ON ELLIPTIC SOLUTIONS OF THE ASSOCIATIVE YANG-BAXTER EQUATION

IGOR BURBAN AND ANDREA PERUZZI

ABSTRACT. We give a direct proof of the fact that elliptic solutions of the associative Yang–Baxter equation arise from an appropriate spherical order on an elliptic curve.

1. Introduction

Let $\mathfrak{A} = \mathsf{Mat}_n(\mathbb{C})$ be the algebra of square matrices of size $n \in \mathbb{N}$ and $(\mathbb{C}^3, 0) \xrightarrow{r} \mathfrak{A} \otimes \mathfrak{A}$ be the germ of a meromorphic function. The following version of the associative Yang–Baxter equation (AYBE) with spectral parameters was introduced by Polishchuk in [9]:

(1)
$$r(u; x_1, x_2)^{12} r(u + v; x_2, x_3)^{23} = r(u + v; x_1, x_3)^{13} r(-v; x_1, x_2)^{12} + r(v; x_2, x_3)^{23} r(u; x_1, x_3)^{13}.$$

The upper indices in this equation indicate the corresponding embeddings of $\mathfrak{A} \otimes \mathfrak{A}$ into $\mathfrak{A} \otimes \mathfrak{A} \otimes \mathfrak{A}$. For example, the germ r^{13} is defined as

$$r^{13}: \mathbb{C}^3 \xrightarrow{r} \mathfrak{A} \otimes \mathfrak{A} \xrightarrow{\imath_{13}} \mathfrak{A} \otimes \mathfrak{A} \otimes \mathfrak{A},$$

where $i_{13}(x \otimes y) = x \otimes 1 \otimes y$. Two other germs r^{12} and r^{23} are defined in a similar way. We are interested in those solutions of AYBE, which are non-degenerate, skew-symmetric (meaning that $r(v; x_1, x_2) = -r^{21}(-v; x_2, x_1)$) and which admit a Laurent expansion of the form

(2)
$$r(v; x_1, x_2) = \frac{\mathbb{1} \otimes \mathbb{1}}{v} + r_0(x_1, x_2) + vr_1(x_1, x_2) + v^2r_2(x_1, x_2) + \dots$$

All elliptic and trigonometric solutions of AYBE satisfying (2) were classified in [9, 10]. Recall the description of elliptic solutions of AYBE.

Let $\varepsilon = \exp\left(\frac{2\pi i d}{n}\right)$, where 0 < d < n is such that $\gcd(d, n) = 1$. We put

(3)
$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \varepsilon & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varepsilon^{n-1} \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}.$$

For any $(k,l) \in I := \{1,\ldots,n\} \times \{1,\ldots,n\}$ denote $Z_{(k,l)} = Y^k X^{-l}$ and $Z_{(k,l)}^{\vee} = \frac{1}{n} X^l Y^{-k}$. Then the following expression

$$(4) r_{((n,d),\tau)}(v;x_1,x_2) = \sum_{(k,l)\in I} \exp\left(\frac{2\pi id}{n}kx\right) \sigma\left(v + \frac{d}{n}(k\tau + l),x\right) Z_{(k,l)}^{\vee} \otimes Z_{(k,l)}$$

is a solution of AYBE satisfying (2), where $x = x_2 - x_1$ and

(5)
$$\sigma(a,z) = 2\pi i \sum_{n \in \mathbb{Z}} \frac{\exp(-2\pi i n z)}{1 - \exp(-2\pi i (a - 2\pi i n \tau))}$$

is the Kronecker elliptic function [12] for $\tau \in \mathbb{C}$ such that $Im(\tau) > 0$. See also [8, Section III] for a direct proof of this fact.

In his recent work [11] Polishchuk showed that non-degenerate skew-symmetric solutions of AYBE satisfying (2) can be obtained from appropriate triple Massey products in the perfect derived category of coherent sheaves $\mathsf{Perf}(\mathbb{E})$ on a non-commutative projective curve $\mathbb{E} = (E, \mathcal{A})$, where E is an irreducible projective curve over \mathbb{C} of arithmetic genus one and \mathcal{A} is a symmetric spherical order on E. A simplest example of such an order is given by $\mathcal{A} = End_E(\mathcal{F})$, where \mathcal{F} is a simple vector bundle on E. Let $E = E_{\tau} := \mathbb{C}/\langle 1, \tau \rangle$ be the elliptic curve determined by $\tau \in \mathbb{C}$ and \mathcal{F} be a simple vector bundle of rank n and degree d on E. It follows from results of Atiyah [1] that such \mathcal{F} exists and the sheaf of algebras $\mathcal{A} = \mathcal{A}_{(n,d)} := End_E(\mathcal{F})$ does not depend on the choice of \mathcal{F} . We show that the solution of AYBE arising from the non-commutative projective curve $(E_{\tau}, \mathcal{A}_{(n,d)})$ is given by the formula (4). In [9, Section 2], the corresponding computations were performed using the homological mirror symmetry and explicit formulae for triple Massey products in the Fukaya category of a torus. The expression for the resulted solution of AYBE (see [9, formula (2.3)]) was different from (4). Our computations are straightforward and based by techniques developed in the articles [6, 5].

