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IGOR BURBAN AND ANDREA PERUZZI

Abstract. We give a direct proof of the fact that elliptic solutions of the associative
Yang–Baxter equation arise from an appropriate spherical order on an elliptic curve.

1. Introduction

Let A = Matn(C) be the algebra of square matrices of size n ∈ N and
(
C3, 0)

r
−! A⊗A

be the germ of a meromorphic function. The following version of the associative Yang–
Baxter equation (AYBE) with spectral parameters was introduced by Polishchuk in [9]:

(1) r(u;x1, x2)12r(u+ v;x2, x3)23 = r(u+ v;x1, x3)13r(−v;x1, x2)12+

r(v;x2, x3)23r(u;x1, x3)13.

The upper indices in this equation indicate the corresponding embeddings of A⊗A into
A⊗A⊗A. For example, the germ r13 is defined as

r13 : C3 r
−! A⊗A

ı13−! A⊗A⊗A,

where ı13(x ⊗ y) = x ⊗ 1 ⊗ y. Two other germs r12 and r23 are defined in a similar way.
We are interested in those solutions of AYBE, which are non-degenerate, skew-symmetric
(meaning that r(v;x1, x2) = −r21(−v;x2, x1)) and which admit a Laurent expansion of
the form

(2) r(v;x1, x2) =
1⊗ 1
v

+ r0(x1, x2) + vr1(x1, x2) + v2r2(x1, x2) + . . .

All elliptic and trigonometric solutions of AYBE satisfying (2) were classified in [9, 10].
Recall the description of elliptic solutions of AYBE.

Let ε = exp
(

2πid
n

)
, where 0 < d < n is such that gcd(d, n) = 1. We put

(3) X =


1 0 . . . 0
0 ε . . . 0
...

...
. . .

...
0 0 . . . εn−1

 and Y =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 0

 .

For any (k, l) ∈ I :=
{

1, . . . , n
}
×
{

1, . . . , n
}

denote Z(k,l) = Y kX−l and Z∨(k,l) = 1
nX

lY −k.

Then the following expression

(4) r((n,d),τ)(v;x1, x2) =
∑

(k,l)∈I

exp
(2πid

n
kx
)
σ
(
v +

d

n

(
kτ + l

)
, x
)
Z∨(k,l) ⊗ Z(k,l)

1
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is a solution of AYBE satisfying (2), where x = x2 − x1 and

(5) σ(a, z) = 2πi
∑
n∈Z

exp(−2πinz)

1− exp
(
−2πi(a− 2πinτ)

)
is the Kronecker elliptic function [12] for τ ∈ C such that Im(τ) > 0. See also [8, Section
III] for a direct proof of this fact.

In his recent work [11] Polishchuk showed that non-degenerate skew-symmetric solutions
of AYBE satisfying (2) can be obtained from appropriate triple Massey products in the
perfect derived category of coherent sheaves Perf(E) on a non-commutative projective
curve E = (E,A), where E is an irreducible projective curve over C of arithmetic genus
one and A is a symmetric spherical order on E. A simplest example of such an order is
given by A = EndE(F), where F is a simple vector bundle on E. Let E = Eτ := C/〈1, τ〉
be the elliptic curve determined by τ ∈ C and F be a simple vector bundle of rank n and
degree d on E. It follows from results of Atiyah [1] that such F exists and the sheaf of
algebras A = A(n,d) := EndE(F) does not depend on the choice of F . We show that the

solution of AYBE arising from the non-commutative projective curve
(
Eτ ,A(n,d)

)
is given

by the formula (4). In [9, Section 2], the corresponding computations were performed
using the homological mirror symmetry and explicit formulae for triple Massey products
in the Fukaya category of a torus. The expression for the resulted solution of AYBE (see
[9, formula (2.3)]) was different from (4). Our computations are straightforward and based
by techniques developed in the articles [6, 5].

Acknowledgement. This work was supported by the DFG project Bu–1866/5–1 as well as
by CRC/TRR 191 project “Symplectic Structures in Geometry, Algebra and Dynamics”
of German Research Council (DFG). We are grateful to Raschid Abedin for discussions of
results of this paper.

2. Symmetric spherical orders on curves of genus one and AYBE

In this section we make a brief review of Polishchuk’s construction [11]. Let E be

an irreducible projective curve over C of arithmetic genus one, Ĕ its smooth part, O
its structure sheaf, K the sheaf of rational functions on E and Ω the sheaf of regular
differential one-forms on E. There exists a regular differential one-form ω ∈ Γ(E,Ω) such
that Γ(E,Ω) = Cω. Such ω also defines an isomorphism O ∼= Ω. If E is singular then it

is rational. In this case, let P1 ν
! E be the normalization morphism and Õ = ν∗

(
OP1

)
.

