  is a finite  $\widehat{R}_{\mathfrak{p}}$ -algebra. On the other hand, we have an isomorphism of A-modules  $E \cong E_1 \oplus \cdots \oplus E_n$ . Since  $\Phi_{\mathfrak{p}}$  is fully faithful, we get a ring isomorphism

$$\operatorname{End}_{A_{\mathfrak{p}}}(E) \cong \operatorname{End}_{A}(E_{1} \oplus \cdots \oplus E_{n}).$$

For any  $1 \leq i \leq n$  there exists  $m_i \in \mathbb{N}$  such that  $E_i \cong I_{P_i}^{\oplus m_i}$ . Therefore,  $\operatorname{End}_A(I(\mathfrak{p}))$  and  $\widehat{A}_{\mathfrak{p}}^{\circ}$  are Morita–equivalent, what implies the statement.

**Lemma 3.14.** Let  $I, J \in Sp(A)$  be such that  $Hom_A(I, J) \neq 0$ . Assume that  $\alpha(I) \neq \alpha(J)$ . Then  $Hom_A(I, J)$  is not noetherian viewed as a left  $End_A(J)$ -module.

Proof. Let  $\mathfrak{p} = \alpha(I)$  and  $\mathfrak{q} = \alpha(J)$ . By Lemma 3.9 we have:  $\mathfrak{p} \subseteq \mathfrak{q}$ . Assume that  $\operatorname{Hom}_A(I,J)$  is noetherian viewed as a left  $\operatorname{End}_A(J)$ -module. By Proposition 3.13, there exists a finite map of rings  $\widehat{R}_{\mathfrak{q}} \xrightarrow{\vartheta} \operatorname{End}_A(J)$ . Hence,  $\operatorname{Hom}_A(I,J)$  is noetherian viewed as

an  $\widehat{R}_{\mathfrak{q}}$ -module, too. Note that for any  $r \in \mathfrak{q}$ , the corresponding element  $\vartheta(r) \in \operatorname{End}_A(J)$ acts on  $\operatorname{Hom}_A(I, J)$  by the rule  $f \mapsto \lambda_r^J \cdot f = f \cdot \lambda_r^I$ . Suppose now that there exists  $r \in \mathfrak{q} \setminus \mathfrak{p}$ . Then  $\lambda_r^I \in \operatorname{End}_A(I)$  is a unit. Hence,  $r \cdot \operatorname{Hom}_A(I, J) = \operatorname{Hom}_A(I, J)$ . On the other hand,  $r \in \mathfrak{q} \widehat{R}_{\mathfrak{q}}$ . By Nakayama's Lemma, we get a contradiction.

3.3. Indecomposable injective objects of QCoh(X). In this subsection, let X = (X, A) be a next note the following standard result.

**Lemma 3.15.** Let  $U \stackrel{i}{\hookrightarrow} X$  be an open subset. Then the following statements are true.

- The direct image functor Φ<sub>U</sub> = i<sub>\*</sub> : QCoh(U) → QCoh(X) is fully faithful and maps (indecomposable) injective objects into (indecomposable) injective objects.
- Assume that U is affine and x ∈ U. Let R = Γ(U, O), A = Γ(U, A), p ∈ Spec(R) be the prime ideal corresponding to x and A<sub>x</sub> = A<sub>p</sub>. Then the functor

$$A_x - \mathsf{Mod} \xrightarrow{\Phi_x} \mathsf{QCoh}(\mathbb{X})$$

defined as the composition  $A_x - \mathsf{Mod} \to A - \mathsf{Mod} \xrightarrow{\Phi_U} \mathsf{QCoh}(\mathbb{X})$ , is fully faithful and maps (indecomposable) injective objects into (indecomposable) injective objects.

 The functor QCoh(X) → A<sub>x</sub> - Mod, assigning to a quasi-coherent A-module F its stalk at the point x, is left adjoint to Φ<sub>x</sub>. In particular, the functor Φ<sub>x</sub> does not depend on the choice of an open affine neighbourhood of x.

Results from [14, Section VI.2] on Gabriel's recollement of locally noetherian abelian categories, combined with Corollary 3.12, imply the following statement.

**Corollary 3.16.** Let Sp(X) be the set of the isomorphism classes of indecomposable injective objects of QCoh(X). Then we have:

$$\mathsf{Sp}(\mathbb{X}) = \bigsqcup_{x \in X} \overline{\mathsf{Sp}}(A_x) = \bigsqcup_{x \in X} \mathsf{Max}(A_x),$$

where we view  $I \in \overline{Sp}(A_x)$  as an element of  $Sp(\mathbb{X})$  via the functor  $\Phi_x$ . In particular, we have a surjective map with finite fibers

(12) 
$$\operatorname{Sp}(\mathbb{X}) \xrightarrow{\alpha} X$$

assigning to  $\mathcal{I} \in \mathsf{Sp}(\mathbb{X})$  the point  $x \in X$  such that  $\mathcal{I} \cong \Phi_x(I)$  for some  $I \in \overline{\mathsf{Sp}}(A_x)$ .

**Lemma 3.17.** Let  $\mathcal{I} \in \mathsf{Sp}(\mathbb{X})$  and  $x = \alpha(\mathcal{I}) \in X$ . Then we have:  $\mathsf{Supp}(\mathcal{I}) = \overline{\{x\}}$ .

*Proof.* First note the following topological fact: a point  $y \in X$  belongs to  $\overline{\{x\}}$  if and only if for any open neighbourhood  $y \in U \subseteq X$  we have:  $x \in U$ .

Let  $y \in \{x\}$ . Consider any open affine neighbourhood  $x, y \in V$  and put  $R := \Gamma(V, \mathcal{O}), A := \Gamma(V, \mathcal{A})$ . Let  $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$  be the prime ideals corresponding to x and y, respectively. Note that  $I := \Gamma(V, \mathcal{I})$  is an indecomposable injective A-module, whose associated prime ideal is  $\mathfrak{p}$ . It follows that  $\mathfrak{p} \subseteq \mathfrak{q}$ , hence  $I_{\mathfrak{q}} \neq 0$ . Therefore, we have:  $y \in \operatorname{Supp}(\mathcal{I})$ . Assume now that  $y \notin \{x\}$ . Then there exists an open affine subset  $V \subseteq X$  such that  $y \in V$  and  $x \notin V$ . Proposition 3.8 implies that for any open affine neighbourhood  $x \in U$  we have:  $\Gamma(V, \mathcal{I}) = \Gamma(V \cap U, \mathcal{I}) = 0$ , hence  $\mathcal{I}_y = 0$ .  $\Box$ 

**Proposition 3.18.** Let  $\mathcal{I}, \mathcal{J} \in \mathsf{Sp}(\mathbb{X})$  be such that  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J}) \neq 0$ , Then we have:  $y \in \overline{\{x\}}$ , where  $x = \alpha(\mathcal{I})$  and  $y = \alpha(\mathcal{J})$ .

Conversely, let  $x, y \in X$  be such that  $y \in \overline{\{x\}}$ . Then there exist  $\mathcal{I}, \mathcal{J} \in \mathsf{Sp}(\mathbb{X})$  such that  $x = \alpha(\mathcal{I}), y = \alpha(\mathcal{J})$  and  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J}) \neq 0$ .

*Proof.* Let  $J \in \text{Sp}(A_y)$  be such that  $\mathcal{J} \cong \Phi_y(J)$ . Then  $\text{Hom}_{A_y}(\mathcal{I}_y, J) \cong \text{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J}) \neq 0$ , implying that  $\mathcal{I}_y \neq 0$ . The first statement is proven.

To show the second part, take any common open affine neighbourhood  $x, y \in V$ . Let  $R := \Gamma(V, \mathcal{O})$  and  $A := \Gamma(V, \mathcal{A})$ . Let  $\mathfrak{p}, \mathfrak{q} \in \mathsf{Spec}(R)$  be the prime ideals corresponding to the points  $x, y \in V$ . Then we have:  $\mathfrak{p} \subseteq \mathfrak{q}$ . According to Lemma 3.9, there exist  $I, J \in \mathsf{Sp}(A)$  such that  $\mathsf{Hom}_A(I, J) \neq 0$  and  $\alpha(I) = \mathfrak{p}, \alpha(J) = \mathfrak{q}$ . Let  $\mathcal{I} := \Phi_V(I)$  and  $\mathcal{J} = \Phi_V(J)$ . Then we have:  $\mathcal{I}, \mathcal{J} \in \mathsf{Sp}(\mathbb{X})$  and  $\alpha(\mathcal{I}) = x, \alpha(\mathcal{J}) = y$ . Moreover, since  $\Phi_V$  is fully faithful, we have:  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J}) \neq 0$ .

**Corollary 3.19.** For any  $x \in X$  we put:  $\mathcal{I}(x) := \bigoplus_{\substack{\mathcal{I} \in \mathsf{Sp}(\mathbb{X}) \\ \alpha(\mathcal{I}) = x}} \mathcal{I}$ . Then for any  $x, y \in X$  we

have:  $\operatorname{Hom}_{\mathbb{X}}(\mathcal{I}(x), \mathcal{I}(y)) \neq 0$  if and only if  $y \in \overline{\{x\}}$ .

4. PROOF OF THE MORITA THEOREM FOR NON-COMMUTATIVE NOETHERIAN SCHEMES Let  $\mathbb{X} = (X, \mathcal{A})$  be a ncns. Since we focus on the study of the category  $\mathsf{QCoh}(\mathbb{X})$ , we additionally assume that  $\mathbb{X}$  is *central*; see Remark 2.14.

4.1. Reconstruction of the central scheme. In this subsection we explain, how the commutative scheme  $(X, \mathcal{O})$  can be recovered from the category  $\mathsf{QCoh}(\mathbb{X})$ .

**Lemma 4.1.** Let  $\Lambda$  be a left noetherian ring,  $e \in \Lambda$  an idempotent,  $\Gamma = e\Lambda e$  and  $F = e\Lambda f$ , where f = 1 - e. Then F is noetherian viewed as a left  $\Gamma$ -module.

Proof. Let  $\widetilde{\Gamma} = f\Lambda f$  and  $\widetilde{F} = f\Lambda e$ , then we have the Peirce decomposition  $\Lambda = \begin{pmatrix} \Gamma & F \\ F & \Gamma \end{pmatrix}$ . Assume that F is not noetherian. Then there exists an infinite chain of left  $\Gamma$ -modules  $F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F$ . For any  $n \in \mathbb{N}$ , put:  $J_n := \begin{pmatrix} \widetilde{F}F_n & \widetilde{F} \\ F_n & \Gamma \end{pmatrix}$ . Then  $J_n$  is a left ideal in  $\Lambda$  and we get an infinite chain  $J_1 \subsetneq J_2 \subsetneq \cdots \subsetneq \Lambda$ . Contradiction.  $\Box$ 

**Proposition 4.2.** For any non-empty finite subset  $\Omega \subset Sp(\mathbb{X})$  we put:

$$\mathcal{I}(\Omega) := \bigoplus_{\mathcal{I} \in \Omega} \mathcal{I} \quad \text{and} \quad A(\Omega) := \mathsf{End}_{\mathbb{X}} \big( \mathcal{I}(\Omega) \big).$$

Let  $\mathsf{Sp}(\mathbb{X}) \xrightarrow{\alpha} X$  be the map assigning to an indecomposable injective object of  $\mathsf{QCoh}(\mathbb{X})$  its uniquely determined associated point of X (see Corollary 3.16). Then the following statements are true.

### IGOR BURBAN AND YURIY DROZD

- (1) If  $\Omega = \alpha^{-1}(x)$  for some  $x \in X$ , then  $A(\Omega)$  is noetherian and connected.
- (2) Conversely, if  $A(\Omega)$  is notherian and connected then we have:  $|\alpha(\Omega)| = 1$ .
- (3) Let  $\Omega$  be such that  $A(\Omega)$  is noetherian and connected, but for any finite  $\Omega \subsetneq \widetilde{\Omega}$ , the algebra  $A(\widetilde{\Omega})$  does not have this property. Then  $\Omega = \alpha^{-1}(x)$  for some  $x \in X$ .

Proof. (1) Let  $x \in X$  and  $\Omega = \alpha^{-1}(x)$ . By Proposition 3.13 and Lemma 3.15, the algebra  $A(\Omega)$  is a finite  $\widehat{O}_x$ -module, hence it is noetherian. Moreover, it is Morita-equivalent to the algebra  $\widehat{A}_x^{\circ}$ , hence  $\widehat{O}_x = Z(\widehat{A}_x^{\circ}) = Z(A(\Omega))$  (at this place we use that X is central). Since the center of a disconnected algebra can not be local, this imples that  $A(\Omega)$  is connected. The first statement is proven.

(2) Now, let  $\Omega \subset \text{Sp}(\mathbb{X})$  be a finite subset such that  $|\alpha(\Omega)| \geq 2$ . Choose any  $x \in \Omega$  such that  $x \notin \overline{\{y\}}$  for all  $y \in \Omega \setminus \{x\}$ . For any  $\mathcal{I}, \mathcal{J} \in \Omega$  such that  $\alpha(\mathcal{I}) = x$  and  $\alpha(\mathcal{J}) \neq x$  we have:  $\text{Hom}_{\mathbb{X}}(\mathcal{J}, \mathcal{I}) = 0$ ; see Proposition 3.18. If the algebra  $A(\Omega)$  is connected then there exist  $\mathcal{I}, \mathcal{J} \in \Omega$  such that  $\alpha(\mathcal{I}) = x, \alpha(\mathcal{J}) = y \neq x$  and  $\text{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J}) \neq 0$ . Proposition 3.18 implies that  $y \in \overline{\{x\}}$ .