Acknowledgement. This work was supported by the DFG project Bu–1866/5–1 as well as by CRC/TRR 191 project "Symplectic Structures in Geometry, Algebra and Dynamics" of German Research Council (DFG). We are grateful to Raschid Abedin for discussions of results of this paper.

2. Symmetric spherical orders on curves of genus one and AYBE

In this section we make a brief review of Polishchuk's construction [11]. Let E be an irreducible projective curve over \mathbb{C} of arithmetic genus one, \check{E} its smooth part, \mathcal{O} its structure sheaf, \mathcal{K} the sheaf of rational functions on E and Ω the sheaf of regular differential one-forms on E. There exists a regular differential one-form $\omega \in \Gamma(E,\Omega)$ such that $\Gamma(E,\Omega) = \mathbb{C}\omega$. Such ω also defines an isomorphism $\mathcal{O} \cong \Omega$. If E is singular then it is rational. In this case, let $\mathbb{P}^1 \stackrel{\nu}{\to} E$ be the normalization morphism and $\widetilde{\mathcal{O}} = \nu_*(\mathcal{O}_{\mathbb{P}^1})$.

Let \mathcal{A} be a sheaf of orders on E. By definition, \mathcal{A} is a torsion free coherent sheaf of \mathcal{O} -algebras on E such that $\mathcal{A} \otimes_{\mathcal{O}} \mathcal{K} \cong Mat_n(\mathcal{K})$ for some $n \in \mathbb{N}$. For any order \mathcal{A} we have the canonical trace morphism $\mathcal{A} \xrightarrow{t} \widetilde{\mathcal{O}}$, which coincides with the restriction of the trace morphism $\mathcal{A} \hookrightarrow \mathcal{A} \otimes_{\mathcal{O}} \mathcal{K} \cong Mat_n(\mathcal{K}) \xrightarrow{t} \mathcal{K}$ (if E is smooth then $\widetilde{\mathcal{O}} = \mathcal{O}$). Following [11], the order \mathcal{A} is called symmetric spherical if the following conditions are fulfilled:

- The image of the trace morphism t is \mathcal{O} and the induced morphism of coherent sheaves $\mathcal{A} \xrightarrow{t^{\sharp}} \mathcal{A}^{\vee} := Hom_{E}(\mathcal{A}, \mathcal{O})$ is an isomorphism.
- We have: $\Gamma(E, \mathcal{A}) \cong \mathbb{C}$.

Consider the non-commutative projective curve $\mathbb{E} = (E, \mathcal{A})$. Let $\mathsf{Coh}(\mathbb{E})$ be the category of coherent sheaves on \mathbb{E} (these are sheaves of \mathcal{A} -modules which are coherent as \mathcal{O} -modules)

and $\operatorname{\mathsf{Perf}}(\mathbb{E})$ be the corresponding perfect derived category. Recall that $\Omega_{\mathbb{E}} := \operatorname{\mathsf{Hom}}_E(\mathcal{A}, \Omega)$ is a dualising bimodule of \mathbb{E} . If \mathcal{A} is symmetric then $\Omega_{\mathbb{E}} \cong \mathcal{A}$ as \mathcal{A} -bimodules and $\operatorname{\mathsf{Perf}}(\mathbb{E})$ is a triangulated 1-Calabi–Yau category. The last assertion means that for any pair of objects \mathcal{G}^{\bullet} , \mathcal{H}^{\bullet} in $\operatorname{\mathsf{Perf}}(\mathbb{E})$ there is an isomorphism of vector spaces

(6)
$$\operatorname{\mathsf{Hom}}_{\mathbb{E}}(\mathcal{G}^{\bullet}, \mathcal{H}^{\bullet}) \cong \operatorname{\mathsf{Hom}}_{\mathbb{E}}(\mathcal{H}^{\bullet}, \mathcal{G}^{\bullet}[1])^{*}$$

which is functorial in both arguments.