Let A be a sheaf of orders on E. By definition, A is a torsion free coherent sheaf of
O-algebras on E such that A⊗O K ∼= Matn(K) for some n ∈ N. For any order A we have

the canonical trace morphism A t
! Õ, which coincides with the restriction of the trace

morphism A ↪! A ⊗O K ∼= Matn(K)
t
! K (if E is smooth then Õ = O). Following [11],

the order A is called symmetric spherical if the following conditions are fulfilled:

• The image of the trace morphism t is O and the induced morphism of coherent

sheaves A t]
−! A∨ := HomE(A,O) is an isomorphism.

• We have: Γ(E,A) ∼= C.

Consider the non-commutative projective curve E = (E,A). Let Coh(E) be the category
of coherent sheaves on E (these are sheaves ofA-modules which are coherent asO-modules)
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and Perf(E) be the corresponding perfect derived category. Recall that ΩE := HomE(A,Ω)
is a dualising bimodule of E. If A is symmetric then ΩE ∼= A as A-bimodules and Perf(E)
is a triangulated 1-Calabi–Yau category. The last assertion means that for any pair of
objects G•,H• in Perf(E) there is an isomorphism of vector spaces

(6) HomE
(
G•,H•

) ∼= HomE
(
H•,G•[1]

)∗
which is functorial in both arguments.

Let P = Pic0(E) be the Jacobian of E and L ∈ Pic(P × E) be a universal line bundle.
For any v ∈ P , let Lv := L

∣∣
{v}×E ∈ Pic0(E) and Av := A⊗O Lv ∈ Coh(E).

Lemma 2.1. The coherent sheaf A is semi-stable of slope zero. Moreover,

(7) Γ(E,Av) = 0 = H1(E,Av)
for all but finitely many points v ∈ P .

Proof. Let B be the kernel of the trace morphism A t
! O. It follows from the long exact

cohomology sequence of 0 ! B ! A t
! O ! 0 that H0(E,B) = 0 = H1(E,B). Hence,

B is a semi-stable coherent sheaf on E of slope zero and A ∼= B ⊕ O. It follows that A is
semi-stable, too. The latter fact also implies the vanishing Γ(E,Av) = 0 = H1(E,Av) for
all but finitely many v ∈ P . �

Corollary 2.2. There exists a proper closed subset D ⊂ P × P such that

(8) HomE
(
Av1 ,Av2

)
= 0 = Ext1E

(
Av1 ,Av2

)
for all v1, v2 ∈ (P × P ) \D.

Proof. This statement follows from the isomorphisms

(9) ExtiE
(
Av1 ,Av2

) ∼= H i
(
E,EndE(Av1 ,Av2)

) ∼= H i
(
E,Av2−v1

)
, i = 0, 1

and the vanishing (7). �

Recall that for any x, y ∈ Ĕ we have the following standard short exact sequences

(10) 0 −! Ω −! Ω(x)
resx−−! Cx −! 0 and 0 −! O(−y) −! O

evy
−−! Cy −! 0,

where resx and evy are the residue and evaluation morphisms, respectively. Using the

isomorphism O ω
! Ω, we can rewrite the first short exact sequence as

(11) 0 −! O −! O(x)
resωx−−! Cx −! 0.

For any H ∈ Coh(E) denote H
∣∣
x

:= H ⊗O Cx ∈ Coh(E). Tensoring (11) by Av (where
v ∈ P is an arbitrary point), we get the following short exact sequence in Coh(E):

0 −! Av −! Av(x) −! Av
∣∣
x
−! 0.

Next, for any (u, v) ∈ P × P we have the induced long exact sequence of vector spaces

0 −! HomE(Au,Av
)
−! HomE(Au,Av(x)

)
−! HomE(Au,Av

∣∣
x

)
−! Ext1E(Au,Av

)
.

It follows from (7) that the linear map

(12) HomE(Au,Av(x)
) resA(u,v;x)
−−−−−−−! HomE(Av

∣∣
x
,Av

∣∣
x

)
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is an isomorphism if (u, v) ∈ (P × P ) \D.

Similarly, for any v ∈ P and x 6= y ∈ Ĕ we have the following short exact sequence

0 −! Av(x− y) −! Av(x) −! Av(x)
∣∣
y
−! 0

in Coh(E), which is obtained by tensoring the evaluation sequence (10) by Av(x). After ap-
plying to it the functor HomE(Au, − ) and using a canonical isomorphism Av

∣∣
y
∼= Av(x)

∣∣
y
,

we obtain a linear map

(13) HomE(Au,Av(x)
) evA(u,v;x,y)
−−−−−−−! HomE(Au

∣∣
y
,Av

∣∣
y

)
.