Next, there exists an idempotent  $e \in A(\Omega)$  such that  $eA(\Omega)e \cong \operatorname{End}_{\mathbb{X}}(\mathcal{J})$ . Let f = 1 - e. Then  $\operatorname{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J})$  is a direct summand of  $eA(\Omega)f$  viewed as a left  $\operatorname{End}_{\mathbb{X}}(\mathcal{J})$ -module. Suppose now that  $A(\Omega)$  is noetherian. Then Lemma 4.1 implies that  $\operatorname{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J})$  is a noetherian left  $\operatorname{End}_{\mathbb{X}}(\mathcal{J})$ -module. Let  $V \subseteq X$  be an open affine subset such that  $x, y \in V$  $R := \Gamma(V, \mathcal{O})$  and  $A := \Gamma(V, \mathcal{A})$ . Then there exist  $I, J \in \operatorname{Sp}(A)$  such that  $\mathcal{I} \cong \Phi_V(I)$  and  $\mathcal{J} \cong \Phi_V(\mathcal{J})$ . Moreover,  $\Phi_V$  identifies the left  $\operatorname{End}_A(J)$ -module  $\operatorname{Hom}_A(I, J)$  with the left  $\operatorname{End}_{\mathbb{X}}(\mathcal{J})$ -module  $\operatorname{Hom}_{\mathbb{X}}(\mathcal{I}, \mathcal{J})$ . However, since  $x \neq y$ , the associated prime ideals of Iand  $\mathcal{J}$  in the ring R are different. Lemma 3.14 implies that  $\operatorname{Hom}_A(I, \mathcal{J})$  is not noetherian as a left  $\operatorname{End}_A(\mathcal{J})$ -module. Contradiction.

(3) This statement is a consequence of the first two.

Proposition 4.2 implies that the scheme X, viewed as a topological space, can be recovered from the category  $\mathsf{QCoh}(\mathbb{X})$ . Our next goal is to explain the reconstruction of the structure sheaf of X. For any closed subset  $Z \subseteq X$  we put:

(13) 
$$\mathsf{QCoh}_Z(\mathbb{X}) = \left\{ \mathcal{F} \in \mathsf{Ob}(\mathsf{QCoh}(\mathbb{X})) \mid \mathsf{Supp}(\mathcal{F}) \subseteq Z \right\}.$$

It is clear that  $\operatorname{QCoh}_Z(\mathbb{X})$  is a Serre subcategory of  $\operatorname{QCoh}(\mathbb{X})$ . Let  $U := X \setminus Z \xrightarrow{i} X$ , then the restriction functor  $\operatorname{QCoh}(\mathbb{X}) \xrightarrow{i^*} \operatorname{QCoh}(\mathbb{U})$  induces an equivalence of categories  $\operatorname{QCoh}(\mathbb{X})/\operatorname{QCoh}_Z(\mathbb{X}) \longrightarrow \operatorname{QCoh}(\mathbb{U})$ . Since  $i^*$  admits a right adjoint functor  $i_*$ ,  $\operatorname{QCoh}_Z(\mathbb{X})$ is a localizing subcategory of  $\operatorname{QCoh}(\mathbb{X})$ .

Recall that the localizing subcategories of an arbitrary locally noetherian abelian category A stand in bijection with the subsets of the set Sp(A) of indecomposable injective objects of A; see [14, Section III.4]. Our next goal is to characterize in these terms the localizing subcategories  $QCoh_Z(\mathbb{X})$  for  $Z \subseteq X$  closed.

**Proposition 4.3.** Let  $Z \subseteq X$  be a closed subset. Then we have:

 $\mathsf{QCoh}_{Z}(\mathbb{X}) = \left\{ \mathcal{F} \in \mathsf{Ob}(\mathsf{QCoh}(\mathbb{X})) \mid \mathsf{Hom}_{\mathbb{X}}(\mathcal{F}, \mathcal{I}) = 0 \text{ for all } \mathcal{I} \in \mathsf{Sp}(\mathbb{X}) : \alpha(\mathcal{I}) \in X \setminus Z \right\}.$ 

Let  $Z = \overline{\{x_1, \ldots, x_n\}}$ , where  $x_i \notin \overline{\{x_j\}}$  for all  $1 \leq i \neq j \leq n$ . Then  $\mathsf{QCoh}_Z(\mathbb{X})$  is the smallest localizing subcategory of  $\mathsf{QCoh}(\mathbb{X})$  containing  $\mathcal{E} := \mathcal{I}(x_1) \oplus \cdots \oplus \mathcal{I}(x_n)$ .

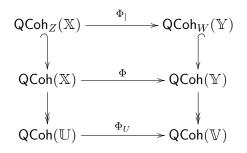
Proof. If  $\mathcal{I} \in \mathsf{Sp}(\mathbb{X})$  is such that  $x := \alpha(\mathcal{I}) \in X \setminus Z$  then  $\mathcal{I} \cong \Phi_x(I)$  for some  $I \in \mathsf{Sp}(A_x)$  and  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{F},\mathcal{I}) \cong \mathsf{Hom}_{A_x}(\mathcal{F}_x,I) = 0$  for any  $\mathcal{F} \in \mathsf{QCoh}_Z(\mathbb{X})$ . Conversely, let  $\mathcal{I} \in \mathsf{Sp}(\mathbb{X})$  be such that  $x := \alpha(\mathcal{I}) \in Z$ . Then  $\mathcal{I} \cong \Phi_x(I)$  for some  $I \in \mathsf{Sp}(A_x)$ . Let  $P \in \mathsf{Spec}(A_x)$  be the associated prime ideal and  $\mathcal{F} := \Phi_x(A_x/P)$ . Then  $\mathcal{F} \in \mathsf{QCoh}_Z(\mathbb{X})$  and  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{F},\mathcal{I}) \cong \mathsf{Hom}_{A_x}(A_x/P,I) \neq 0$ . The first description of  $\mathsf{QCoh}_Z(\mathbb{X})$  follows now from the correspondence between the localizing subcategories of  $\mathsf{QCoh}(\mathbb{X})$  and the subsets of  $\mathsf{Sp}(\mathbb{X})$ ; see [14, page 377]. To prove the second statement, note that  $\mathsf{Supp}(\mathcal{E}) = Z$ ; see Lemma 3.17. Let  $\mathsf{C}(\mathcal{E})$  be the smallest localizing subcategory of  $\mathsf{QCoh}(\mathbb{X})$  containing  $\mathcal{E}$ . Then it is a subcategory of  $\mathsf{QCoh}_Z(\mathbb{X})$ . According to [14, Section III.4],  $\mathsf{C}(\mathcal{E})$  corresponds to a certain subset  $\Sigma$  of  $\mathsf{Sp}(\mathbb{X})$  containing  $\Sigma_Z := \{\mathcal{I} \in \mathsf{Sp}(\mathbb{X}) \mid \alpha(\mathcal{I}) \in X \setminus Z\}$ . Let  $\mathcal{J} \in \mathsf{Sp}(\mathbb{X}) \setminus \Sigma_Z$ , i.e.  $\alpha(\mathcal{J}) \in Z$ . Then Proposition 3.18 implies that  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{E},\mathcal{J}) \neq 0$ . This shows that  $\Sigma = \Sigma_Z$ , hence  $\mathsf{C}(\mathcal{E}) = \mathsf{QCoh}_Z(\mathbb{X})$ , as asserted.  $\Box$ 

**Theorem 4.4.** Let  $\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\Phi} \mathsf{QCoh}(\mathbb{Y})$  be an equivalence of categories, where  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$  are two central news. Then there exists a unique isomorphism of schemes  $Y \xrightarrow{\Phi_c} X$  such that the following diagram of sets

(14) 
$$\begin{aligned} & \mathsf{Sp}(\mathbb{X}) \xrightarrow{\widetilde{\Phi}} \mathsf{Sp}(\mathbb{Y}) \\ & \alpha_X \bigvee_{\alpha_X} \bigvee_{\alpha_Y} & \varphi_{\alpha_Y} \\ & X \xleftarrow{\Phi_c} & Y \end{aligned}$$

is commutative, where  $\widetilde{\Phi}$  is the bijection induced by  $\Phi$ .

Proof. First note that  $\alpha_X$  and  $\alpha_Y$  are surjective. Hence,  $\Phi_c$  is unique (even as a map of sets), provided it exists. According to Proposition 4.2, points of X stand in bijection with maximal finite subsets  $\Omega \subset \mathsf{Sp}(\mathbb{X})$ , for which the algebra  $A(\Omega)$  is connected and noetherian (of course, a similar statement is true for  $\mathbb{Y}$ , too). This shows that there exists a unique bijection  $Y \xrightarrow{\Phi_c} X$  making the diagram (14) commutative. Let  $x \in X$  and  $y = \Phi_c^{-1}(x)$ . Proposition 3.18 implies that  $\Phi_c^{-1}(\overline{\{x\}}) = \overline{\{y\}}$ . Hence, the map  $\Phi_c$  is continuous. Let  $Z \subseteq X$  be any closed subset and  $W := \varphi^{-1}(Z)$ . We put:  $U := U \setminus Z$  and  $V := Y \setminus W$ . Then we have a commutative diagram of categories and functors



where  $\Phi_{\mid}$  and  $\Phi_U$  denote the restricted and induced equivalences of the corresponding categories. Let  $Z(\mathsf{QCoh}(\mathbb{U})) \xrightarrow{\psi_U} Z(\mathsf{QCoh}(\mathbb{V}))$  be the map of centers induced by  $\Phi_U$ . The characterization of the subcategory  $\mathsf{QCoh}_Z(\mathbb{X})$  in the terms of indecomposable injective objects (see Proposition 4.3) combined with Corollary 2.12 imply that the collection of ring isomorphisms  $(\psi_U)_{U\subseteq X}$  defines a sheaf isomorphism  $\mathcal{O}_X \to (\Phi_c)_* \mathcal{O}_Y$ . Hence,  $Y \xrightarrow{\Phi_c} X$  is an isomorphism of schemes, as asserted.  $\Box$ 

**Summary** (Reconstruction of the central scheme). Let  $\mathbb{X} = (X, \mathcal{A})$  be a central nons.

- Consider the set  $S = S(\mathbb{X})$ , whose elements are maximal finite subsets  $\Omega \subset \mathsf{Sp}(\mathbb{X})$  such that the algebra  $A(\Omega)$  is noetherian and connected.
- Define the topology on S by the following rules:
  - For any  $\Omega', \Omega'' \in S(\mathbb{X})$  we say that

$$\Omega'' \in \{\Omega'\}$$
 if and only if  $\mathsf{Hom}_{\mathbb{X}}(\mathcal{I}(\Omega'), \mathcal{I}(\Omega'')) \neq 0$ 

- By definition, any non-trivial closed subset of S has the form

$$Z(\Omega_1,\ldots,\Omega_n) := \bigcup_{i=1}^n \overline{\{\Omega_i\}},$$

where  $\Omega_1, \ldots, \Omega_n \in S$  are such that  $\Omega_i \notin \overline{\{\Omega_j\}}$  for all  $1 \leq i \neq j \leq n$ .

- For any open subset  $U = U(\Omega_1, \ldots, \Omega_n) := S \setminus Z(\Omega_1, \ldots, \Omega_n)$ , let C(Z) be the smallest localizing subcategory of  $QCoh(\mathbb{X})$  containing  $\mathcal{I}(\Omega_1) \oplus \cdots \oplus \mathcal{I}(\Omega_n)$  and  $\Gamma(U, \mathcal{R}) := Z(QCoh(\mathbb{X})/C(Z))$
- Finally, let  $\widetilde{U} \subseteq U$  be a pair of open subsets,  $Z := X \setminus U$ ,  $\widetilde{Z} := X \setminus \widetilde{U}$  and  $\Gamma(U, \mathcal{R}) \to \Gamma(\widetilde{U}, \mathcal{R})$  be the map of categorical centers induced by the localization functor  $\mathsf{QCoh}(\mathbb{X})/\mathsf{C}(Z) \to \mathsf{QCoh}(\mathbb{X})/\mathsf{C}(\widetilde{Z})$ .

Then S is a topological space and  $\mathcal{R}$  is a sheaf of commutative rings on S. Moreover, the ringed spaces  $(X, \mathcal{O})$  and  $(S, \mathcal{R})$  are isomorphic. The corresponding isomorphism of topological spaces  $X \to S(\mathbb{X})$  is given by the rule  $x \mapsto \alpha^{-1}(x)$ , where  $\alpha$  is the map given by (12). In other words, the underlying commutative scheme X of a central non– commutative noetherian scheme X can be recovered from the category  $\mathsf{QCoh}(\mathbb{X})$ . This provides a generalization of the classical reconstruction result of Gabriel [14, Section VI.3] on the non–commutative setting.

4.2. **Proof of Morita theorem.** For a news  $\mathbb{X} = (X, \mathcal{A})$  we put:  $\mathbb{X}^{\circ} := (X, \mathcal{A}^{\circ})$ . Next,  $\mathsf{VB}(\mathbb{X})$  (respectively,  $\mathsf{VB}(\mathbb{X}^{\circ})$ ) will denote the category of coherent sheaves on  $\mathbb{X}$  (respectively,  $\mathbb{X}^{\circ}$ ) which are locally projective over  $\mathcal{A}$  (respectively, over  $\mathcal{A}^{\circ}$ ).

**Definition 4.5.** Let X be a nens. Then  $\mathcal{P} \in \mathsf{VB}(X^\circ)$  is a *local right progenerator* of X if  $\mathsf{add}(\mathcal{P}_x) = \mathsf{add}(A_x)$  for all  $x \in X$ .

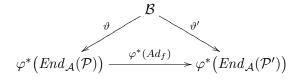
**Theorem 4.6.** Let  $\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\Phi} \mathsf{QCoh}(\mathbb{Y})$  be an equivalence of categories, where  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$  are central news. Then there exist a pair  $(\mathcal{P}, \vartheta)$ , where

•  $\mathcal{P} \in \mathsf{VB}(\mathbb{X}^\circ)$  is a local right progenerator

• 
$$\mathcal{B} \xrightarrow{\vartheta} \varphi^*(End_{\mathcal{A}}(\mathcal{P}))$$
 is an isomorphism of  $\mathcal{O}_Y$ -algebras

such that  $\Phi \cong \Phi_{\mathcal{P},\vartheta,\varphi} := \vartheta^{\sharp} \cdot \varphi^* \cdot (\mathcal{P} \otimes_{\mathcal{A}} -)$ , where  $\varphi = \Phi_c : Y \longrightarrow X$  is the scheme isomorphism induced by the equivalence  $\Phi$  (see Theorem 4.4) and  $\vartheta^{\sharp}$  is the equivalence of categories induced by  $\vartheta$ .