Let $P = \underline{\mathsf{Pic}}^0(E)$ be the Jacobian of E and $\mathcal{L} \in \mathsf{Pic}(P \times E)$ be a universal line bundle. For any $v \in P$, let $\mathcal{L}^v := \mathcal{L}|_{\{v\} \times E} \in \mathsf{Pic}^0(E)$ and $\mathcal{A}^v := \mathcal{A} \otimes_{\mathcal{O}} \mathcal{L}^v \in \mathsf{Coh}(\mathbb{E})$.

Lemma 2.1. The coherent sheaf A is semi-stable of slope zero. Moreover,

(7)
$$\Gamma(E, \mathcal{A}^v) = 0 = H^1(E, \mathcal{A}^v)$$

for all but finitely many points $v \in P$.

Proof. Let \mathcal{B} be the kernel of the trace morphism $\mathcal{A} \xrightarrow{t} \mathcal{O}$. It follows from the long exact cohomology sequence of $0 \to \mathcal{B} \to \mathcal{A} \xrightarrow{t} \mathcal{O} \to 0$ that $H^0(E,\mathcal{B}) = 0 = H^1(E,\mathcal{B})$. Hence, \mathcal{B} is a semi-stable coherent sheaf on E of slope zero and $\mathcal{A} \cong \mathcal{B} \oplus \mathcal{O}$. It follows that \mathcal{A} is semi-stable, too. The latter fact also implies the vanishing $\Gamma(E,\mathcal{A}^v) = 0 = H^1(E,\mathcal{A}^v)$ for all but finitely many $v \in P$.

Corollary 2.2. There exists a proper closed subset $D \subset P \times P$ such that

(8)
$$\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_1}, \mathcal{A}^{v_2}) = 0 = \mathsf{Ext}^1_{\mathbb{E}}(\mathcal{A}^{v_1}, \mathcal{A}^{v_2})$$

for all $v_1, v_2 \in (P \times P) \setminus D$.

Proof. This statement follows from the isomorphisms

(9)
$$\operatorname{Ext}_{\mathbb{E}}^{i}(\mathcal{A}^{v_{1}}, \mathcal{A}^{v_{2}}) \cong H^{i}(E, \operatorname{End}_{\mathbb{E}}(\mathcal{A}^{v_{1}}, \mathcal{A}^{v_{2}})) \cong H^{i}(E, \mathcal{A}^{v_{2}-v_{1}}), \quad i = 0, 1$$
 and the vanishing (7).

Recall that for any $x, y \in \check{E}$ we have the following standard short exact sequences

(10)
$$0 \longrightarrow \Omega \longrightarrow \Omega(x) \xrightarrow{\operatorname{res}_x} \mathbb{C}_x \longrightarrow 0 \text{ and } 0 \longrightarrow \mathcal{O}(-y) \longrightarrow \mathcal{O} \xrightarrow{\operatorname{\underline{ev}}_y} \mathbb{C}_y \longrightarrow 0,$$

where $\underline{\operatorname{res}}_x$ and $\underline{\operatorname{ev}}_y$ are the residue and evaluation morphisms, respectively. Using the isomorphism $\mathcal{O} \xrightarrow{\omega} \Omega$, we can rewrite the first short exact sequence as

$$(11) 0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}(x) \xrightarrow{\underline{\mathsf{res}}_x^{\omega}} \mathbb{C}_x \longrightarrow 0.$$

For any $\mathcal{H} \in \mathsf{Coh}(\mathbb{E})$ denote $\mathcal{H}|_x := \mathcal{H} \otimes_{\mathcal{O}} \mathbb{C}_x \in \mathsf{Coh}(\mathbb{E})$. Tensoring (11) by \mathcal{A}^v (where $v \in P$ is an arbitrary point), we get the following short exact sequence in $\mathsf{Coh}(\mathbb{E})$:

$$0 \longrightarrow \mathcal{A}^v \longrightarrow \mathcal{A}^v(x) \longrightarrow \mathcal{A}^v\big|_x \longrightarrow 0.$$

Next, for any $(u,v) \in P \times P$ we have the induced long exact sequence of vector spaces

$$0 \longrightarrow \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u, \mathcal{A}^v) \longrightarrow \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u, \mathcal{A}^v(x)) \longrightarrow \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u, \mathcal{A}^v\big|_x) \longrightarrow \mathsf{Ext}^1_{\mathbb{E}}(\mathcal{A}^u, \mathcal{A}^v).$$

It follows from (7) that the linear map

(12)
$$\operatorname{Hom}_{\mathbb{E}}(\mathcal{A}^{u}, \mathcal{A}^{v}(x)) \xrightarrow{\operatorname{res}^{\mathcal{A}}(u, v; x)} \operatorname{Hom}_{\mathbb{E}}(\mathcal{A}^{v}|_{x}, \mathcal{A}^{v}|_{x})$$

is an isomorphism if $(u, v) \in (P \times P) \setminus D$.