Let HomE
(
Au
∣∣
x
,Av

∣∣
x

) α(u,v;x,y)
−−−−−−! HomE

(
Au
∣∣
y
,Av

∣∣
y

)
be (the unique) linear map making

the following diagram of vector spaces

(14)

HomE
(
Au,Av(x)

)
resA(u,v;x)

xxqqq
qqq

qqq
qqq

qq
evA(u,v;x,y)

&&MM
MMM

MMM
MMM

MMM

HomE
(
Au
∣∣
x
,Av

∣∣
x

) α(u,v;x,y)
// HomE

(
Au
∣∣
y
,Av

∣∣
y

)
commutative. Let γ(u, v;x, y) ∈ HomE

(
Av
∣∣
x
,Au

∣∣
x

)
⊗ HomE

(
Au
∣∣
y
,Av

∣∣
y

)
be the image

of α(u, v;x, y) under the composition of the following canonical isomorphisms of vector
spaces:

Lin
(
HomE

(
Au
∣∣
x
,Av

∣∣
x

)
,HomE

(
Au
∣∣
y
,Av

∣∣
y

)) ∼= HomE
(
Au
∣∣
x
,Av

∣∣
x

)∗⊗HomE
(
Au
∣∣
y
,Av

∣∣
y

)
∼= HomE

(
Av
∣∣
x
,Au

∣∣
x

)
⊗ HomE

(
Au
∣∣
y
,Av

∣∣
y

)
,

where the last isomorphism is induced by the trace morphism t.

Let P ×P η
−! P be the group operation on P and o ∈ P be the corresponding neutral ele-

ment (i.e. O ∼= Lo). Consider the canonical projections P×P×E πi−! P×E, (x1, x2;x) 7!

(xi, x) for i = 1, 2 and P × P × E π◦−! P × E, (x1, x2;x) 7! (x1, x2). Then there exists
S ∈ Pic(P × P ) such that

(15) (η × 1)∗L ∼= π∗1L ⊗ π∗2L ⊗ π∗◦S.

In particular, Lv1 ⊗ Lv2 ∼= Lv1+v2 , where v1 + v2 = η(v1, v2).

For any type of E (elliptic, nodal or cuspidal) there exists a complex analytic covering

map (C,+)
χ
−! (P, η), which is also a group homomorphism. In this way we get a local

coordinate on P in a neighbourhood of o. Next, we put: L := (χ × 1)∗L. Since any line
bundle on C× C is trivial, we get from (15) an induced isomorphism

(16) (η̄ × 1)∗L ∼= π̄∗1L ⊗ π̄∗2L,

where η̄ (respectively, π̄i) is the composition of η (respectively, πi) with χ× χ. It follows
that we have isomorphisms

(17) OE
α
−! L

∣∣∣
0×E

and OC×C×E
β
−! η̄∗L∨ ⊗ π̄∗1L ⊗ π̄∗2L.
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Let U ⊂ Ĕ be an open subset for which there exists an isomorphism of Γ(U,OE)-algebras

(18) Γ(U,A)
ξ
−! A⊗CΓ(U,OE)

as well as a trivialization

(19) Γ(C× U,L)
ζ̄
−! Γ(C× U,OC×E),

which identify the sections α and β from (17) with the identity section. Since η is a
complex analytic covering map, we get from ζ̄ a local trivialization ζ of the universal
family L. Then such trivializations ξ and ζ allow to identify γ(u, v;x, y) with a tensor
ρ(u, v;x, y) ∈ A⊗A. Note that by the construction the tensor ρ(u, v;x, y) depends only
the difference w := u− v ∈ P with respect to the group law on the Jacobian P .

Theorem 2.3 (Polishchuk [11]). The constructed tensor %(w;x, y) = ρ(u, v;x, y) is a
non-degenerate skew-symmetric solution of the associatiove Yang–Baxter equation (1).

Recall the key steps of the proof of this result. For any x ∈ Ĕ, let Sx ∈ Coh(E) be a simple
object of finite length supported at x (which is unique, up to an isomorphism). For any

(u, v) ∈ (P × P ) \D and (x, y) ∈ (Ĕ × Ĕ), x 6= y consider the triple Massey product

HomE
(
Au,Sx)⊗ Ext1E(Sx,Av)⊗ HomE

(
Av,Sy) m3(u,v;x,y)

−−−−−−−! HomE
(
Au,Sy)

in the triangulated category Perf(E). Since Ext1E(Sx,Av)∗ ∼= HomE
(
Av,Sx) (see (6)), we

get from m3(u, v;x, y) a linear map

(20) HomE
(
Au,Sx)⊗ HomE

(
Av,Sy)

mu,v
x,y
−−−! HomE

(
Av,Sx)⊗ HomE

(
Au,Sy).