If  $(\mathcal{P}', \vartheta')$  is another pair representing  $\Phi$  (i.e  $\Phi \cong \Phi_{\mathcal{P}', \vartheta', \varphi}$ ) then there exists a unique isomorphism  $\mathcal{P} \xrightarrow{f} \mathcal{P}'$  in  $\mathsf{VB}(\mathbb{X}^\circ)$  such that the diagram



is commutative.

Conversely, if  $Y \xrightarrow{\varphi} X$  is an isomorphism of schemes,  $\mathcal{P} \in \mathsf{VB}(\mathbb{X}^\circ)$  is a local right progenerator and  $\mathcal{B} \xrightarrow{\vartheta} \varphi^*(End_{\mathcal{A}}(\mathcal{P}))$  is an isomorphism of  $\mathcal{O}_Y$ -algebras then  $\Phi := \Phi_{\mathcal{P},\vartheta,\varphi}$ is an equivalence of categories such that  $\Phi_c = \varphi$ .

*Proof.* The last part of the theorem is obvious. Hence, it is sufficient to prove the following <u>Statement</u>. Let  $QCoh(\mathbb{X}) \xrightarrow{\Phi} QCoh(\widetilde{\mathbb{X}})$  be a central equivalence of categories, where  $\mathbb{X} = (X, \mathcal{A})$  and  $\widetilde{\mathbb{X}} = (X, \widetilde{\mathcal{A}})$  are two central nons with the same underlying commutative scheme X. Then  $\Phi \cong \mathcal{P} \otimes_{\mathcal{A}} -$ , where  $\mathcal{P} \in VB(\mathbb{X}^{\circ})$  is a balanced central  $(\widetilde{\mathcal{A}} - \mathcal{A})$ -bimodule which is a local right progenerator of X.

<u>Claim</u>. For any open subset  $U \stackrel{\iota}{\longrightarrow} X$  put:  $\Phi_U := \iota^* \Phi \iota_* : \mathsf{QCoh}(\mathbb{U}) \longrightarrow \mathsf{QCoh}(\widetilde{\mathbb{U}})$ . Then  $\Phi_U$  is an equivalence of categories and in the following diagram of categories and functors

(15) 
$$\begin{array}{c} \mathsf{QCoh}(\mathbb{X}) & \xrightarrow{\imath^*} \to \mathsf{QCoh}(\mathbb{U}) \\ \Phi & & & & \downarrow \Phi_U \\ \mathsf{QCoh}(\widetilde{\mathbb{X}}) & \xrightarrow{\imath^*} \to \mathsf{QCoh}(\widetilde{\mathbb{U}}) \end{array}$$

both compositions of functors are isomorphic.

Indeed, let  $Z := X \setminus U$ . Then  $\Phi$  restricts to an equivalence of the categories  $\operatorname{\mathsf{QCoh}}_Z(\mathbb{X}) \to \operatorname{\mathsf{QCoh}}_Z(\widetilde{\mathbb{X}})$  (at this place, we use *centrality* of  $\Phi$ ). The universal property of the Serre quotient category implies that there exists an equivalence of categories  $\operatorname{\mathsf{QCoh}}(\mathbb{U}) \xrightarrow{\Psi_U} \operatorname{\mathsf{QCoh}}(\widetilde{\mathbb{U}})$  such that  $\Psi_U \imath^* \cong \imath^* \Phi$ . Since  $\imath^* \imath_* = \operatorname{\mathsf{Id}}_{\mathbb{U}}$ , we conclude that  $\Phi_U \cong \Psi_U$ , hence  $\Phi_U$  is an equivalence of categories. One can check that the natural transformation  $\imath^* \Phi \xrightarrow{\zeta_U} \Phi_U \imath^*$ , induced by the adjunction unit  $\operatorname{\mathsf{Id}}_{\mathbb{X}} \to \imath_* \imath^*$ , is an isomorphism. This proves the claim. Let  $V \xrightarrow{\varepsilon} U$  be an open subset and  $\jmath := \imath \varepsilon$ . Since  $\imath_* \varepsilon_* = \jmath_*$  and  $\varepsilon^* \imath^* = \jmath^*$ , we conclude:

(16) 
$$\Phi_V = \varepsilon^* \Phi_U \varepsilon_*.$$

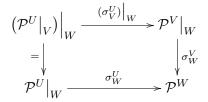
Assume now that U is affine. Then there exists a central  $(\widetilde{\mathcal{A}}_U - \mathcal{A}_U)$ -Morita bimodule  $\mathcal{P}^U \in \mathsf{VB}(\mathbb{U}^\circ)$  and an isomorphism of functors  $\Phi_U \xrightarrow{\xi_U} \mathcal{P}^U \otimes_{\mathcal{A}_U} -$ . Then for any  $\mathcal{G} \in \mathsf{QCoh}(\mathbb{V})$ , we get natural isomorphisms

(17) 
$$\varepsilon^* \Phi_U \varepsilon_* (\mathcal{G}) \longrightarrow \varepsilon^* (\mathcal{P}^U \otimes_{\mathcal{A}_U} \varepsilon_* (\mathcal{G})) \longrightarrow \mathcal{P}^U \Big|_V \otimes_{\mathcal{A}_V} \mathcal{G},$$

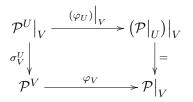
where we use that  $\varepsilon^* \varepsilon_* = \mathsf{Id}_{\mathbb{V}}$ .

Let  $\mathcal{P}^U|_V \otimes_{\mathcal{A}_V} - \xrightarrow{\tilde{\sigma}^U_V} \mathcal{P}^V \otimes_{\mathcal{A}_V} -$  be the unique isomorphism of functors making the following diagram of functors and natural transformations

commutative, where  $\xi_U|_V$  is the isomorphism of functors defined by (17). According to Theorem 2.2 (classical Morita theorem for rings), there exists a uniquely determined isomorphism of  $(\widetilde{\mathcal{A}}_V - \mathcal{A}_V)$ -bimodules  $\mathcal{P}^U|_V \xrightarrow{\sigma_V^U} \mathcal{P}^V$ , which induces the natural transformation  $\widetilde{\sigma}_V^U$ . It follows from (16) and (18) that for any triple  $W \subseteq V \subseteq U$  of open affine subsets of X, the following diagram



is commutative. Hence, there exists an  $(\widetilde{\mathcal{A}} - \mathcal{A})$ -bimodule  $\mathcal{P}$  and a family of isomorphisms of  $(\widetilde{\mathcal{A}}_U - \mathcal{A}_U)$ -bimodules  $\mathcal{P}^U \xrightarrow{\varphi_U} \mathcal{P}|_U$  (for any  $U \subseteq X$  open and affine) such that



is commutative for any pair of open affine subsets  $V \subseteq U$  of X. It is clear that  $\mathcal{P}$  is a central balanced  $(\widetilde{\mathcal{A}} - \mathcal{A})$ -bimodule such that  $\mathsf{add}(\mathcal{P}_x) = \mathsf{add}(A_x)$  for any  $x \in X$ . Moreover, the datum  $(\mathcal{P}, (\varphi_U)_{U \subseteq X})$  is unique up to a unique isomorphism.

Finally, for any  $\mathcal{F} \in \mathsf{QCoh}(\mathbb{X})$  and  $U \subseteq X$  open and affine, we have an isomorphism  $\Phi(\mathcal{F})|_U \longrightarrow (\mathcal{P} \otimes_{\mathcal{A}} \mathcal{F})|_U$  defined as the composition

$$\Phi(\mathcal{F})\big|_U \xrightarrow{\zeta_U^{\mathcal{F}}} \Phi_U(\mathcal{F}\big|_U) \xrightarrow{\xi_U^{\mathcal{F}}\big|_U} \mathcal{P}^U \otimes_{\mathcal{A}_U} \mathcal{F}\big|_U \xrightarrow{\varphi_U \otimes \mathsf{id}} \mathcal{P}\big|_U \otimes_{\mathcal{A}_U} \mathcal{F}\big|_U \xrightarrow{\mathsf{can}} (\mathcal{P} \otimes_{\mathcal{A}} \mathcal{F})\big|_U.$$

It follows that these isomorphisms are compatible with restrictions on open affine subsets and define a global isomorphism of left  $\widetilde{\mathcal{A}}$ -modules  $\Phi(\mathcal{F}) \xrightarrow{\vartheta^{\mathcal{F}}} \mathcal{P} \otimes_{\mathcal{A}} \mathcal{F}$ , which is natural in  $\mathcal{F}$ . Hence, we have constructed an isomorphism of functors  $\Phi \cong \mathcal{P} \otimes_{\mathcal{A}} -$  we were looking for. The uniqueness of  $\mathcal{P}$  follows from the corresponding result in the affine case.  $\Box$ 

**Remark 4.7.** In the case when  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$  are non-swith X and Y being locally of finite type over a field  $\mathbb{k}$ , some related results about equivalences between the categories  $\mathsf{Coh}(\mathbb{X})$  and  $\mathsf{Coh}(\mathbb{Y})$  can also be found in [2, Section 6].

## 5. CĂLDĂRARU'S CONJECTURE ON AZUMAYA ALGEBRAS ON NOETHERIAN SCHEMES

Let X be a noetherian scheme and  $\mathcal{A}$  be a sheaf of  $\mathcal{O}$ -algebras, which is a locally free coherent sheaf of finite rank on X. Then we have a canonical morphism of  $\mathcal{O}$ -algebras  $\mathcal{A} \otimes_{\mathcal{O}} \mathcal{A}^{\circ} \xrightarrow{\mu} End_{\mathcal{O}}(\mathcal{A})$ , given on the level of local sections by the rule  $a \otimes b \mapsto (c \mapsto acb)$ . Recall that  $\mathcal{A}$  is an Azumaya algebra on X if  $\mu$  is an isomorphism. This is equivalent to the condition that  $\mathcal{A}|_x := A_x \otimes_{\mathcal{O}_x} (\mathcal{O}_x/\mathfrak{m}_x)$  is a central simple  $\mathcal{O}_x/\mathfrak{m}_x$ -algebra for any point  $x \in X$ ; see [30, Proposition IV.2.1]. It follows that an Azumaya algebra on X is automatically central. Moreover, for any pair of Azumaya algebras  $\mathcal{A}_1$  and  $\mathcal{A}_2$  on X, their tensor product  $\mathcal{A}_1 \otimes_{\mathcal{O}} \mathcal{A}_2$  is again an Azumaya algebra.

Let  $\mathcal{A}$  be an Azumaya algebra on X,  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathcal{P} \in \mathsf{VB}(\mathbb{X}^\circ)$  be a local right progenerator of  $\mathbb{X}$ . Then  $\widetilde{\mathcal{A}} := End_{\mathcal{A}}(\mathcal{P})$  is again an Azumaya algebra on X (since  $\widetilde{\mathcal{A}}|_x$  is again a central simple  $O_x/\mathfrak{m}_x$ -algebra algebra for any  $x \in X$ ). If  $\widetilde{\mathbb{X}} = (X, \widetilde{\mathcal{A}})$  then

$$\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\mathcal{P} \otimes_{\mathcal{A}} -} \mathsf{QCoh}(\widetilde{\mathbb{X}})$$

is a central equivalence of categories.

Let  $\mathcal{A}$  and  $\mathcal{B}$  be two Azumaya algebras on X. We put:  $\mathbb{X} = (X, \mathcal{A})$  and  $\widetilde{\mathbb{X}} = (X, \mathcal{B})$ .

- A and B are centrally Morita equivalent (denoted A ≈ B) if there exists a central equivalence of categories QCoh(X) → QCoh(X)
- $\mathcal{A}$  and  $\mathcal{B}$  are *equivalent* (denoted  $\mathcal{A} \sim \mathcal{B}$ ) provided there exist  $\mathcal{F}, \mathcal{G} \in \mathsf{VB}(X)$  such that  $End_{\mathcal{O}}(\mathcal{F}) \otimes_{\mathcal{O}} \mathcal{A}$  and  $End_{\mathcal{O}}(\mathcal{G}) \otimes_{\mathcal{O}} \mathcal{B}$  are isomorphic as  $\mathcal{O}$ -algebras.

The second relation is indeed an equivalence relation. The set Br(X) of equivalence classes of Azumaya algebras on X, endowed with the operation

$$\left[\mathcal{A}_{1}
ight]+\left[\mathcal{A}_{2}
ight]:=\left[\mathcal{A}_{1}\otimes_{\mathcal{O}}\mathcal{A}_{2}
ight]$$

is a commutative group (called *Brauer group* of the scheme X). Recall that the class  $[\mathcal{O}]$  is the neutral element of Br(X), whereas  $-[\mathcal{A}] = [\mathcal{A}^{\circ}]$ ; see [30, Section IV.2].

**Lemma 5.1.** Let  $\mathcal{A}, \mathcal{B}$  be Azumaya algebras on X such that  $\mathcal{A} \approx \mathcal{B}$ . Then for any Azumaya algebra  $\mathcal{C}$  on X we have:  $\mathcal{A} \otimes_{\mathcal{O}} \mathcal{C} \approx \mathcal{B} \otimes_{\mathcal{O}} \mathcal{C}$ .

Proof. Since  $\mathcal{A} \approx \mathcal{B}$ , there exists a local right progenerator  $\mathcal{P}$  for  $\mathcal{A}$  and an isomorphism of  $\mathcal{O}$ -algebras  $\mathcal{B} \xrightarrow{\vartheta} End_{\mathcal{A}}(\mathcal{P})$ . Then we get an induced isomorphism of  $\mathcal{O}$ -algebras  $\mathcal{B} \otimes_{\mathcal{O}} \mathcal{C} \xrightarrow{\tilde{\vartheta}} End_{\mathcal{A} \otimes_{\mathcal{O}} \mathcal{C}}(\mathcal{P} \otimes_{\mathcal{O}} \mathcal{C})$  given as the composition

$$\mathcal{B} \otimes_{\mathcal{O}} \mathcal{C} \xrightarrow{\vartheta \otimes \mathsf{Id}} End_{\mathcal{A}}(\mathcal{P}) \otimes_{\mathcal{O}} \mathcal{C} \longrightarrow End_{\mathcal{A} \otimes_{\mathcal{O}} \mathcal{C}}(\mathcal{P} \otimes_{\mathcal{O}} \mathcal{C}).$$

Note that  $\mathcal{P} \otimes_{\mathcal{O}} \mathcal{C}$  is a local right progenerator for  $\mathcal{A} \otimes_{\mathcal{O}} \mathcal{C}$ . Moreover,  $\mathcal{O}$  is the center of  $\mathcal{A} \otimes_{\mathcal{O}} \mathcal{C}$  and  $\mathcal{B} \otimes_{\mathcal{O}} \mathcal{C}$  (since they both are Azumaya algebras), implying the statement.  $\Box$ 

The proof of the following result is basically a replica of [8, Theorem 1.3.15].