Similarly, for any $v \in P$ and $x \neq y \in \check{E}$ we have the following short exact sequence

$$0 \longrightarrow \mathcal{A}^{v}(x-y) \longrightarrow \mathcal{A}^{v}(x) \longrightarrow \mathcal{A}^{v}(x)|_{v} \longrightarrow 0$$

in $\mathsf{Coh}(\mathbb{E})$, which is obtained by tensoring the evaluation sequence (10) by $\mathcal{A}^v(x)$. After applying to it the functor $\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u, -)$ and using a canonical isomorphism $\mathcal{A}^v|_y \cong \mathcal{A}^v(x)|_y$, we obtain a linear map

(13)
$$\operatorname{Hom}_{\mathbb{E}}(\mathcal{A}^{u}, \mathcal{A}^{v}(x)) \xrightarrow{\underline{\operatorname{ev}}^{\mathcal{A}}(u, v; x, y)} \operatorname{Hom}_{\mathbb{E}}(\mathcal{A}^{u}\big|_{y}, \mathcal{A}^{v}\big|_{y}).$$

Let $\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u\big|_x, \mathcal{A}^v\big|_x) \xrightarrow{\alpha(u,v;x,y)} \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u\big|_y, \mathcal{A}^v\big|_y)$ be (the unique) linear map making the following diagram of vector spaces

$$(14) \qquad \qquad \underbrace{\operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^{u}, \mathcal{A}^{v}(x) \right)}_{\operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^{u} \big|_{x}, \mathcal{A}^{v} \big|_{x} \right)} \xrightarrow{\alpha(u, v; x, y)} \operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^{u} \big|_{y}, \mathcal{A}^{v} \big|_{y} \right)$$

commutative. Let $\gamma(u,v;x,y) \in \mathsf{Hom}_{\mathbb{E}} \big(\mathcal{A}^v \big|_x, \mathcal{A}^u \big|_x \big) \otimes \mathsf{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_y, \mathcal{A}^v \big|_y \big)$ be the image of $\alpha(u,v;x,y)$ under the composition of the following canonical isomorphisms of vector spaces:

$$\begin{split} \operatorname{Lin} \Big(\operatorname{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_x, \mathcal{A}^v \big|_x \big), \operatorname{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_y, \mathcal{A}^v \big|_y \big) \Big) & \cong \operatorname{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_x, \mathcal{A}^v \big|_x \big)^* \otimes \operatorname{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_y, \mathcal{A}^v \big|_y \big) \\ & \cong \operatorname{Hom}_{\mathbb{E}} \big(\mathcal{A}^v \big|_x, \mathcal{A}^u \big|_x \big) \otimes \operatorname{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_y, \mathcal{A}^v \big|_y \big), \end{split}$$

where the last isomorphism is induced by the trace morphism t.

Let $P \times P \xrightarrow{\eta} P$ be the group operation on P and $o \in P$ be the corresponding neutral element (i.e. $\mathcal{O} \cong \mathcal{L}^o$). Consider the canonical projections $P \times P \times E \xrightarrow{\pi_i} P \times E$, $(x_1, x_2; x) \mapsto (x_i, x)$ for i = 1, 2 and $P \times P \times E \xrightarrow{\pi_o} P \times E$, $(x_1, x_2; x) \mapsto (x_1, x_2)$. Then there exists $S \in \mathsf{Pic}(P \times P)$ such that

$$(15) \qquad (\eta \times 1)^* \mathcal{L} \cong \pi_1^* \mathcal{L} \otimes \pi_2^* \mathcal{L} \otimes \pi_0^* \mathcal{S}.$$

In particular, $\mathcal{L}^{v_1} \otimes \mathcal{L}^{v_2} \cong \mathcal{L}^{v_1+v_2}$, where $v_1 + v_2 = \eta(v_1, v_2)$.

For any type of E (elliptic, nodal or cuspidal) there exists a complex analytic covering map $(\mathbb{C}, +) \xrightarrow{\chi} (P, \eta)$, which is also a group homomorphism. In this way we get a local coordinate on P in a neighbourhood of o. Next, we put: $\overline{\mathcal{L}} := (\chi \times 1)^* \mathcal{L}$. Since any line bundle on $\mathbb{C} \times \mathbb{C}$ is trivial, we get from (15) an induced isomorphism

$$(16) \qquad (\bar{\eta} \times \mathbb{1})^* \overline{\mathcal{L}} \cong \bar{\pi}_1^* \overline{\mathcal{L}} \otimes \bar{\pi}_2^* \overline{\mathcal{L}},$$

where $\bar{\eta}$ (respectively, $\bar{\pi}_i$) is the composition of η (respectively, π_i) with $\chi \times \chi$. It follows that we have isomorphisms