The constructed family of maps mu,v
x,y satisfies the identity

(21) (mv3,v2
x1,x2

)12(mv1,v3
x1,x3

)13 − (mv1,v3
x2,x3

)23(mv1,v2
x1,x2

)12 + (mv1,v2
x1,x3

)13(mv2,v3
y2,y3

)23 = 0,

both sides of which are viewed as linear maps

HomE(Av1 ,Sx1)⊗ HomE(Av2 ,Sx2)⊗ HomE(Av3 ,Sx3) −!

−! HomE(Av2 ,Sx1)⊗ HomE(Av3 ,Sx2)⊗ HomE(Av1 ,Sx3).

Moreover, mu,v
x,y is non-degenerate and skew-symmetric:

(22) ι(mu,v
x,y) = −mv,u

y,x,

where ι is the isomorphism

HomE
(
Au,Sx)⊗ HomE

(
Av,Sy) −! HomE

(
Av,Sy)⊗ HomE

(
Au,Sx)

given by ι(f ⊗ g) = g ⊗ f . Both identities (21) and (22) are consequences of existence of
an A∞-structure on Perf(E) which is cyclic with respect to the Serre duality (6). Applying
appropriate canonical isomorphisms, one can identify mu,v

x,y with the linear map α(u, v;x, y)
from the commutative diagram (14). See also [6, Theorem 2.2.17] for a detailed exposition
in a similar setting. �
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3. Solutions of AYBE as a section of a vector bundle

Following the work [6], we provide a global version of the commutative diagram (14). Let

B := P × P × Ĕ × Ĕ \
(
D × Ĕ × Ĕ

)
∪
(
P × P × Ξ

)
,

where D ⊂ P × P is the locus defined by (8) and Ξ ⊂ Ĕ × Ĕ is the diagonal. Let

X := B × E. Then the canonical projection X
π
−! B admits two canonical sections

B
σi−! X given by σi(v1, v2;x1, x2) := (v1, v2;x1, x2;xi) for i = 1, 2. Let Σi := σi(B) ⊂ X

be the corresponding Cartier divisor. Note that Σ1 ∩ Σ2 = ∅.
Similarly to (11), we have the following short exact sequence in the category Coh(X):

(23) 0 −! OX −! OX(Σ1)
resωΣ1−−−! OΣ1 −! 0.

Here, for a local section g(v1, v2;x1, x2;x) =
f(v1, v2;x1, x2;x)

x− x1
of the line bundle OX(Σ1)

we put: resωΣ1
(g) = resx=x1

(
gωx), where ωx is the pull-back of ω under the canonical

projection X
π5−! E.

Consider the non-commutative scheme X =
(
X,π∗5(A)

)
as well as coherent sheaves

A(i) := π∗5(A) ⊗ π∗i,5(L) ∈ Coh(X), where X
πi,5
−! P × E is the canonical projection for

i = 1, 2. Tensoring (23) by A(2), we get a short exact sequence

(24) 0 −! A(2) −! A(2)(Σ1) −! A(2)
∣∣∣
Σ1

−! 0

in the category Coh(X). Since A(1) is a locally projective OX-module, applying the functor

HomX(A(1),−) to (24), we get an induced short exact sequence

(25) 0! HomX
(
A(1),A(2)

)
−! HomX

(
A(1),A(2)(Σ1)

)
−! HomX

(
A(1),A(2)

∣∣∣
Σ1

)
! 0

in the category Coh(X). Base-change isomorphism combined with the vanishing (8) im-

ply that Rπ∗
(
HomX

(
A(1),A(2)

))
= 0, where Rπ∗ : Db

(
Coh(X)

)
−! Db

(
Coh(X)

)
is the

derived direct image functor. Applying the functor π∗ to the short exact sequence (25),
we get the following isomorphism

π∗

(
HomX

(
A(1),A(2)(Σ1)

)) ∼=−! π∗HomX

(
A(1),A(2)

∣∣∣
Σ1

)
of coherent sheaves on B. Since HomX

(
A(1),A(2)

∣∣∣
Σ1

)
∼= HomX

(
A(1)

∣∣∣
Σ1

,A(2)
∣∣∣
Σ1

)
, we get

an isomorphism resAΣ1
of coherent sheaves on B (which are even locally free) given as the

composition

π∗

(
HomX

(
A(1),A(2)(Σ1)

) ∼=−! π∗HomX

(
A(1),A(2)

∣∣∣
Σ1

) ∼=−! π∗HomX

(
A(1)

∣∣∣
Σ1

,A(2)
∣∣∣
Σ1

)
.