**Proposition 5.2.** Let  $\mathcal{A}$  and  $\mathcal{B}$  be two Azumaya algebras on X. Then we have:

 $\mathcal{A} \sim \mathcal{B}$  if and only if  $\mathcal{A} \approx \mathcal{B}$ .

Proof. Let  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (X, \mathcal{B})$  If  $\mathcal{A} \sim \mathcal{B}$  then there exist  $\mathcal{F}, \mathcal{G} \in \mathsf{VB}(X)$  and an isomorphism of  $\mathcal{O}$ -algebras  $End_{\mathcal{O}}(\mathcal{F}) \otimes_{\mathcal{O}} \mathcal{A} \xrightarrow{\vartheta} End_{\mathcal{O}}(\mathcal{G}) \otimes_{\mathcal{O}} \mathcal{B}$ . Let  $\mathcal{P} := \mathcal{F} \otimes_{\mathcal{O}} \mathcal{A}$ and  $\mathcal{Q} := \mathcal{G} \otimes_{\mathcal{O}} \mathcal{B}$ . Then  $\mathcal{P}$  is a local right progenerator for  $\mathcal{A}$  and  $\mathcal{Q}$  is a local right progenerator for  $\mathcal{B}$ . Let  $\widetilde{\mathcal{A}} := End_{\mathcal{A}}(\mathcal{P})$  and  $\widetilde{\mathcal{B}} := End_{\mathcal{B}}(\mathcal{Q})$ . Then we have isomorphisms of  $\mathcal{O}$ -algebras  $\widetilde{\mathcal{A}} \cong End_{\mathcal{O}}(\mathcal{F}) \otimes_{\mathcal{O}} \mathcal{A}$  and  $\widetilde{\mathcal{B}} \cong End_{\mathcal{O}}(\mathcal{G}) \otimes_{\mathcal{O}} \mathcal{B}$  as well as central equivalences of categories

$$\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\mathcal{P} \otimes_{\mathcal{A}} -} \mathsf{QCoh}(\widetilde{\mathbb{X}}) \xleftarrow{\vartheta^{\sharp}} \mathsf{QCoh}(\widetilde{\mathbb{Y}}) \xleftarrow{\mathcal{Q} \otimes_{\mathcal{B}} -} \mathsf{QCoh}(\mathbb{Y}),$$

where  $\widetilde{\mathbb{X}} = (X, \widetilde{\mathcal{A}})$  and  $\widetilde{\mathbb{Y}} = (X, \widetilde{\mathcal{B}})$ . Hence,  $\mathcal{A} \approx \mathcal{B}$ . Conversely, assume that  $\mathcal{A} \approx \mathcal{B}$ . Then we have:

$$\mathcal{O} \approx End_{\mathcal{O}}(\mathcal{A}) \cong \mathcal{A} \otimes_{\mathcal{O}} \mathcal{A}^{\circ} \approx \mathcal{B} \otimes_{\mathcal{O}} \mathcal{A}^{\circ},$$

where the last central equivalence exists by Lemma 5.1. Hence, there exists  $\mathcal{F} \in \mathsf{VB}(X)$ and an isomorphism of  $\mathcal{O}$ -algebras  $End_{\mathcal{O}}(\mathcal{F}) \xrightarrow{\vartheta} \mathcal{B} \otimes_{\mathcal{O}} \mathcal{A}^{\circ}$ . Then we get the following induced isomorphism of  $\mathcal{O}$ -algebras:

$$End_{\mathcal{O}}(\mathcal{F}) \otimes_{\mathcal{O}} \mathcal{A} \xrightarrow{\vartheta \otimes \mathsf{id}} \mathcal{B} \otimes_{\mathcal{O}} \mathcal{A}^{\circ} \otimes_{\mathcal{O}} \mathcal{A} \xrightarrow{\mathsf{can}} \mathcal{A} \otimes_{\mathcal{O}} \mathcal{A}^{\circ} \otimes_{\mathcal{O}} \mathcal{B} \xrightarrow{\mu \otimes \mathsf{id}} End_{\mathcal{O}}(\mathcal{A}) \otimes_{\mathcal{O}} \mathcal{B}.$$

Hence,  $\mathcal{A} \sim \mathcal{B}$ , as asserted.

**Theorem 5.3.** Let X and Y be two separated noetherian schemes,  $\mathcal{A}$  be an Azumaya algebra on X,  $\mathcal{B}$  be an Azumaya algebra on Y,  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$ . Then the categories  $\mathsf{QCoh}(\mathbb{X})$  and  $\mathsf{QCoh}(\mathbb{Y})$  are equivalent if and only if there exists an isomorphism of schemes  $Y \xrightarrow{f} X$  such that  $f^*([\mathcal{A}]) = [\mathcal{B}] \in \mathsf{Br}(Y)$ .

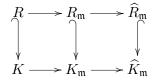
*Proof.* If  $Y \xrightarrow{f} X$  is such that  $f^*([\mathcal{A}]) = [\mathcal{B}] \in Br(X)$  then equivalence of  $QCoh(\mathbb{X})$  and  $QCoh(\mathbb{Y})$  is a consequence of Proposition 5.2.

Conversely, let  $\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\Phi} \mathsf{QCoh}(\mathbb{Y})$  be an equivalence of categories. Since both nons  $\mathbb{X}$  and  $\mathbb{Y}$  are central, Theorem 4.4 yields an induced isomorphism of schemes  $Y \xrightarrow{f} X$ , where  $f = \Phi_c$ . It follows that  $\mathcal{B} \approx f^*(\mathcal{A})$ . By Proposition 5.2 we get:  $\mathcal{B} \sim f^*(\mathcal{A})$ .

**Remark 5.4.** Theorem 5.3 was conjectured by Căldăraru in [9, Conjecture 1.3.17]. In the case of smooth projective varieties over a field, it was proved by Canonaco and Stellari [10, Corollary 5.3]. In the full generality, Căldăraru' conjecture was proven by Antieau [1, Theorem 1.1], based on a previous work of Perego [31] and the theory of derived Azumaya algebras of Toën [36]. In our opinion, the given proof of Caldararu's conjecture (in which Theorem 4.4 plays a key role) is significantly simpler.

## 6. LOCAL MODIFICATION THEOREM

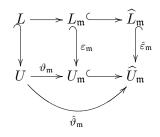
In this section, let R be a connected reduced excellent commutative ring of Krull dimension one and  $K = \operatorname{Quot}(R)$  be its total ring of fractions (which is isomorphic to a finite product of fields). For any  $\mathfrak{m} \in \operatorname{Max}(R)$ , we have a multiplicatively closed set  $S_{(\mathfrak{m})} := R \setminus \{\mathfrak{m}\} \subset R$ . Then we have:  $K_{\mathfrak{m}} := S_{(\mathfrak{m})}^{-1}K \cong \operatorname{Quot}(R_{\mathfrak{m}})$ . Next, we have a commutative diagram of rings and canonical ring homomorphisms



where  $\widehat{K}_{\mathfrak{m}} = \operatorname{Quot}(\widehat{R}_{\mathfrak{m}})$ . Since R is excellent, the completion  $\widehat{R}_{\mathfrak{m}}$  is a reduced ring (see e.g. [13]) and  $\operatorname{Quot}(\widehat{R}_{\mathfrak{m}})$  is isomorphic to a finite product of fields. Note that the canonical ring homomorphism  $K \otimes_R \widehat{R}_{\mathfrak{m}} \to \widehat{K}_{\mathfrak{m}}$  is an isomorphism.

Let U be a finitely generated K-module and  $L \subset U$  a finitely generated R-submodule such that  $K \cdot L = U$ . Then L is automatically a torsion free R-module and the canonical map  $K \otimes_R L \to U$  is an isomorphism. We shall also say that L is an R-lattice in (its rational envelope) U.

For any  $\mathfrak{m} \in \mathsf{Max}(R)$  we put:  $U_{\mathfrak{m}} = K_{\mathfrak{m}} \otimes_{K} U$  and  $\widehat{U}_{\mathfrak{m}} := \widehat{K}_{\mathfrak{m}} \otimes_{K} U$  as well as  $L_{\mathfrak{m}} := R_{\mathfrak{m}} \otimes_{R} L$ and  $\widehat{L}_{\mathfrak{m}} := \widehat{R}_{\mathfrak{m}} \otimes_{R} L$ . Using the canonical ring homomorphisms  $K \otimes_{R} R_{\mathfrak{m}} \to K_{\mathfrak{m}}$  and  $K \otimes_{R} \widehat{R}_{\mathfrak{m}} \to \widehat{K}_{\mathfrak{m}}$ , we can view  $L_{\mathfrak{m}}$  as an  $R_{\mathfrak{m}}$ -lattice in  $U_{\mathfrak{m}}$  and  $\widehat{L}_{\mathfrak{m}}$  as an  $\widehat{R}_{\mathfrak{m}}$ -lattice in  $\widehat{U}_{\mathfrak{m}}$ . Next, we have the following commutative diagram:





in which all maps are the canonical ones.

Lemma 6.1. In the above notation we have:

(20) 
$$L = \left\{ x \in U \, \big| \, \hat{\vartheta}_{\mathfrak{m}}(x) \in \mathsf{Im}(\hat{\varepsilon}_{\mathfrak{m}}) \text{ for all } \mathfrak{m} \in \mathsf{Max}(R) \right\}.$$

*Proof.* For any  $\mathfrak{m} \in \mathsf{Max}(R)$  we have:  $L_{\mathfrak{m}} = \widehat{L}_{\mathfrak{m}} \cap U_{\mathfrak{m}}$ , where the intersection is taken inside  $\widehat{U}_{\mathfrak{m}}$ ; see for instance [34, Theorem 5.2]. Hence, it is sufficient to show that

 $L = \widetilde{L} := \left\{ x \in U \, \big| \, \vartheta_{\mathfrak{m}}(x) \in \mathsf{Im}(\varepsilon_{\mathfrak{m}}) \text{ for all } \mathfrak{m} \in \mathsf{Max}(R) \right\}.$ 

It is clear that  $L \subseteq \widetilde{L}$ , hence we only need to prove the opposite inclusion. Let  $x \in \widetilde{L}$ and  $I := \{a \in R \mid ax \in L\}$ . By definition of  $\widetilde{L}$ , for any  $\mathfrak{m} \in Max(R)$  there exists  $t \in S_{(\mathfrak{m})}$ such that  $tx \in L$ . Since  $t \in I \setminus \mathfrak{m}$ , we conclude that  $I \not\subset \mathfrak{m}$  for any  $\mathfrak{m} \in Max(R)$ . As a consequence, I = A and  $x \in L$ , as asserted.

**Theorem 6.2** (Local modification theorem). Let U be a finitely generated K-module,  $L \subset U$  an R-lattice and  $\Omega \subset \mathsf{Max}(R)$  a finite subset such that for any  $\mathfrak{m} \in \Omega$  we are given an  $\widehat{R}_{\mathfrak{m}}$ -lattice  $N(\mathfrak{m}) \subset \widehat{U}_{\mathfrak{m}}$ . Then there exists a unique lattice  $N \subset U$  (local modification of L) such that for any  $\mathfrak{m} \in \mathsf{Max}(R)$  we have:

(21) 
$$\widehat{N}_{\mathfrak{m}} = \begin{cases} \widehat{L}_{\mathfrak{m}} & \text{if } \mathfrak{m} \notin \Omega\\ N(\mathfrak{m}) & \text{if } \mathfrak{m} \in \Omega, \end{cases}$$

where  $\widehat{N}_{\mathfrak{m}}$  is viewed as a subset of  $\widehat{U}_{\mathfrak{m}}$ .