(17)
$$\mathcal{O}_E \xrightarrow{\alpha} \overline{\mathcal{L}}\Big|_{0 \times E} \quad \text{and} \quad \mathcal{O}_{\mathbb{C} \times \mathbb{C} \times E} \xrightarrow{\beta} \bar{\eta}^* \overline{\mathcal{L}}^{\vee} \otimes \bar{\pi}_1^* \overline{\mathcal{L}} \otimes \bar{\pi}_2^* \overline{\mathcal{L}}.$$

Let $U \subset \check{E}$ be an open subset for which there exists an isomorphism of $\Gamma(U, \mathcal{O}_E)$ -algebras

(18)
$$\Gamma(U, \mathcal{A}) \xrightarrow{\xi} \mathfrak{A} \otimes_{\mathbb{C}} \Gamma(U, \mathcal{O}_E)$$

as well as a trivialization

(19)
$$\Gamma(\mathbb{C} \times U, \overline{\mathcal{L}}) \xrightarrow{\overline{\zeta}} \Gamma(\mathbb{C} \times U, \mathcal{O}_{\mathbb{C} \times E}),$$

which identify the sections α and β from (17) with the identity section. Since η is a complex analytic covering map, we get from $\bar{\zeta}$ a local trivialization ζ of the universal family \mathcal{L} . Then such trivializations ξ and ζ allow to identify $\gamma(u, v; x, y)$ with a tensor $\rho(u, v; x, y) \in \mathfrak{A} \otimes \mathfrak{A}$. Note that by the construction the tensor $\rho(u, v; x, y)$ depends only the difference $w := u - v \in P$ with respect to the group law on the Jacobian P.

Theorem 2.3 (Polishchuk [11]). The constructed tensor $\varrho(w; x, y) = \rho(u, v; x, y)$ is a non-degenerate skew-symmetric solution of the associatiove Yang-Baxter equation (1).

Recall the key steps of the proof of this result. For any $x \in \check{E}$, let $\mathcal{S}^x \in \mathsf{Coh}(\mathbb{E})$ be a simple object of finite length supported at x (which is unique, up to an isomorphism). For any $(u,v) \in (P \times P) \setminus D$ and $(x,y) \in (\check{E} \times \check{E}), x \neq y$ consider the triple Massey product

$$\mathsf{Hom}_{\mathbb{E}}\big(\mathcal{A}^u,\mathcal{S}^x)\otimes \mathsf{Ext}^1_{\mathbb{E}}(\mathcal{S}^x,\mathcal{A}^v)\otimes \mathsf{Hom}_{\mathbb{E}}\big(\mathcal{A}^v,\mathcal{S}^y\big)\xrightarrow{m_3(u,v;x,y)} \mathsf{Hom}_{\mathbb{E}}\big(\mathcal{A}^u,\mathcal{S}^y\big)$$

in the triangulated category $\mathsf{Perf}(\mathbb{E})$. Since $\mathsf{Ext}^1_{\mathbb{E}}(\mathcal{S}^x, \mathcal{A}^v)^* \cong \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^v, \mathcal{S}^x)$ (see (6)), we get from $m_3(u, v; x, y)$ a linear map

(20)
$$\operatorname{\mathsf{Hom}}_{\mathbb{E}}(\mathcal{A}^{u},\mathcal{S}^{x}) \otimes \operatorname{\mathsf{Hom}}_{\mathbb{E}}(\mathcal{A}^{v},\mathcal{S}^{y}) \xrightarrow{m_{x,y}^{u,v}} \operatorname{\mathsf{Hom}}_{\mathbb{E}}(\mathcal{A}^{v},\mathcal{S}^{x}) \otimes \operatorname{\mathsf{Hom}}_{\mathbb{E}}(\mathcal{A}^{u},\mathcal{S}^{y}).$$

The constructed family of maps $m_{x,y}^{u,v}$ satisfies the identity

$$(21) (m_{x_1,x_2}^{v_3,v_2})^{12} (m_{x_1,x_3}^{v_1,v_3})^{13} - (m_{x_2,x_3}^{v_1,v_3})^{23} (m_{x_1,x_2}^{v_1,v_2})^{12} + (m_{x_1,x_3}^{v_1,v_2})^{13} (m_{y_2,y_3}^{v_2,v_3})^{23} = 0,$$

both sides of which are viewed as linear maps

$$\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_1},\mathcal{S}^{x_1})\otimes \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_2},\mathcal{S}^{x_2})\otimes \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_3},\mathcal{S}^{x_3}) \longrightarrow$$

$$\longrightarrow \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_2},\mathcal{S}^{x_1}) \otimes \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_3},\mathcal{S}^{x_2}) \otimes \mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^{v_1},\mathcal{S}^{x_3}).$$