Next, we have the following short exact sequence of coherent sheaves on X:

(26) 0 −! OX(−Σ2) −! OX −! OΣ2 −! 0.
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Since Σ1∩Σ2 = ∅, the canonical morphism OΣ2 ! O(Σ1)
∣∣
Σ2

is an isomorphism. Tensoring

(26) by A(2)(Σ1), we get a short exact sequence

(27) 0 −! A(2)(Σ1 − Σ2) −! A(2)(Σ1) −! A(2)
∣∣∣
Σ2

−! 0

in the category Coh(X). Applying to (27) the functor HomX(A(1),−), we get an induced
short exact sequence

0! HomX
(
A(1),A(2)(Σ1−Σ2)

)
−! HomX

(
A(1),A(2)(Σ1)

)
−! HomX

(
A(1),A(2)

∣∣∣
Σ1

)
! 0

in the category Coh(X). Applying the functor π∗, we get a morphism of locally free sheaves
evAΣ2

on B given as the composition

π∗

(
HomX

(
A(1),A(2)(Σ1)

)
−! π∗HomX

(
A(1),A(2)

∣∣∣
Σ2

) ∼=−! π∗HomX

(
A(1)

∣∣∣
Σ2

,A(2)
∣∣∣
Σ2

)
.

In other words, we get the following global version

π∗

(
HomX

(
A(1),A(2)(Σ1)

)
resAΣ1

vvmmm
mmm

mmm
mmm

mmm
mm

evAΣ2

((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

π∗HomX

(
A(1)

∣∣∣
Σ1

,A(2)
∣∣∣
Σ1

)
αA // π∗HomX

(
A(1)

∣∣∣
Σ2

,A(2)
∣∣∣
Σ2

)
of the the commutative diagram (14), where αA := evAΣ2

◦
(
resAΣ1

)−1
.

For any 1 ≤ i, j ≤ 2, consider the canonical projection

P × P × Ĕ × Ĕ
κij
−! P × E, (v1, v2;x1, x2) 7! (vj , xi).

Then we have the following canonical isomorphism of coherent sheaves on B:

π∗HomX

(
A(1)

∣∣∣
Σi

,A(2)
∣∣∣
Σi

)
∼= A〈i〉 ⊗HomB

(
κ∗1i(L), κ∗2i(L)

)
,

where A〈i〉 is the pull-back of A on B via the projection morphism

P × P × Ĕ × Ĕ −! E, (v1, v2;x1, x2) 7! xi

for i = 1, 2. The morphism of locally free OB-modules

A〈1〉 ⊗HomB

(
κ∗11(L), κ∗21(L)

) αA
−! A〈2〉 ⊗HomB

(
κ∗12(L), κ∗22(L)

)
determines a distinguished section

(28) γA ∈ Γ
(
B,A〈1〉 ⊗A〈2〉 ⊗ κ∗11(L)⊗ κ∗21(L∨)⊗ κ∗22(L)⊗ κ∗12(L∨)

)
.

For i = 1, 2 consider the canonical projections P × P × E ψi−! P × E, (v1, v2;x) 7! (vi;x)

as well as P × P × E ψ
−! P × P, (v1, v2;x) 7! (v1, v2). Then there exists S ∈ Pic(P × P )

such that

ψ∗1(L)⊗ ψ∗2(L∨) ∼= (µ× 1)∗ ⊗ ψ∗(S),
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where P × P µ
−! P, (v1, v2) 7! v1 − v2. Finally, for i = 1, 2 consider the morphism

P × P × Ĕ × Ĕ µi−! P × Ĕ, (v1, v2;x1, x2) 7! (v1 − v2;xi).

Then we have an isomorphism of locally free sheaves

κ∗11(L)⊗ κ∗21(L∨)⊗ κ∗22(L)⊗ κ∗12(L∨) ∼= µ∗1(L)⊗ µ∗2(L∨).

In these terms, we can regard γA from (28) as a section

(29) γA ∈ Γ
(
B,A〈1〉 ⊗A〈2〉 ⊗ µ∗1(L)⊗ µ∗2(L∨)

)
.