Proof. In order to prove the existence of N, we first consider the following special <u>Case 1</u>. Suppose that  $N(\mathfrak{m}) \subseteq \widehat{L}_{\mathfrak{m}}$  for all  $\mathfrak{m} \in \Omega$ . Since the  $\widehat{R}_{\mathfrak{m}}$ -modules  $N(\mathfrak{m})$  and  $\widehat{L}_{\mathfrak{m}}$ have the same rational envelope  $\widehat{U}_{\mathfrak{m}}$ , the  $\widehat{R}_{\mathfrak{m}}$ -module  $T(\mathfrak{m}) := \widehat{L}_{\mathfrak{m}}/N(\mathfrak{m})$  has finite length. Consequently,  $T(\mathfrak{m})$  has finite length viewed as an R-module and  $\operatorname{Supp}(T(\mathfrak{m})) = \{\mathfrak{m}\}$ . We have a surjective homomorphism of R-modules  $L \xrightarrow{c(\mathfrak{m})} T(\mathfrak{m})$  given as the composition  $L \to \widehat{L}_{\mathfrak{m}} \twoheadrightarrow T(\mathfrak{m})$ . Let  $T = \bigoplus_{\mathfrak{m} \in \Omega} T(\mathfrak{m})$ . Then we get an R-module homomorphism  $L \xrightarrow{c} T$ , whose components are the maps  $c(\mathfrak{m})$  defined above. By construction, the map  $\widehat{L}_{\mathfrak{m}} \xrightarrow{\widehat{c}_{\mathfrak{m}}} \widehat{T}_{\mathfrak{m}}$  is surjective for all  $\mathfrak{m} \in \operatorname{Max}(R)$ . As consequence, the map c is surjective, too. Let N be the kernel of c. Then N is a noetherian R-module,  $K \cdot N = K \cdot L = U$  and completions  $\widehat{N}_{\mathfrak{m}} \subset \widehat{U}_{\mathfrak{m}}$  are given by the formula (21) for any  $\mathfrak{m} \in \operatorname{Max}(R)$ . <u>Case 2</u>. Consider now the general case, where  $N(\mathfrak{m}) \subset \widehat{U}_{\mathfrak{m}}$  is an arbitrary  $\widehat{R}_{\mathfrak{m}}$ -lattice for  $\mathfrak{m} \in \Omega$ . Since  $\widehat{K}_{\mathfrak{m}} (\widehat{L}_{\mathfrak{m}} + N(\mathfrak{m})) = \widehat{K}_{\mathfrak{m}} (\widehat{L}_{\mathfrak{m}} - \widehat{L}_{\mathfrak{m}}$  the  $\widehat{R}_{\mathfrak{m}}$ -module  $X(\mathfrak{m}) := (\widehat{L}_{\mathfrak{m}} + N(\mathfrak{m}))/\widehat{L}_{\mathfrak{m}}$ 

 $\underbrace{\mathbb{C}}_{\mathfrak{m}} = \underline{\mathbb{C}}_{\mathfrak{m}} \text{ for a class, where <math>N(\mathfrak{m}) \subset \mathbb{C}_{\mathfrak{m}}$  is an arbitrary  $\mathcal{V}_{\mathfrak{m}}$  interest for  $\mathfrak{m} \in \Omega$ . Since  $\widehat{K}_{\mathfrak{m}} \cdot (\widehat{L}_{\mathfrak{m}} + N(\mathfrak{m})) = \widehat{K}_{\mathfrak{m}} \cdot \widehat{L}_{\mathfrak{m}} = \widehat{U}_{\mathfrak{m}}$ , the  $\widehat{R}_{\mathfrak{m}}$ -module  $X(\mathfrak{m}) := (\widehat{L}_{\mathfrak{m}} + N(\mathfrak{m}))/\widehat{L}_{\mathfrak{m}}$  has finite length. It follows that  $X(\mathfrak{m})$  has also finite length viewed as R-module and  $\operatorname{Supp}(X(\mathfrak{m})) = \{\mathfrak{m}\}$ . Hence, there exists  $l \in \mathbb{N}$  such that  $\mathfrak{m}^{l} \cdot X(\mathfrak{m}) = 0$ .

Let  $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_r\}$  be the set of minimal prime ideals of R. Then  $D := \mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_r$  is the set of zero divisors of R. By prime avoidance,  $\mathfrak{m}^l \not\subseteq D$ , hence there exists  $a^{(\mathfrak{m})} \in \mathfrak{m}^l \setminus D$  such that  $a^{(\mathfrak{m})}X(\mathfrak{m}) = 0$ , i.e.  $a^{(\mathfrak{m})}N(\mathfrak{m}) \subseteq \widehat{L}_{\mathfrak{m}}$ . Let  $a := \prod_{\mathfrak{m}\in\Omega} a^{(\mathfrak{m})}$ . Then a is a regular element in the ring R and  $aN(\mathfrak{m}) \subseteq \widehat{L}_{\mathfrak{m}}$  for any  $\mathfrak{m} \in \Omega$ .

Now we put  $M := \frac{1}{a}L \subset U$ . Then M is a lattice in  $U, L \subseteq M$  and  $N(\mathfrak{m}) \subseteq \widehat{L}_{\mathfrak{m}}$  for any  $\mathfrak{m} \in \Omega$ . Let  $\Sigma := \{\mathfrak{m} \in \mathsf{Max}(R) \mid a \in \mathfrak{m}\} = \mathsf{Supp}(R/(a))$ . Then according to Case 1, there exists a sublattice  $N \subseteq M$  such that

$$\widehat{N}_{\mathfrak{m}} = \begin{cases} \widehat{M}_{\mathfrak{m}} & \text{if } \mathfrak{m} \notin \Sigma \cup \Omega \\ \widehat{L}_{\mathfrak{m}} & \text{if } \mathfrak{m} \in \Sigma \setminus \Omega \\ N(\mathfrak{m}) & \text{if } \mathfrak{m} \in \Omega. \end{cases}$$

This proves the existence of an R-lattice  $N \subset U$  with the prescribed completions (21). The uniqueness of N is a consequence of Lemma 6.1.

**Remark 6.3.** The statement of Theorem 6.2 must be well-known to the experts. In the case when R is an integral domain, it can be for instance found in [4, Théorème VII.4.3]. However, we were not able to find a proof of this result in the full generality in the known literature. Since it plays a crucial role in our study of non-commutative curves, we decided to include a detailed proof for the sake of completeness and reader's convenience.

Let  $\Lambda$  be a semi–simple K–algebra. Recall that a subring  $A \subset \Lambda$  is an R-order if  $R \cdot A = A$ , A is finitely generated R-module and  $K \cdot A = \Lambda$ . Note that for any  $\mathfrak{m} \in \mathsf{Max}(R)$  we have:

$$\widehat{A}_{\mathfrak{m}} := \widehat{R}_{\mathfrak{m}} \otimes_R A \quad \text{and} \quad \widehat{\Lambda}_{\mathfrak{m}} := \widehat{K}_{\mathfrak{m}} \otimes_K \Lambda \cong \widehat{R}_{\mathfrak{m}} \otimes_R \Lambda \cong \widehat{K}_{\mathfrak{m}} \otimes_R A.$$

In particular,  $\widehat{A}_{\mathfrak{m}}$  is an  $\widehat{R}_{\mathfrak{m}}$ -order in the semi-simple  $\widehat{K}_{\mathfrak{m}}$ -algebra  $\widehat{\Lambda}_{\mathfrak{m}}$ .

**Proposition 6.4.** Let  $\Lambda$  be a semi-simple K-algebra and  $A \subset \Lambda$  be an R-order. Let  $\Omega \subset Max(R)$  be a finite subset such that for any  $\mathfrak{m} \in \Omega$  we are given an  $\widehat{R}_{\mathfrak{m}}$ -order  $B(\mathfrak{m}) \subset \widehat{\Lambda}_{\mathfrak{m}}$ . Then there exists a unique R-order  $B \subset \Lambda$  such that

(22) 
$$\widehat{B}_{\mathfrak{m}} = \begin{cases} \widehat{A}_{\mathfrak{m}} & \text{if } \mathfrak{m} \notin \Omega \\ B(\mathfrak{m}) & \text{if } \mathfrak{m} \in \Omega. \end{cases}$$

*Proof.* According to Theorem 6.2 there exists a uniquely determined R-lattice  $B \subset \Lambda$  with completions given by (22). We have to show that B us actually a subring. For any  $\mathfrak{m} \in \mathsf{Max}(R) \setminus \Omega$  we put:  $B(\mathfrak{m}) = \widehat{A}_{\mathfrak{m}}$ . By Lemma 6.1 we have:

$$B = \left\{ b \in \Lambda \, \big| \, \hat{\vartheta}_{\mathfrak{m}}(b) \in B(\mathfrak{m}) \text{ for all } \mathfrak{m} \in \mathsf{Max}(R) \right\}.$$

It follows that  $b_1 + b_2, b_1 \cdot b_2 \in B$  for all  $b_1, b_2 \in B$ .

**Remark 6.5.** In the notations of Theorem 6.2 one can prove in the same way that if U is a Lie algebra over K,  $L \subset U$  a Lie subalgebra over R and  $N(\mathfrak{m}) \subset \widehat{U}_{\mathfrak{m}}$  is a Lie subalgebra over  $\widehat{R}_{\mathfrak{m}}$  for any  $\mathfrak{m} \in \Omega$  then the R-lattice  $N \subset U$  is a Lie subalgebra, too.

Assume now that U is a finitely generated left  $\Lambda$ -module. An A-submodule  $L \subset U$ , which is also an R-lattice, is called A-lattice. For any  $\mathfrak{m} \in Max(R)$  we have isomorphisms

$$\widehat{L}_{\mathfrak{m}} := \widehat{A}_{\mathfrak{m}} \otimes_A L \cong \widehat{R}_{\mathfrak{m}} \otimes_R L \quad \text{and} \quad \widehat{U}_{\mathfrak{m}} := \widehat{A}_{\mathfrak{m}} \otimes_A U \cong \widehat{K}_{\mathfrak{m}} \otimes_K U \cong \widehat{R}_{\mathfrak{m}} \otimes_R U.$$

It follows that  $\widehat{L}_{\mathfrak{m}}$  is an  $\widehat{A}_{\mathfrak{m}}$ -lattice in  $\widehat{U}_{\mathfrak{m}}$ .

**Proposition 6.6.** Let U be a finitely generated  $\Lambda$ -module and  $L \subset U$  an A-lattice. Let  $\Omega \subset \mathsf{Max}(R)$  be a finite subset such that for any  $\mathfrak{m} \in \Omega$  we are given an  $\widehat{A}_{\mathfrak{m}}$ -lattice  $N(\mathfrak{m}) \subset \widehat{U}_{\mathfrak{m}}$ . Then there exists a unique A-lattice  $N \subset U$  such that

(23) 
$$\widehat{N}_{\mathfrak{m}} = \begin{cases} \widehat{L}_{\mathfrak{m}} & \text{if } \mathfrak{m} \notin \Omega\\ N(\mathfrak{m}) & \text{if } \mathfrak{m} \in \Omega \end{cases}$$

The proof of this result is the same as of Proposition 6.4.

## 7. Morita theorem for one-dimensional orders

As in the previous section, let R be a reduced excellent ring of Krull dimension one, whose total ring of fractions is K. Recall that one can also define the notion of an R-order without fixing its rational envelope first. Namely, a finite R-algebra A is an R-order if and only if it is torsion free, viewed as as R-module and the ring  $\Lambda := K \otimes_R A$  (the rational envelope of A) is semi-simple. Note that A is an R-order if and only if A is an Z(A)-order. If R = Z(A) then A is a *central* R-order. If we have a ring extension  $A \subseteq A'$ such that A' is an R-order and  $K \otimes_R A \to K \otimes_R A'$  is an isomorphism then A' is called *overorder* of A. An order without proper overorders is called *maximal*.

Analogously, a finitely generated (left) A-module L is a (left) A-lattice if L is torsion free viewed as an R-module. In this case, the  $\Lambda$ -module  $V := K \otimes_R L$  is the rational envelope of L. If we have an extension of A-modules  $L \subseteq N$  such that L, N are both A-lattices and the induced map  $K \otimes_R L \to K \otimes_R N$  is an isomorphism, then L and N are rationally equivalent and N is an overlattice of L and L is a sublattice of N, respectively.

7.1. Categorical characterization of the non-regular locus of an order. Let  $\Lambda$  be a semi-simple K-algebra and  $A \subset \Lambda$  be an R-order. Then the set

(24)  $\mathfrak{S}_A := \{\mathfrak{m} \in \mathsf{Max}(R) \mid A_\mathfrak{m} \subset \Lambda_\mathfrak{m} \text{ is not a maximal order}\} \subset \mathsf{Spec}(R)$ 

is the locus of non-regular points of A.

**Lemma 7.1.** The set  $\mathfrak{S}_A$  is finite.

*Proof.* Let  $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\}$  be the set of minimal prime ideals in  $R, R_i := R/\mathfrak{p}_i$  and  $K_i := \operatorname{\mathsf{Quot}}(R_i)$  for  $1 \le i \le r$ . Then we have injective ring homomorphisms:

$$R \longleftrightarrow R' := R_1 \times \cdots \times R_r \longleftrightarrow K_1 \times \cdots \times K_r \cong K$$

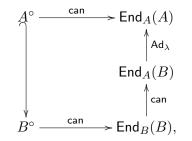
In these terms, we get a decomposition:  $\Lambda \cong \Lambda_1 \times \cdots \times \Lambda_r$ , where  $\Lambda_i$  is a finite dimensional simple  $K_i$ -algebra for all  $1 \leq i \leq r$ . Let  $A' := R' \cdot A \subset \Lambda$ . Then A' is an overorder of A and we have a decomposition  $A' \cong A'_1 \times \cdots \times A'_r$ , where  $A'_i$  is an order in the simple algebra  $\Lambda_i$ . Let  $\widetilde{R}_i$  be the integral closure of  $R_i$  in  $K_i$ . Since R is *excellent* of Krull dimension one, the ring  $\widetilde{R}_i$  is regular and the ring extension  $R_i \subseteq \widetilde{R}_i$  is finite. It follows that  $A''_i := \widetilde{R}_i \cdot A'_i$  is an  $\widetilde{R}_i$ -order in the simple  $K_i$ -algebra  $\Lambda_i$ . According to [34, Corollary 10.4],  $A''_i$  is contained in a maximal order  $\widetilde{A}_i$ . Let  $\widetilde{A} := \widetilde{A}_1 \times \cdots \times \widetilde{A}_r$ . Then  $\widetilde{A}$  is a maximal order in  $\Lambda$ , which is an overorder of A. It follows from results of [34, Section 11] that  $\mathfrak{S}_A$  is the support of the finite length R-module  $\widetilde{A}/A$ . Hence,  $\mathfrak{S}_A$  is a finite set.  $\Box$  **Remark 7.2.** Let  $\mathfrak{m} \in \mathsf{Max}(R)$  be a *regular* point of A, i.e.  $A_\mathfrak{m} \subset \Lambda_\mathfrak{m}$  is a maximal order. According to [19, Lemma 2.3], its center  $Z(A_\mathfrak{m})$  is a Dedekind ring. Moreover,  $A_\mathfrak{m}$  itself is hereditary, too; see [34, Theorem 18.1]. Note also that  $A_\mathfrak{m}$  is a maximal order if and only if  $\widehat{A}_\mathfrak{m}$  is a maximal order; see [34, Theorem 11.5].

**Lemma 7.3.** Let A be an order in  $\Lambda$  and B its overorder such that  $A \cong B$ , viewed as left A-modules. Then we have: A = B.

*Proof.* First note that the canonical morphism

$$\left\{\lambda\in A\,|\,B\lambda\subseteq A\right\}\longrightarrow \mathsf{Hom}_A(B,A),\;\lambda\mapsto (b\stackrel{\rho_\lambda}\mapsto b\lambda)$$

is an isomorphism. Next, the following diagram is commutative:



where  $\lambda \in A$  is such that  $B\lambda = A$  and all canonical arrows are isomorphisms. It follows that A = B, as asserted.