Moreover, $m_{x,y}^{u,v}$ is non-degenerate and skew-symmetric:

(22)
$$\iota(m_{x,y}^{u,v}) = -m_{y,x}^{v,u},$$

where ι is the isomorphism

$$\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u,\mathcal{S}^x)\otimes\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^v,\mathcal{S}^y)\longrightarrow\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^v,\mathcal{S}^y)\otimes\mathsf{Hom}_{\mathbb{E}}(\mathcal{A}^u,\mathcal{S}^x)$$

given by $\iota(f \otimes g) = g \otimes f$. Both identities (21) and (22) are consequences of existence of an A_{∞} -structure on $\operatorname{Perf}(\mathbb{E})$ which is cyclic with respect to the Serre duality (6). Applying appropriate canonical isomorphisms, one can identify $m_{x,y}^{u,v}$ with the linear map $\alpha(u,v;x,y)$ from the commutative diagram (14). See also [6, Theorem 2.2.17] for a detailed exposition in a similar setting.

3. Solutions of AYBE as a section of a vector bundle

Following the work [6], we provide a global version of the commutative diagram (14). Let

$$B := P \times P \times \breve{E} \times \breve{E} \setminus (D \times \breve{E} \times \breve{E}) \cup (P \times P \times \Xi),$$

where $D \subset P \times P$ is the locus defined by (8) and $\Xi \subset \check{E} \times \check{E}$ is the diagonal. Let $X := B \times E$. Then the canonical projection $X \xrightarrow{\pi} B$ admits two canonical sections $B \xrightarrow{\sigma_i} X$ given by $\sigma_i(v_1, v_2; x_1, x_2) := (v_1, v_2; x_1, x_2; x_i)$ for i = 1, 2. Let $\Sigma_i := \sigma_i(B) \subset X$ be the corresponding Cartier divisor. Note that $\Sigma_1 \cap \Sigma_2 = \emptyset$.

Similarly to (11), we have the following short exact sequence in the category Coh(X):

(23)
$$0 \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_X(\Sigma_1) \xrightarrow{\operatorname{res}_{\Sigma_1}^{\omega}} \mathcal{O}_{\Sigma_1} \longrightarrow 0.$$

Here, for a local section $g(v_1, v_2; x_1, x_2; x) = \frac{f(v_1, v_2; x_1, x_2; x)}{x - x_1}$ of the line bundle $\mathcal{O}_X(\Sigma_1)$ we put: $\underline{\operatorname{res}}_{\Sigma_1}^{\omega}(g) = \operatorname{res}_{x=x_1}(g\omega_x)$, where ω_x is the pull-back of ω under the canonical projection $X \xrightarrow{\pi_5} E$.

Consider the non-commutative scheme $\mathbb{X} = (X, \pi_5^*(\mathcal{A}))$ as well as coherent sheaves $\mathcal{A}^{(i)} := \pi_5^*(\mathcal{A}) \otimes \pi_{i,5}^*(\mathcal{L}) \in \mathsf{Coh}(\mathbb{X})$, where $X \xrightarrow{\pi_{i,5}} P \times E$ is the canonical projection for i = 1, 2. Tensoring (23) by $\mathcal{A}^{(2)}$, we get a short exact sequence

$$(24) 0 \longrightarrow \mathcal{A}^{(2)} \longrightarrow \mathcal{A}^{(2)}(\Sigma_1) \longrightarrow \mathcal{A}^{(2)}\Big|_{\Sigma_1} \longrightarrow 0$$

in the category $\mathsf{Coh}(\mathbb{X})$. Since $\mathcal{A}^{(1)}$ is a locally projective $\mathcal{O}_{\mathbb{X}}$ -module, applying the functor $Hom_{\mathbb{X}}(\mathcal{A}^{(1)}, -)$ to (24), we get an induced short exact sequence

$$(25) \quad 0 \to \operatorname{Hom}_{\mathbb{X}}\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}\right) \longrightarrow \operatorname{Hom}_{\mathbb{X}}\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}(\Sigma_{1})\right) \longrightarrow \operatorname{Hom}_{\mathbb{X}}\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}\Big|_{\Sigma_{1}}\right) \to 0$$

in the category $\mathsf{Coh}(X)$. Base-change isomorphism combined with the vanishing (8) imply that $R\pi_*(Hom_{\mathbb{X}}(\mathcal{A}^{(1)},\mathcal{A}^{(2)})) = 0$, where $R\pi_*: D^b(\mathsf{Coh}(X)) \longrightarrow D^b(\mathsf{Coh}(X))$ is the derived direct image functor. Applying the functor π_* to the short exact sequence (25), we get the following isomorphism