Applying trivialisations ξ of A (see (18)) and ζ of L (see (19)), we obtain from γA a
tensor-valued function

ρAξ,ζ : V × V × U × U −! A⊗A,

which satisfies the translation property

ρAξ,ζ(v1 + u, v2 + u;x1, x2) = %Aξ,ζ(v1, v2;x1, x2).

Recall that for all types of the genus one curve E (smooth, nodal or cuspidal) we have a
group homomorphism (C,+) −! (P,+), which is locally a biholomorphic map.

After making these identifications, we get the germ of a meromorphic function

(30) (C3, 0)
%
−! A⊗A, where %(v1 − v2;x1, x2) := ρAξ,ζ(v1, v2;x1, x2).

This function is a non-degenerate skew-symmetric solution of AYBE.

Summary. Let E = (E,A) be a non-commutative projective curve, where E is an irre-
ducible projective curve of arithmetic genus one and A be a symmetric spherical order on
E. Let P be the Jacobian of E and L be a universal family of degree zero line bundles

on E. Then we have a distinguished section γA ∈ Γ
(
B,A〈1〉 ⊗ A〈2〉 ⊗ µ∗1(L) ⊗ µ∗2(L∨)

)
.

Choosing trivializations ξ of A (see (18)) and ζ of L (see (19)), we get the germ of a mero-

morphic function (C3, 0)
%
−! A⊗A, which is a non-degenerate skew-symmetric solution

of AYBE. A different trivialization ξ̃ of A leads to a gauge-equivalent solution (ϕ(x1) ⊗
ϕ(x1)

)
%(v;x1, x2), where (C, 0)

ϕ
−! AutC(A) is the germ of ξ̃ξ−1. Analogously, another

choice of a trivialization ζ leads to an equivalent solution exp
(
v(β(x1)−β(x2))

)
%(v;x1, x2)

for some holomorphic (C, 0)
β
−! C.

Remark 3.1. The simplest example of a symmetric spherical order is A = EndE(F),
where F is a simple vector bundle on E of rank n and degree d. It follows from [1, 4, 3]
that such F exists if and only if n and d are coprime and the sheaf of algebras A = A(n,d) =
EndE(F) does not depend on the choice of F . Moreover, according to [11, Proposition
1.8.1], any symmetric spherical order on an elliptic curve E is isomorphic to A(n,d) for
some 0 < d < n mutually prime.

Remark 3.2. Let (u, v) ∈ P × P \ D and (x, y) ∈ Ĕ × Ĕ \ Ξ. Then we have canonical
isomorphisms

HomE
(
Au
∣∣
x
,Av

∣∣
x

) ∼= H0(E,HomE
(
Au
∣∣
x
,Av

∣∣
x

) ∼= H0
(
E,Av−u([x])

)
.
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Analogously, we have canonical isomorphisms

HomE
(
Au
∣∣
x
,Av

∣∣
x

) ∼= Av−u∣∣x and HomE
(
Au
∣∣
y
,Av

∣∣
y

) ∼= Av−u∣∣y
such that the following diagram

(31)

HomE
(
Au
∣∣
x
,Av

∣∣
x

)
∼=

��

HomE
(
Au,Av(x)

)
∼=

��

resA(u,v;x)
oo

evA(u,v;x,y)
// HomE

(
Au
∣∣
y
,Av

∣∣
y

)
∼=
��

Av−u
∣∣
x

H0
(
E,Av−u([x])

)resv−u
xoo

evv−u
y

// Av−u
∣∣
y

is commutative. Here, the linear maps resv−ux and evv−uy are induced by the standard short
exact sequences (10).

4. Elliptic solutions of AYBE

Let τ ∈ C be such that Im(τ) > 0, C ⊃ Λ = 〈1, τ〉 ∼= Z2 and E = Eτ = C/Λ. Recall
some standard techniques to deal with holomorphic vector bundles on complex tori. An
automorphy factor is a pair (A, V ), where V is a finite dimensional vector space over C and
A : Λ×C −! GL(V ) is a holomorphic function such that A(λ+µ, z) = A(λ, z+µ)A(µ, z)
for all λ, µ ∈ Λ and z ∈ C. Such (A, V ) defines the following holomorphic vector bundle
on the torus E:

E(A, V ) := C× V/ ∼, where (z, v) ∼
(
z + λ,A(λ, z)v

)
for all (λ, z, v) ∈ Λ× C× V.

Given two automorphy factors (A, V ) and (B, V ), the corresponding vector bundles E(A, V )
and E(B, V ) are isomorphic if and only if there exists a holomorphic function H : C !
GL(V ) such that

B(λ, z) = H(z + λ)A(λ, z)H(z)−1 for all (λ, z) ∈ Λ× C.