It turns out that the set  $\mathfrak{S}_A$  admits the following characterization.

**Theorem 7.4.** Let A be a central R-order in the semi-simple K-algebra  $\Lambda$ . Let S be a simple A-module,  $F := \text{End}_A(S)$  the corresponding skew field and  $\text{Supp}_R(S) = \{\mathfrak{m}\}$ . Then  $A_{\mathfrak{m}}$  is a maximal order if and only if the following conditions are satisfied:

- The length of the left F-module  $\mathsf{Ext}^1_A(S,S)$  is one.
- For any simple A-module  $T \not\cong S$  we have:  $\operatorname{Ext}_A^1(S,T) = 0$ .

*Proof.* If  $A_{\mathfrak{m}}$  is a maximal order then there exists a unique simple A-module S supported at  $\mathfrak{m}$ ; see for instance [34, Theorem 18.7]. Moreover, we have an isomorphism of left F-modules  $\mathsf{Ext}_A^1(S,S) \cong F$ . If T is a simple A-module such that  $T \ncong S$  then  $\mathsf{Supp}(T) \neq \mathsf{Supp}(S)$  and  $\mathsf{Ext}_A^1(S,T) = 0$ .

To prove the converse direction, we may without loss of generality assume R to be local and complete. Consider the short exact sequence in A - mod:

$$0 \longrightarrow Q \longrightarrow P \xrightarrow{\pi} S \longrightarrow 0,$$

where P is a projective cover of S and Q = rad(P) its radical. Then P is indecomposable and the following sequence of left F-modules is exact:

$$0 \longrightarrow \mathsf{End}_A(S) \xrightarrow{\pi^*} \mathsf{Hom}_A(P, S) \longrightarrow \mathsf{Hom}_A(Q, S) \longrightarrow \mathsf{Ext}^1_A(S, S) \longrightarrow 0.$$

Let  $Q' = \operatorname{rad}(Q)$ . Since  $\pi^*$  is an isomorphism, we get:  $\operatorname{Hom}_A(Q/Q', S) \cong \operatorname{Hom}_A(Q, S) \cong F$ . Let  $T \not\cong S$  be a simple A-module. Then we get an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{A}(S,T) \longrightarrow \operatorname{Hom}_{A}(P,T) \longrightarrow \operatorname{Hom}_{A}(Q,T) \longrightarrow \operatorname{Ext}_{A}^{1}(S,T) \longrightarrow 0.$ 

Since P is a projective cover of a simple module S, we have:  $\operatorname{Hom}_A(P,T) = 0$ . By assumption,  $\operatorname{Ext}^1_A(S,T) = 0$ , hence  $\operatorname{Hom}_A(Q,T) = 0$ , too. It follows that  $Q/Q' \cong S$ . Hence, there exists a surjective homomorphism of A-modules  $P \xrightarrow{\nu} Q$ . Next,  $\overline{P} = \operatorname{Ker}(\nu)$ is an A-lattice. Since Q is a sublattice of P, we conclude that  $K \otimes_R Q \cong K \otimes P$  and  $K \otimes_R \overline{P} = 0$ . Hence,  $\overline{P} = 0$  and  $\nu$  is an isomorphism.

Using induction on the length, one can show now that for any sublattice  $P' \subseteq P$  we have:  $P' \cong P$ . Moreover, we claim that  $\tilde{P} := \Lambda \otimes_A P \cong K \otimes_R P$  is an indecomposable  $\Lambda$ -module. Indeed, if  $\tilde{P} \cong \tilde{P}_1 \oplus \tilde{P}_2$  then there exist A-sublattices  $P_i \subset \tilde{P}_i$  and  $P_1 \oplus P_2$  is a sublattice of P. From what was proven above it follows that  $P_1 \oplus P_2 \cong P$ . However, P is indecomposable, hence  $P_1 = 0$  or  $P_2 = 0$ . Thus,  $\tilde{P}_1 = 0$  or  $\tilde{P}_2 = 0$ , implying the claim.

Since  $\widetilde{P}$  is an indecomposable projective  $\Lambda$ -module, for any A-submodule  $0 \neq X \subseteq P$ holds: P/X has finite length and  $X \cong P$ . It implies that for any indecomposable projective A-module  $U \ncong P$  we have:  $\operatorname{Hom}_A(U, P) = 0$ . Since Z(A) = R is local, the algebra A is connected. Since its rational envelope  $\Lambda$  is semi-simple, we conclude that there exists an isomorphism of left A-modules  $A \cong P^{\oplus n}$  for some  $n \in \mathbb{N}$ .

Let L be an indecomposable A-lattice. Then there exists an injective homomorphism of A-modules  $L \hookrightarrow A^{\oplus m} \cong P^{\oplus mn}$  for some  $m \in \mathbb{N}$ , hence  $\operatorname{Hom}_A(L, P) \neq 0$ . From what was proven above it follows that  $L \cong P$ .

Assume now that  $A \subseteq A' \subset \Lambda$  is an overorder. Then A' is an A-lattice, rationally equivalent to A. Hence, A and A' are isomorphic as left A-modules. Lemma 7.3 implies that A' = A. Hence, the order A is maximal, as asserted.

7.2. Morita equivalences of central orders. We developed all necessary tools to prove the following result.

**Proposition 7.5.** Let A and B be two central R-orders, whose rational envelopes are semi-simple central K-algebras  $\Lambda$  and  $\Gamma$ , respectively. Then A and B are centrally Morita equivalent if and only if the following conditions are satisfied:

- $\Lambda$  and  $\Gamma$  are centrally Morita equivalent;
- we have:  $\mathfrak{S}_A = \mathfrak{S}_B$ ;
- for any  $\mathfrak{m} \in \mathfrak{S}_A$ , the  $\widehat{R}_{\mathfrak{m}}$ -orders  $\widehat{A}_{\mathfrak{m}}$  and  $\widehat{B}_{\mathfrak{m}}$  are centrally Morita equivalent.

*Proof.* Assume that A and B are centrally Morita equivalent. Theorem 7.4 implies that  $\mathfrak{S}_A = \mathfrak{S}_B$ . Let P be a Morita (B - A)-bimodule, for which the left and right actions of R coincide. Then the following diagram of rings and ring homomorphisms

P

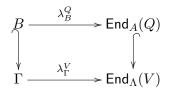
(25) 
$$\operatorname{End}_{A}(P) \xleftarrow{}{}^{A} B$$

is commutative. Passing in (25) to localizations and completions, we conclude that  $\widehat{A}_{\mathfrak{m}}$  and  $\widehat{B}_{\mathfrak{m}}$  are centrally Morita equivalent for all  $\mathfrak{m} \in \mathsf{Max}(R)$ . In the same way,  $\Lambda$  and  $\Gamma$  are centrally Morita equivalent.

Proof of the converse direction is more involved. Let V be a Morita  $(\Gamma - \Lambda)$ -bimodule inducing a central equivalence of categories  $\Lambda - \operatorname{mod} \longrightarrow \Gamma - \operatorname{mod}$ . For any  $\mathfrak{m} \in \mathfrak{S} := \mathfrak{S}_A$ , we get a Morita  $(\widehat{\Gamma}_{\mathfrak{m}} - \widehat{\Lambda}_{\mathfrak{m}})$ -bimodule  $\widehat{V}_{\mathfrak{m}}$ , which induces a central equivalence of categories  $\widehat{\Lambda}_{\mathfrak{m}} - \operatorname{mod} \longrightarrow \widehat{\Gamma}_{\mathfrak{m}} - \operatorname{mod}$ . Let  $P(\mathfrak{m})$  be a Morita  $(\widehat{B}_{\mathfrak{m}} - \widehat{A}_{\mathfrak{m}})$ -bimodule inducing a central equivalence of categories  $\widehat{A}_{\mathfrak{m}} - \operatorname{mod} \longrightarrow \widehat{B}_{\mathfrak{m}} - \operatorname{mod}$ . Then

$$\widetilde{P}(\mathfrak{m}) := \widehat{K}_{\mathfrak{m}} \otimes_{\widehat{R}_{\mathfrak{m}}} P(\mathfrak{m}) \cong \widehat{\Gamma}_{\mathfrak{m}} \otimes_{\widehat{B}_{\mathfrak{m}}} P(\mathfrak{m}) \cong P(\mathfrak{m}) \otimes_{\widehat{A}_{\mathfrak{m}}} \widehat{\Lambda}_{\mathfrak{m}}$$

is a Morita  $(\widehat{\Gamma}_{\mathfrak{m}} - \widehat{\Lambda}_{\mathfrak{m}})$ -bimodule, which induces a central equivalence of categories  $\widehat{\Lambda}_{\mathfrak{m}} - \mathfrak{mod} \rightarrow \widehat{\Gamma}_{\mathfrak{m}} - \mathfrak{mod}$  as well. Since  $\widehat{\Lambda}_{\mathfrak{m}}$  and  $\widehat{\Gamma}_{\mathfrak{m}}$  are semi-simple rings, Theorem 2.10 implies that  $\widehat{V}_{\mathfrak{m}}$  and  $\widetilde{P}(\mathfrak{m})$  are isomorphic as  $(\widehat{\Gamma}_{\mathfrak{m}} - \widehat{\Lambda}_{\mathfrak{m}})$ -bimodules. Therefore, we can without loss of generality assume that  $P(\mathfrak{m}) \subset \widehat{V}_{\mathfrak{m}}$  and the left action of  $\widehat{B}_{\mathfrak{m}}$  as well as the right action of  $\widehat{A}_{\mathfrak{m}}$  on  $P(\mathfrak{m})$  and  $\widehat{V}_{\mathfrak{m}}$  match for all  $\mathfrak{m} \in \mathfrak{S}$ . Our goal now is to construct a (B - A)-subbimodule  $P \subset V$ , which induces a central equivalence of categories A-mod  $\rightarrow B$ -mod. We start with an arbitrary R-lattice  $L \subset V$  and put:  $Q := B \cdot L \cdot A \subset V$ . Then Q is a finitely generated R-module and  $K \cdot Q = V$ , i.e. Q is an R-overlattice of L with the same rational envelope V. Moreover, Q is a (B - A)-bimodule with central action of R. Note that the following diagram of rings and ring homomorphisms



is commutative. Since  $\mu := \lambda_{\Gamma}^{V}$  is an isomorphism, the map  $\lambda := \lambda_{B}^{Q}$  is injective. Hence,  $\widehat{B}_{\mathfrak{m}} \xrightarrow{\widehat{\lambda}_{\mathfrak{m}}} \operatorname{End}_{\widehat{A}_{\mathfrak{m}}}(\widehat{Q}_{\mathfrak{m}})$  is injective for any  $\mathfrak{m} \in \operatorname{Max}(R)$ .

We claim that  $\widehat{\lambda}_{\mathfrak{m}}$  is an isomorphism for all  $\mathfrak{m} \in \mathsf{Max}(R) \setminus \mathfrak{S}$ . Indeed,  $\widehat{\Gamma}_{\mathfrak{m}} \xrightarrow{\widehat{\mu}_{\mathfrak{m}}} \mathsf{End}_{\widehat{\Lambda}_{\mathfrak{m}}}(\widehat{V}_{\mathfrak{m}})$ is an isomorphism and  $\widehat{B}_{\mathfrak{m}}$  is a maximal order in the semi–simple algebra  $\widehat{\Gamma}_{\mathfrak{m}}$ . Hence,  $\widehat{\lambda}_{\mathfrak{m}}(\widehat{B}_{\mathfrak{m}})$  is a maximal order in the semi–simple algebra  $\mathsf{End}_{\widehat{\Lambda}_{\mathfrak{m}}}(\widehat{V}_{\mathfrak{m}})$  and as a consequence, we get:  $\widehat{\lambda}_{\mathfrak{m}}(\widehat{B}_{\mathfrak{m}}) = \mathsf{End}_{\widehat{\Lambda}_{\mathfrak{m}}}(\widehat{Q}_{\mathfrak{m}})$ .

According with Lemma 7.1, the set  $\mathfrak{S}$  is finite. By Proposition 6.6, there exists a unique right *A*-lattice  $P \subset V$  such that  $\widehat{P}_{\mathfrak{m}} = \begin{cases} \widehat{Q}_{\mathfrak{m}} & \text{if } \mathfrak{m} \notin \mathfrak{S} \\ P(\mathfrak{m}) & \text{if } \mathfrak{m} \in \mathfrak{S}. \end{cases}$ It follows from Lemma 6.1 that  $B \cdot P = P$ , i.e. P is an (B - A)-bimodule with central

It follows from Lemma 6.1 that  $B \cdot P = P$ , i.e. P is an (B - A)-bimodule with central action of R. Since  $\hat{P}_{\mathfrak{m}}$  is a right  $\hat{A}_{\mathfrak{m}}$ -progenerator for any  $\mathfrak{m} \in \mathsf{Max}(R)$ , P is a right A-progenerator. The ring homomorphism  $B \xrightarrow{\lambda_B^P} \mathsf{End}_A(P)$  is an isomorphism, since so are its

completions for all  $\mathfrak{m} \in \mathsf{Max}(R)$ . Hence, P is a Morita (B - A)-bimodule, which induces a central equivalence of categories  $A - \mathsf{mod} \longrightarrow B - \mathsf{mod}$  we are looking for.  $\Box$ 

**Lemma 7.6.** Let  $\Lambda$  be a semi-simple central K-algebra,  $A \subset \Lambda$  be a central R-order,  $v \in \Lambda^*$  and  $B := vAv^{-1}$ . Then A and B are centrally Morita equivalent.

*Proof.* Let P := vA. Obviously,  $P \cong A$  as right A-modules. In particular, P is a right A-progenerator. Note that  $B \cdot P = (vAv^{-1}) \cdot (vA) = vA = P$ . It follows that P is an (B - A)-bimodule with central R-action.