$$\pi_* \Big(Hom_{\mathbb{X}} \big(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}(\Sigma_1) \big) \Big) \xrightarrow{\cong} \pi_* Hom_{\mathbb{X}} \Big(\mathcal{A}^{(1)}, \mathcal{A}^{(2)} \Big|_{\Sigma_1} \Big)$$

of coherent sheaves on B. Since $Hom_{\mathbb{X}}\left(\mathcal{A}^{(1)},\mathcal{A}^{(2)}\Big|_{\Sigma_{1}}\right)\cong Hom_{\mathbb{X}}\left(\mathcal{A}^{(1)}\Big|_{\Sigma_{1}},\mathcal{A}^{(2)}\Big|_{\Sigma_{1}}\right)$, we get an isomorphism $\underline{res}_{\Sigma_{1}}^{\mathcal{A}}$ of coherent sheaves on B (which are even locally free) given as the composition

$$\pi_*\Big(Hom_{\mathbb{X}}\big(\mathcal{A}^{(1)},\mathcal{A}^{(2)}(\Sigma_1)\Big) \stackrel{\cong}{\longrightarrow} \pi_*Hom_{\mathbb{X}}\Big(\mathcal{A}^{(1)},\mathcal{A}^{(2)}\Big|_{\Sigma_1}\Big) \stackrel{\cong}{\longrightarrow} \pi_*Hom_{\mathbb{X}}\Big(\mathcal{A}^{(1)}\Big|_{\Sigma_1},\mathcal{A}^{(2)}\Big|_{\Sigma_1}\Big).$$

Next, we have the following short exact sequence of coherent sheaves on X:

$$(26) 0 \longrightarrow \mathcal{O}_X(-\Sigma_2) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_{\Sigma_2} \longrightarrow 0.$$

Since $\Sigma_1 \cap \Sigma_2 = \emptyset$, the canonical morphism $\mathcal{O}_{\Sigma_2} \to \mathcal{O}(\Sigma_1)|_{\Sigma_2}$ is an isomorphism. Tensoring (26) by $\mathcal{A}^{(2)}(\Sigma_1)$, we get a short exact sequence

$$(27) 0 \longrightarrow \mathcal{A}^{(2)}(\Sigma_1 - \Sigma_2) \longrightarrow \mathcal{A}^{(2)}(\Sigma_1) \longrightarrow \mathcal{A}^{(2)}\Big|_{\Sigma_2} \longrightarrow 0$$

in the category $\mathsf{Coh}(\mathbb{X})$. Applying to (27) the functor $\mathit{Hom}_{\mathbb{X}}(\mathcal{A}^{(1)}, -)$, we get an induced short exact sequence

$$0 \to \operatorname{Hom}_{\mathbb{X}}\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}(\Sigma_{1} - \Sigma_{2})\right) \longrightarrow \operatorname{Hom}_{\mathbb{X}}\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}(\Sigma_{1})\right) \longrightarrow \operatorname{Hom}_{\mathbb{X}}\left(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}\Big|_{\Sigma_{1}}\right) \to 0$$

in the category $\mathsf{Coh}(X)$. Applying the functor π_* , we get a morphism of locally free sheaves $\underline{\mathsf{ev}}_{\Sigma_2}^{\mathcal{A}}$ on B given as the composition

$$\pi_*\Big(Hom_{\mathbb{X}}\big(\mathcal{A}^{(1)},\mathcal{A}^{(2)}(\Sigma_1)\big) \longrightarrow \pi_*Hom_{\mathbb{X}}\Big(\mathcal{A}^{(1)},\mathcal{A}^{(2)}\Big|_{\Sigma_2}\Big) \stackrel{\cong}{\longrightarrow} \pi_*Hom_{\mathbb{X}}\Big(\mathcal{A}^{(1)}\Big|_{\Sigma_2},\mathcal{A}^{(2)}\Big|_{\Sigma_2}\Big).$$