Let Φ : C −! GLn(C) be a holomorphic function such that Φ(z + 1) = Φ(z) for all
z ∈ C. Then one can define the automorphy factor (A,Cn) in the following way.

− A(0, z) = In (the identity n× n matrix).

− For any k ∈ N0 we set:

A(kτ, z) = Φ
(
z + (k − 1)τ

)
. . .Φ(z) and A(−kτ, z) = A(kτ, z − kτ)−1.

For a proof of the following result, see [5, Proposition 5.1].

Proposition 4.1. Let 0 < d < n be coprime. Then the sheaf of orders A = A(n,d) has the
following description:

(32) A ∼= C× A / ∼, where (z, Z) ∼ (z + 1,AdX(Z)) ∼ (z + τ,AdY (Z)),

X and Y are matrices given by (3) and AdT (Z) = TZT−1 for T ∈
{
X,Y

}
and Z ∈ A.
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For any (k, l) ∈ I :=
{

1, . . . , n
}
×
{

1, . . . , n
}

denote Z(k,l) = Y kX−l and Z∨(k,l) = 1
nX

lY −k.

Note that the operators AdX ,AdY ∈ EndC(A) commute. Moreover,

AdX(Z(k,l)) = εkZ(k,l) and AdY (Z(k,l)) = εlZ(k,l)

for any (k, l) ∈ I. As a consequence
(
Z(k,l)

)
(k,l)∈I is a basis of A.

Let can : A⊗A −! EndC(A) be the canonical isomorphism sending a simple tensor Z ′⊗Z ′′
to the linear map Z 7! tr(Z ′ · Z) · Z ′′. Then we have:

(33) can(Z∨(k,l) ⊗ Z(k,l))(Z(k′,l′)) =

{
Z(k,l) if (k′, l′) = (k, l)

0 otherwise.

Recall the expressions for the first and third Jacobian theta-functions (see e.g. [7]):

(34)


θ̄(z) = θ1(z|τ) = 2q

1
4

∞∑
n=0

(−1)nqn(n+1) sin
(
(2n+ 1)πz

)
,

θ(z) = θ3(z|τ) = 1 + 2
∞∑
n=1

qn
2

cos(2πnz),

where q = exp(πiτ). They are related by the following identity:

(35) θ
(
z +

1 + τ

2

)
= i exp

(
−πi

(
z +

τ

4

))
θ̄(z).

Lemma 4.2. For any x ∈ C consider the function ϕx(w) = − exp
(
−2πi(w + τ − x)

)
.

Then the following results are true.

• The vector space

(36)

C f
−! C

∣∣∣∣∣∣
f is holomorphic
f(w + 1) = f(w)
f(w + τ) = ϕx(w)f(w)


is one-dimensional and generated by θx(w) := θ

(
w + 1+τ

2 − x
)
.

• We have: E(ϕx) ∼= OE
(
[x]
)
.

• For a, b ∈ R let v = aτ + b ∈ C and [v] = υ(v) ∈ E. Then we have:

(37) E(exp(−2πiv)) ∼= OE
(
[0]− [v]

)
.

In these terms we also get a description of a universal family L of degree zero line
bundles on E.

A proof of these statements can be for instance found in [7] or [6, Section 4.1].

Let U ⊂ C be a small open neighborhood of 0 and O = Γ(U,OC) be the ring of holomorphic

functions on U . Let z be a coordinate on U , C η
−! E be the canonical covering map,

ω = dz ∈ H0(E,Ω) and Γ(U,A)
ξ
−! A⊗CO be the standard trivialization induced by

the automorphy data (AdX ,AdY ). One can also define a trivialization ζ of the universal
family L of degree zero line bundles on E compatible with the isomorphisms (37).

Consider the following vector space

Sol
(
(n, d), v, x

)
=

C F
−! A

∣∣∣∣∣∣
F is holomorphic
F (w + 1) = AdX

(
F (w)

)
F (w + τ) = ϕx−v(w)AdY

(
F (w)

)
 .
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Proposition 4.3. The following diagram

(38)

Av
∣∣
x

vx

��

H0
(
Av(x)

)resvxoo
evvy

//



��

Av
∣∣
y

vy

��

A Sol
(
(n, d), v, x

)resxoo
evy

// A

is commutative, where for F ∈ Sol
(
(n, d), v, x

)
we have:

resx(F ) =
F (x)

θ′
(

1+τ
2

) and evy(F ) =
F (y)

θ
(
y − x+ 1+τ

2

) .
The isomorphisms of vector spaces vx, 

v
y and  are induced by the trivializations ξ and ζ

as well as the pull-back functor η∗.