Since  $v \in \Lambda^*$ , the ring homomorphism  $B \xrightarrow{\lambda_B^P} \operatorname{End}_A(P)$  is injective. Let  $f \in \operatorname{End}_A(P)$ . As P is a right A-lattice, whose rational envelope is  $\Lambda_\Lambda$ , there exists  $b \in \Lambda$  such that  $f = \lambda_b^P$ . Since  $bvA \subseteq vA$ , there exists  $a \in A$  such that bv = va. It follows that  $b = vav^{-1} \in B$ . Hence,  $\lambda_B^P$  is an isomorphism and the (B - A)-bimodule P induces a central equivalence we are looking for.

7.3. Morita equivalences of non-commutative curves. A reduced non-commutative curve (abbreviated as rncc) is a ringed space  $\mathbb{X} = (X, \mathcal{A})$ , where X is a reduced excellent noetherian scheme of pure dimension one and  $\mathcal{A}$  is a sheaf of  $\mathcal{O}$ -orders (i.e A(U) is an O(U)-order for any affine open subset  $U \subseteq X$ ). Following Definition 2.3, we say that  $\mathbb{X}$  is central if  $O_x = Z(A_x)$  for all  $x \in X$ .

From now on, let  $\mathbb{X}$  be a central rncc. If  $\mathcal{K}$  is the sheaf of rational functions on X then  $K := \Gamma(X, \mathcal{K})$  is a semi-simple ring. Moreover,  $\Lambda_{\mathbb{X}} := \Gamma(X, \mathcal{K} \otimes_{\mathcal{O}} \mathcal{A})$  is a central semi-simple K-algebra. This algebra can be viewed as the "ring of rational functions" on  $\mathbb{X}$ . If  $\mathsf{Coh}_0(\mathbb{X})$  denotes the abelian category of objects of finite length in  $\mathsf{Coh}(\mathbb{X})$  then the functor  $\Gamma(X, \mathcal{K} \otimes_{\mathcal{O}} -)$  induces an equivalence of categories  $\mathsf{Coh}(\mathbb{X})/\mathsf{Coh}_0(\mathbb{X}) \simeq \Lambda_{\mathbb{X}} - \mathsf{mod}$ . For any  $x \in X$ , we have a central  $\widehat{O}_x$ -order  $\widehat{A}_x$ , whose rational envelope can be canonically identified with the semi-simple ring  $\widehat{\Lambda}_x = \widehat{K}_x \otimes_K \Lambda_{\mathbb{X}}$ . Let

(26) 
$$\mathfrak{S}_{\mathbb{X}} := \{ x \in X \mid \widehat{A}_x \text{ is not a maximal order in } \widehat{\Lambda}_x \}$$

be the locus of non-regular points of X. According to Lemma 7.1,  $\mathfrak{S}_X$  is a finite set. Let  $x \in X$  be a regular point. By [19, Lemma 2.3],  $\widehat{O}_x = Z(\widehat{\Lambda}_x)$  is a discrete valuation ring. It follows that  $\widehat{K}_x$  is a field and  $\widehat{\Lambda}_x$  is a central simple  $\widehat{K}_x$ -algebra. Hence, there exists a skew field  $F_x \supseteq \widehat{K}_x$  (such that  $Z(F_x) = \widehat{K}_x$ ) and  $n = n(x) \in \mathbb{N}$  such that  $\widehat{\Lambda}_x \cong \operatorname{Mat}_n(F_x)$ . Moreover, one can explicitly describe the order  $\widehat{A}_x$  in this case. Namely, there exists a uniquely determined maximal  $\widehat{R}_x$ -order  $T_x \subset F_x$ ; see [34, Theorem 12.8], and  $\operatorname{Mat}_n(T_x)$  can be identified with a maximal order in  $\widehat{\Lambda}_x$ . Moreover, any two maximal orders  $O'_x, O''_x \subset \widehat{\Lambda}_x$  are conjugate, i.e. there exists  $v \in \widehat{\Lambda}^*_x$  such that  $O'_x = vO''_x v^{-1}$ ; see [34, Theorem 17.3]. In particular, the orders  $O'_x$  and  $O''_x$  are centrally Morita equivalent (see Lemma 7.6) and  $\widehat{A}_x \cong \operatorname{Mat}_n(T_x)$ .

**Proposition 7.7.** Let  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (X, \mathcal{B})$  be two central rncc with the same central curve X. Then the categories  $\mathsf{QCoh}(\mathbb{X})$  and  $\mathsf{QCoh}(\mathbb{Y})$  are centrally equivalent if any only if the following conditions are satisfied:

- the semi-simple K-algebras  $\Lambda_X$  and  $\Lambda_Y$  are centrally Morita equivalent;
- we have:  $\mathfrak{S}_{\mathbb{X}} = \mathfrak{S}_{\mathbb{Y}};$
- for any  $x \in \mathfrak{S}_{\mathbb{X}}$ , the  $\widehat{O}_x$ -orders  $\widehat{A}_x$  and  $\widehat{B}_x$  are centrally Morita equivalent.

*Proof.* This result is just a global version of Proposition 7.5 and the proof below is basically a "sheafified" version of the arguments from the affine case.

Let  $\operatorname{\mathsf{QCoh}}(\mathbb{X}) \xrightarrow{\Phi} \operatorname{\mathsf{QCoh}}(\mathbb{Y})$  be a central equivalence of categories. According to Theorem 7.8, we have:  $\Phi \cong \mathcal{P} \otimes_{\mathcal{A}} -$ , where  $\mathcal{P}$  is a sheaf of  $(\mathcal{B}-\mathcal{A})$ -bimodules such that  $\mathcal{P} \in \operatorname{\mathsf{VB}}(\mathbb{X}^\circ)$  is a local right progenerator and  $\mathcal{B} \xrightarrow{\lambda_{\mathcal{B}}^{\mathcal{P}}} (End_{\mathcal{A}}(\mathcal{P}))$  an isomorphism of  $\mathcal{O}$ -algebras. Let  $V := \Gamma(X, \mathcal{K} \otimes \mathcal{P})$ . Then V is a Morita  $(\Lambda_{\mathbb{Y}} - \Lambda_{\mathbb{X}})$ -bimodule inducing a central Morita equivalence  $\Lambda_{\mathbb{X}} \longrightarrow \Lambda_{\mathbb{Y}}$ . Similarly, for any  $x \in X$  we get a central Morita  $(\widehat{B}_x - \widehat{A}_x)$ -bimodule  $\widehat{P}_x$ . Finally, Theorem 7.4 implies that  $\mathfrak{S}_{\mathbb{X}} = \mathfrak{S}_{\mathbb{Y}}$ .

Conversely, assume that rncc X and Y satisfy three conditions above. Let V be a Morita  $(\Lambda_{\mathbb{Y}} - \Lambda_{\mathbb{X}})$ -bimodule with central action of K. Let  $\widetilde{\mathcal{A}} = \mathcal{K} \otimes_{\mathcal{O}} \mathcal{A}$  and  $\widetilde{\mathcal{B}} = \mathcal{K} \otimes_{\mathcal{O}} \mathcal{B}$ . Passing to sheaves, we get a balanced  $(\widetilde{\mathcal{B}} - \widetilde{\mathcal{A}})$ -bimodule  $\mathcal{V}$  with central action of  $\mathcal{K}$ . Let  $\mathcal{L} \subset \mathcal{V}$  be any sheaf of  $\mathcal{O}$ -lattices, i.e. a coherent submodule of  $\mathcal{V}$  such that the canonical morphism  $\mathcal{K} \otimes_{\mathcal{O}} \mathcal{L} \to \mathcal{V}$  is an isomorphism. Then  $\mathcal{Q} := \mathcal{B} \cdot \mathcal{L} \cdot \mathcal{A} \subset \mathcal{V}$  is a sheaf of lattices with rational envelope  $\mathcal{V}$ . Moreover,  $\mathcal{Q}$  is a  $(\mathcal{B} - \mathcal{A})$ -bimodule having a central action of  $\mathcal{O}$ . As in the proof of Proposition 7.5, one can show that for any  $x \in \mathfrak{S} := \mathfrak{S}_{\mathbb{X}}$  there exists a Morita  $(\widehat{B}_x - \widehat{A}_x)$ -bimodule  $P(x) \subset \widehat{V}_x$ , having a central action of  $\widehat{O}_x$ . By Theorem 6.2, there exists a unique  $\mathcal{P} \in \mathsf{VB}(\mathbb{X}^\circ)$  such that  $\mathcal{P} \subset \mathcal{V}$  is a right  $\mathcal{A}$ -lattice and

$$\widehat{P}_x = \left\{ \begin{array}{ll} \widehat{Q}_x & \text{if } \mathfrak{m} \notin \mathfrak{S} \\ P(x) & \text{if } x \in \mathfrak{S}. \end{array} \right.$$

Then  $\mathcal{P}$  is a sheaf of  $(\mathcal{B} - \mathcal{A})$ -bimodules with central action of  $\mathcal{O}$ . Moreover,  $\mathcal{P} \in \mathsf{VB}(\mathbb{X}^\circ)$ is a local right progenerator such that  $\mathcal{B} \xrightarrow{\lambda_{\mathcal{B}}^{\mathcal{P}}} End_{\mathcal{A}}(\mathcal{P})$  is an isomorphism of  $\mathcal{O}$ -algebras. Hence,  $\Phi := \mathcal{P} \otimes_{\mathcal{A}} -$  is a central equivalence of categories we are looking for.  $\Box$ 

After all preparations we can now prove the main result of this section.

**Theorem 7.8.** Let  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$  be two central rncc. Then the categories  $\mathsf{QCoh}(\mathbb{X})$  and  $\mathsf{QCoh}(\mathbb{Y})$  are equivalent if any only if there exists a scheme isomorphism  $Y \xrightarrow{\varphi} X$  satisfying the following conditions.

• There exists a Morita equivalence  $\Lambda_{\mathbb{X}} \xrightarrow{\widetilde{\Phi}} \Lambda_{\mathbb{Y}}$  such that the diagram

(27) 
$$\begin{array}{c} \Lambda_{\mathbb{X}} & \stackrel{\widetilde{\Phi}}{\longrightarrow} & \Lambda_{\mathbb{Y}} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

is "commutative" (here we follow the notation of Remark 2.7).

• We have:  $\varphi(\mathfrak{S}_{\mathbb{Y}}) = \mathfrak{S}_{\mathbb{X}}$  and for any  $y \in \mathfrak{S}_{\mathbb{Y}}$ , there exists a Morita equivalence  $\widehat{A}_{\varphi(y)} \xrightarrow{\Phi_y} \widehat{B}_y$  such that the diagram

$$(28) \qquad \qquad \widehat{A}_{\varphi(y)} \xrightarrow{\Phi_y} \widehat{B}_y \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \widehat{O}_{\varphi(y)} \xrightarrow{\varphi_y^*} \widehat{O}_y \end{cases}$$

is "commutative".

Proof. According to Theorem 7.8, any equivalence of categories  $\mathsf{QCoh}(\mathbb{X}) \xrightarrow{\Phi} \mathsf{QCoh}(\mathbb{Y})$ is isomorphic to a functor of the form  $\Phi_{\mathcal{P},\vartheta,\varphi}$ , where  $Y \xrightarrow{\varphi} X$  is a scheme isomorphism,  $\mathcal{P} \in \mathsf{VB}(\mathbb{X}^\circ)$  a local right progenerator and  $\mathcal{B} \xrightarrow{\vartheta} \varphi^*(End_{\mathcal{A}}(\mathcal{P}))$  an isomorphism of  $\mathcal{O}_{Y^-}$ algebras. Let  $V := \Gamma(X, \mathcal{K}_X \otimes \mathcal{P})$ . Then V is a Morita  $(\Lambda_{\mathbb{Y}} - \Lambda_{\mathbb{X}})$ -bimodule inducing an equivalence  $\Lambda_{\mathbb{X}} \xrightarrow{\tilde{\Phi}} \Lambda_{\mathbb{Y}}$  such that the diagram (27) is "commutative". Similarly, for any  $y \in Y$  we get a Morita  $(\hat{B}_y - \hat{A}_{\varphi(y)})$ -bimodule  $\hat{P}_{\varphi(y)}$ , which induces an equivalence  $\hat{A}_{\varphi(y)} \xrightarrow{\Phi_y} \hat{B}_y$  such that the diagram (28) is "commutative". Finally, Theorem 7.4 implies that  $y \in \mathfrak{S}_{\mathbb{Y}}$  if and only if  $\varphi(y) \in \mathfrak{S}_{\mathbb{X}}$ .

Conversely, assume that we are given a scheme isomorphism  $Y \xrightarrow{\varphi} X$  as well as Morita equivalences  $\Lambda_{\mathbb{X}} \xrightarrow{\widetilde{\Phi}} \Lambda_{\mathbb{Y}}$  and  $(\widehat{A}_{\varphi(y)} \xrightarrow{\Phi_y} \widehat{B}_y)_{y \in \mathfrak{S}_{\mathbb{Y}}}$  satisfying the compatibility constraints (27) and (28). Let  $\mathbb{Y}' = (Y, \varphi^*(\mathcal{A}))$ . Then  $\mathbb{Y}'$  is a central rncc and  $\mathfrak{S}_{\mathbb{Y}} = \mathfrak{S}_{\mathbb{Y}'}$ . By Proposition 7.7,  $\mathbb{Y}$  and  $\mathbb{Y}'$  are centrally Morita equivalent rncc, implying the result.  $\Box$ 

7.4. Morita equivalences of hereditary non-commutative curves. Recall that a central rncc  $\mathbb{X} = (X, \mathcal{A})$  is hereditary if  $\widehat{A}_x$  is a hereditary order for all  $x \in X$ . In this case, the central curve X is automatically smooth; see [19, Theorem 2.6]. We may without loss of generality assume X to be connected, hence  $\Lambda_{\mathbb{X}}$  is a central simple  $K_X$ -algebra, which defines an element in the Brauer group of the function field  $K_X$ .

Following the notation of the previous subsection, for any  $x \in X$  there exists a skew field  $F_x$  (whose center is  $\widehat{K}_x$ ) and  $n = n(x) \in \mathbb{N}$  such that  $\widehat{\Lambda}_x \cong \mathsf{Mat}_n(F_x)$ . Any maximal order in  $\widehat{\Lambda}_x$  is conjugate to  $\mathsf{Mat}_n(T_x)$ , where  $T_x$  is the unique maximal order in  $F_x$ .

Let  $x \in \mathfrak{S}_{\mathbb{X}}$  and  $\mathfrak{t}_x$  be the Jacobson radical of  $T_x$ . Viewing  $\widehat{H}_x$  as an order in the simple algebra  $\mathsf{Mat}_n(F_x)$ , we have the following result:  $\widehat{A}_x$  is *conjugate* to the order

(29) 
$$H(T_x, (n_1, \dots, n_t)) := \begin{bmatrix} T_x & \mathfrak{t}_x & \dots & \mathfrak{t}_x \\ T_x & T_x & \dots & \mathfrak{t}_x \\ \vdots & \vdots & \ddots & \vdots \\ T_x & \mathfrak{t}_x & \dots & T_x \end{bmatrix}^{\underline{(n_1, \dots, n_t)}} \subseteq \mathsf{Mat}_n(T_x)$$

34

where  $(n_1, \ldots, n_t) \in \mathbb{N}^t$  is such that  $n = n_1 + \cdots + n_t$ . The elements of  $H(T_x, (n_1, \ldots, n_t))$ are matrices, such that for any  $1 \leq i, j \leq t$ , the (i, j)-th entry is itself an arbitrary matrix of size  $(n_i \times n_j)$  with coefficients in  $T_x$  for  $i \geq j$  and in  $\mathfrak{t}_x$  for i < j. The length of this tuple t = t(x) (called *type* of the hereditary order  $\widehat{H}_x$ ) is equal to the number of non-isomorphic simple  $\widehat{H}_x$ -modules. We refer to [34, Theorem 39.14] for a proof of all these facts.

A point  $x \in X$  is a regular point of  $\mathbb{X}$  if and only if t(x) = 1. It is easy to see that  $H(T_x, (n_1, \ldots, n_t))$  is centrally Morira equivalent to the basic order  $H(T_x, \underbrace{(1, \ldots, 1)}_{t \text{ times}})$ . It

follows from Lemma 7.6 that any two hereditary orders of the same type in the simple algebra  $\widehat{\Lambda}_x$  are *centrally* Morita equivalent. Theorem 7.8 implies the following result, which was proven for the first time by Spieß; see [33, Proposition 2.9].

**Corollary 7.9.** Let  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{Y} = (Y, \mathcal{B})$  be two hereditary rnnc and  $\Lambda_{\mathbb{X}}$  and  $\Lambda_{\mathbb{Y}}$  the corresponding simple algebras over the function fields  $K_X$  and  $K_Y$ , respectively. Then the categories  $\mathsf{QCoh}(\mathbb{X})$  and  $\mathsf{QCoh}(\mathbb{Y})$  are equivalent if and only if there exists an isomorphism  $Y \xrightarrow{\varphi} X$  such that  $t(\varphi(y)) = t(y)$  for any  $y \in Y$  and  $[\Lambda_{\mathbb{Y}}] = [\varphi^*(\Lambda_{\mathbb{X}})] \in \mathsf{Br}(K_Y)$ , where  $\mathsf{Br}(K_Y)$  is the Brauer group of  $K_Y$ .

**Remark 7.10.** In the setting of Corollary 7.9, assume additionally that X and Y are quasi-projective curves over an algebraically closed field k. By Tsen's theorem, we have:  $Br(K_X) = 0 = Br(K_Y)$ ; see [16, Proposition 6.2.3 and Theorem 6.2.8]. It follows that  $\mathbb{X}$  and  $\mathbb{Y}$  are Morita equivalent if and only if there exists an isomorphism  $Y \xrightarrow{\varphi} X$  such that  $t(\varphi(y)) = t(y)$  for any  $y \in Y$ .

**Remark 7.11.** A hereditary rncc  $\mathbb{X} = (X, \mathcal{A})$  is called *regular* if  $\mathfrak{S}_{\mathbb{X}} = \emptyset$ . Assume additionally that X is a *projective* curve over a field k (as already mentioned, the central curve X is automatically smooth in this case). Then  $\mathsf{Coh}(\mathbb{X})$  is a noetherian hereditary category with finite dimensional Hom– and Ext–spaces, admitting an Auslander–Reiten translation functor  $\mathsf{Coh}(\mathbb{X}) \xrightarrow{\tau} \mathsf{Coh}(\mathbb{X})$  such that  $\tau(\mathcal{F}) \cong \mathcal{F}$  for any object  $\mathcal{F}$  of  $\mathsf{Coh}_0(\mathbb{X})$ . Various properties of the category  $\mathsf{Coh}(\mathbb{X})$  were studied in detail (from a slightly different perspective) by Kussin in [21].

Let  $\Lambda = \Lambda_{\mathbb{X}}$  be the algebra of "rational functions" on  $\mathbb{X}$  and  $K = K_X$  be its center. There exists a unique (up an isomorphism) smooth projective curve over  $\mathbb{k}$  (namely, X itself), whose field of rational functions is isomorphic to K; see for instance [27, Proposition 7.3.13]. Let  $\mathcal{B}$  be any sheaf of *maximal* orders on X such that  $\Gamma(X, \mathcal{K} \otimes_{\mathcal{O}} \mathcal{B}) \cong \Lambda$ . It is well–known that the ringed spaces  $\mathbb{X} = (X, \mathcal{A})$  and  $\mathbb{X}' = (X, \mathcal{B})$  need not be in general isomorphic (see for instance [12] for examples of non–isomorphic maximal orders in the same central simple algebra). However, Corollary 7.9 implies that the categories  $\mathsf{QCoh}(\mathbb{X})$ and  $\mathsf{QCoh}(\mathbb{X}')$  are equivalent. Hence, a regular rncc  $\mathbb{X}$  with central projective curve X is up to a Morita equivalence determined by an element in the Brauer group  $\mathsf{Br}(K_X)$ .  $\Box$ 

The following example shows that the compatibility constraints (27) and (28) are necessary to end up with a global Morita equivalence.

Example 7.12. Let k be an infinite field 
$$S = k[x], J = ((x - \lambda')(x - \lambda'')(x^2 - 1))$$
 for  $\lambda' \neq \lambda'' \in k \setminus \{1, -1\}$  and  $H = \begin{pmatrix} S & J & J \\ S & S & J \\ S & S & S \end{pmatrix}$ . Next, we put:  
 $A_+ = \left\{ p \in H \middle| \begin{array}{c} p_{11}(1) = p_{11}(-1) \\ p_{22}(1) = p_{33}(1) \end{array} \right\}$  and  $A_- = \left\{ p \in H \middle| \begin{array}{c} p_{11}(1) = p_{11}(-1) \\ p_{22}(-1) = p_{33}(-1) \end{array} \right\}.$ 

Then we have:  $R := Z(A_{\pm}) = \mathbb{k}[x^2 - 1, x(x^2 - 1)] \cong \mathbb{k}[u, v]/(f)$ , where  $f = v^2 - u^3 - u^2$ . It is clear that  $A_{\pm}$  are *R*-orders with common rational envelope  $\Lambda = \mathsf{Mat}_3(\mathbb{k}(x))$ . Passing to the corresponding sheaves of orders, we get a pair of rncc  $\mathbb{E}_{\pm} := (E, \mathcal{A}_{\pm})$ , where  $E = V(f) \subset \mathbb{A}^2$  is a plane nodal cubic. These curves have the same locus of non-regular points  $\mathfrak{S} = \{s, q', q''\}$ , where s = (0, 0) is the singular point of *E*, whereas  $q' = (\lambda'^2 - 1, \lambda'(\lambda'^2 - 1))$  and  $q'' = (\lambda''^2 - 1, \lambda''(\lambda''^2 - 1))$  are two distinct smooth points of *E*. We have:

$$\left(\widehat{A}_{+}\right)_{q'} = \left(\widehat{A}_{-}\right)_{q'} = \left(\begin{array}{ccc} O' & \mathfrak{m}' & \mathfrak{m}' \\ O' & O' & \mathfrak{m}' \\ O' & O' & O' \end{array}\right),$$

where  $O' = \widehat{O}_{q'}$  is the completed local ring of E at the point q' and  $\mathfrak{m}'$  its maximal ideal. Of course, the analogous statement holds for the second point q'', too.

Both orders  $(\widehat{A}_+)_s$  and  $(\widehat{A}_-)_s$  have the common center  $D = \mathbb{k}[w_+, w_-]/(w_+w_-)$ , where  $w_{\pm} = v \pm u(1-u+u^2-\ldots) \in \mathbb{k}[u, v]$ . It is clear that  $(\widehat{A}_+)_s$  and  $(\widehat{A}_-)_s$  are isomorphic as rings. However, although  $\mathbb{E}_+$  and  $\mathbb{E}_-$  have the same central curve E, the common algebra of rational functions  $\Lambda$  and the same singularity types, they are not Morita equivalent!

Indeed, any equivalence of categories  $\mathsf{QCoh}(\mathbb{E}_+) \xrightarrow{\Phi} \mathsf{QCoh}(\mathbb{E}_-)$  induces an automorphism  $E \xrightarrow{\varphi} E$ ; see Theorem 4.4. It follows that  $\varphi(s) = s$  and  $\varphi(\{q',q''\}) = \{q',q''\}$ . In particular, we get the restricted Morita equivalence  $(\widehat{A}_+)_s \xrightarrow{\Phi_s} (\widehat{A}_-)_s$ . However, any such equivalence induces an automorphism of D swapping both branches  $(w_+)$  and  $(w_-)$ . If  $\lambda', \lambda''$  were chosen sufficiently general, such an automorphism  $\varphi$  does not exist. Hence,  $\mathsf{QCoh}(\mathbb{E}_+)$  and  $\mathsf{QCoh}(\mathbb{E}_-)$  are not equivalent, as asserted.

## References

- B. Antieau, A reconstruction theorem for abelian categories of twisted sheaves, J. Reine Angew. Math. 712 (2016), 175–188.
- [2] M. Artin & J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287.
- [3] H. Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam 1968.
- [4] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 5 à 7, Masson, Paris, 1985.
   351 pp.
- [5] I. Burban & Yu. Drozd, Tilting on non-commutative rational projective curves, Math. Ann. 351, no. 3 (2011), 665–709.
- [6] I. Burban & Yu. Drozd, Non-commutative nodal curves and derived tame algebras, arXiv:1805.05174.
- [7] I. Burban, Yu. Drozd & V. Gavran, Singular curves and quasi-hereditary algebras, Int. Math. Res. Notices 2017, no. 3, 895–920 (2017).

- [8] A. Căldăraru, Derived categories of twisted sheaves on Calabi-Yau manifolds, Thesis (Ph.D.)-Cornell University. 2000. 196 pp
- [9] A. Căldăraru, Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math. 544 (2002), 161–179.
- [10] A. Canonaco & P. Stellari, Twisted Fourier-Mukai functors, Adv. Math. **212**(2007), no. 2, 484–503.
- [11] Ch. Curtis & I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders, Pure and Applied Mathematics, A Wiley–Interscience Publication, 1981.
- [12] M. Deuring, Die Anzahl der Typen von Maximalordnungen in einer Quaternionenalgebra von primer Grundzahl, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. (1945) 48–50.
- [13] J. Dieudonné, *Topics in Local Algebra*, Notre Dame: University of Notre Dame Press, 1967.
- [14] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
- [15] W. Geigle & H. Lenzing, A class of weighted projective curves arising in representation theory of finitedimensional algebras, *Singularities, representation of algebras, and vector bundles*, 265–297, Lecture Notes in Mathematics **1273**, Springer (1987).
- [16] Ph. Gille & T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge Studies in Advanced Mathematics 101, Cambridge University Press (2006).
- [17] K. Goodearl & R. Warfield, An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts 61, Cambridge University Press (2004).
- [18] A. Grothendieck, Éléments de géométrie algèbrique II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 pp.
- [19] M. Harada, *Hereditary orders*, Trans. Amer. Math. Soc. **107** (1963) 273–290.
- [20] R. Hartshorne, *Residues and duality*, Lecture Notes in Mathematics 20, Springer, Berlin–New York (1966).
- [21] D. Kussin, Weighted noncommutative regular projective curves, J. Noncommut. Geom. 10 (2016), no. 4, 1465–1540.
- [22] T. Lam, Lectures on modules and rings, Graduate Texts in Mathematics 189, Springer-Verlag, New York, 1999.
- [23] T. Lam, A first course in noncommutative rings, Second edition. Graduate Texts in Mathematics 131. Springer-Verlag, New York, 2001.
- [24] G. Laumon, M. Rapoport & U. Stuhler, *D-elliptic sheaves and the Langlands correspondence*, Invent. Math. **113** (1993), no. 2, 217–338.
- [25] Y. Lekili & A. Polishchuk, Auslander orders over nodal stacky curves and partially wrapped Fukaya categories, J. Topol. 11 (2018), no. 3, 615–644.
- [26] H. Lenzing & I. Reiten, Hereditary Noetherian categories of positive Euler characteristic, Math. Z. 254 (2006), no. 1, 133–171.
- [27] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6. Oxford University Press, Oxford (2002).
- [28] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1989).
- [29] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528.
- [30] J. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton University Press (1980).
- [31] A. Perego, A Gabriel theorem for coherent twisted sheaves, Math. Z. 262 (2009), no. 3, 571–583.
- [32] N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, no. 3, Academic Press (1973).
- [33] M. Spieß, Twists of Drinfeld-Stuhler modular varieties, Doc. Math. 2010, Extra vol.: Andrei A. Suslin sixtieth birthday, 595–654.
- [34] I. Reiner, Maximal orders, London Mathematical Society Monographs, New Series 28. The Clarendon Press, Oxford University Press, Oxford, 2003.
- [35] I. Reiten & M. Van den Bergh, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295–366.

## IGOR BURBAN AND YURIY DROZD

[36] B. Toën, Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (2012), no. 3, 581–652.

UNIVERSITÄT PADERBORN, INSTITUT FÜR MATHEMATIK, WARBURGER STRASSE 100, 33098 PADERBORN, GERMANY

*Email address*: burban@math.uni-paderborn.de

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, TERESCHENKIVSKA STR. 3, 01004 KYIV, UKRAINE

Email address: drozd@imath.kiev.ua, y.a.drozd@gmail.com

38