Comment on the proof. Since an analogous result is proven in [6, Corollary 4.2.1], we omit
details here. �

Now we are prepared to prove the main result of this work.

Theorem 4.4. Let r((n,d),τ)(v;x, y) be the solution of AYBE corresponding to the datum(
Eτ ,A(n,d)

)
with respect to the trivializations ξ (respectively, ζ) of A (respectively, L)

introduced above. Then it is given by the expression (4).

Proof. We first compute an explicit basis of the vector space Sol
(
(n, d), v, x

)
. Let

F (w) =
∑

(k,l)∈I

f(k,l)(w)Z(k,l).

The condition F ∈ Sol
(
(n, d), v, x

)
yields the following constraints on the coefficients f(k,l):

(39)

{
f(k,l)(w + 1) = εkf(k,l)(w)

f(k,l)(w + τ) = εlϕx−v(w)f(k,l)(w).

It follows from Lemma 4.2 that the vector space of holomorphic solutions of the system
(39) is one-dimensional and generated by the function

f(k,l)(w) = exp
(
−2πid

n
kw
)
θ
(
w +

1 + τ

2
+ v − x− d

n
(kτ − l)

)
.

From Proposition 4.3 and formula (33) it follows that r((n,d),τ)(v;x, y) is given by the
following expression:

r((n,d),τ)(v;x, y) =
∑

(k,l)∈I

r(k,l)(v; z)Z∨(k,l) ⊗ Z(k,l),

where z = y − x and

r(k,l)(v; z) = exp
(
−2πid

n
kz
)θ′(1 + τ

2

)
θ
(
z + v +

1 + τ

2
− d

n
(kτ − l)

)
θ
(
v +

1 + τ

2
− d

n
(kτ − l)

)
θ
(
z +

1 + τ

2

) .
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Relation (35) implies that

θ′
(1 + τ

2

)
θ
(
z + v +

1 + τ

2
− d

n
(kτ − l)

)
θ
(
v +

1 + τ

2
− d

n
(kτ − l)

)
θ
(
z +

1 + τ

2

) =
θ′
(1 + τ

2

)
θ̄
(
z + v − d

n
(kτ − l)

)
i exp

(
−πiτ

4

)
θ̄
(
v − d

n
(kτ − l)

)
θ̄(z)

Moreover, it follows from (35) that θ′
(1 + τ

2

)
= i exp

(
−πiτ

4

)
θ̄′(0). Hence, we get:

r(k,l)(v; z) = exp
(
−2πid

n
kz
) θ̄′(0)θ̄

(
z + v − d

n
(kτ − l)

)
θ̄
(
v − d

n
(kτ − l)

)
θ̄(z)

= exp
(
−2πid

n
kz
)
σ
(
v − d

n
(kτ − l), z

)
.

Here we use the fact that the Kronecker elliptic function σ(u, z) defined by (5) satisfies the

formula: σ(u, z) =
θ̄′(0)θ̄1(u+ z)

θ̄(u)θ̄(z)
(see for instance [13, Section 3]). We have a bijection

{1, . . . , n} −! {0, . . . , n− 1} , k 7! (n− k). Using this substitution as well as the identity
σ(u− dτ, x) = exp(2πidz)σ(u, z), we end up with the expression (4), as asserted. �

Remark 4.5. Let r(u;x1, x2) be a non-degenerate skew-symmetric solution of AYBE (1)

satisfying (2). Let g = sln(C) and A
π
−! g, Z 7! Z − 1

n tr(Z)In. Then

r̄(x1, x2) = (π ⊗ π)(r1(x1, x2))

is a solution of the classical Yang–Baxter equation{ [
r̄12(x1, x2), r̄13(x1, x3)

]
+
[
r̄13(x1, x3), r̄23(x2, x3)

]
+
[
r̄12(x1, x2), r̄23(x2, x3)

]
= 0

r̄12(x1, x2) = −r̄21(x2, x1),

see [9, Lemma 1.2]. Under certain additional assumptions (which are fulfilled provided
r̄(x1, x2) is elliptic or trigonometric), the function R(x1, x2) = r(u◦;x1, x2) (where u = u◦
from the domain of definition of r is fixed) satisfies the quantum Yang–Baxter equation

R(x1, x2)12R(x1, x3)13R(x2, x3)23 = R(x2, x3)23R(x1, x3)13R(x1, x2)12,

see [10, Theorem 1.5]. In fact, the expression (4) is a well-known elliptic solution of Belavin
of the quantum Yang–Baxter equation; see [2].
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