In other words, we get the following global version

$$\pi_* \Big(Hom_{\mathbb{X}} \Big(\mathcal{A}^{(1)}, \mathcal{A}^{(2)}(\Sigma_1) \Big)$$

$$\xrightarrow{\operatorname{res}_{\Sigma_1}^{\mathcal{A}}} \qquad \qquad \underbrace{\operatorname{ev}_{\Sigma_2}^{\mathcal{A}}}$$

$$\pi_* Hom_{\mathbb{X}} \Big(\mathcal{A}^{(1)} \Big|_{\Sigma_1}, \mathcal{A}^{(2)} \Big|_{\Sigma_1} \Big) \xrightarrow{\alpha^{\mathcal{A}}} \pi_* Hom_{\mathbb{X}} \Big(\mathcal{A}^{(1)} \Big|_{\Sigma_2}, \mathcal{A}^{(2)} \Big|_{\Sigma_2} \Big)$$

of the the commutative diagram (14), where $\alpha^{\mathcal{A}} := \underline{\operatorname{ev}}_{\Sigma_2}^{\mathcal{A}} \circ \left(\underline{\operatorname{res}}_{\Sigma_1}^{\mathcal{A}}\right)^{-1}$. For any $1 \leq i, j \leq 2$, consider the canonical projection

$$P \times P \times \check{E} \times \check{E} \xrightarrow{\kappa_{ij}} P \times E, \ (v_1, v_2; x_1, x_2) \mapsto (v_j, x_i).$$

Then we have the following canonical isomorphism of coherent sheaves on B:

$$\pi_* Hom_{\mathbb{X}} \Big(\mathcal{A}^{(1)} \Big|_{\Sigma_i}, \mathcal{A}^{(2)} \Big|_{\Sigma_i} \Big) \cong \mathcal{A}^{\langle i \rangle} \otimes Hom_B \Big(\kappa_{1i}^*(\mathcal{L}), \kappa_{2i}^*(\mathcal{L}) \Big),$$

where $\mathcal{A}^{\langle i \rangle}$ is the pull-back of \mathcal{A} on B via the projection morphism

$$P \times P \times \breve{E} \times \breve{E} \longrightarrow E, (v_1, v_2; x_1, x_2) \mapsto x_i$$

for i = 1, 2. The morphism of locally free \mathcal{O}_B -modules

$$\mathcal{A}^{\langle 1 \rangle} \otimes Hom_B(\kappa_{11}^*(\mathcal{L}), \kappa_{21}^*(\mathcal{L})) \xrightarrow{\alpha^{\mathcal{A}}} \mathcal{A}^{\langle 2 \rangle} \otimes Hom_B(\kappa_{12}^*(\mathcal{L}), \kappa_{22}^*(\mathcal{L}))$$

determines a distinguished section

(28)
$$\gamma^{\mathcal{A}} \in \Gamma \Big(B, \mathcal{A}^{\langle 1 \rangle} \otimes \mathcal{A}^{\langle 2 \rangle} \otimes \kappa_{11}^*(\mathcal{L}) \otimes \kappa_{21}^*(\mathcal{L}^{\vee}) \otimes \kappa_{22}^*(\mathcal{L}) \otimes \kappa_{12}^*(\mathcal{L}^{\vee}) \Big).$$

For i=1,2 consider the canonical projections $P\times P\times E\xrightarrow{\psi_i} P\times E, (v_1,v_2;x)\mapsto (v_i;x)$ as well as $P\times P\times E\xrightarrow{\psi} P\times P, (v_1,v_2;x)\mapsto (v_1,v_2)$. Then there exists $S\in \text{Pic}(P\times P)$ such that

$$\psi_1^*(\mathcal{L}) \otimes \psi_2^*(\mathcal{L}^{\vee}) \cong (\mu \times 1)^* \otimes \psi^*(\mathcal{S})$$

where $P \times P \xrightarrow{\mu} P$, $(v_1, v_2) \mapsto v_1 - v_2$. Finally, for i = 1, 2 consider the morphism

$$P \times P \times \check{E} \times \check{E} \xrightarrow{\mu_i} P \times \check{E}, (v_1, v_2; x_1, x_2) \mapsto (v_1 - v_2; x_i).$$

Then we have an isomorphism of locally free sheaves

$$\kappa_{11}^*(\mathcal{L}) \otimes \kappa_{21}^*(\mathcal{L}^{\vee}) \otimes \kappa_{22}^*(\mathcal{L}) \otimes \kappa_{12}^*(\mathcal{L}^{\vee}) \cong \mu_1^*(\mathcal{L}) \otimes \mu_2^*(\mathcal{L}^{\vee}).$$

In these terms, we can regard $\gamma^{\mathcal{A}}$ from (28) as a section

(29)
$$\gamma^{\mathcal{A}} \in \Gamma \Big(B, \mathcal{A}^{\langle 1 \rangle} \otimes \mathcal{A}^{\langle 2 \rangle} \otimes \mu_1^*(\mathcal{L}) \otimes \mu_2^*(\mathcal{L}^{\vee}) \Big).$$

Applying trivialisations ξ of \mathcal{A} (see (18)) and ζ of \mathcal{L} (see (19)), we obtain from $\gamma^{\mathcal{A}}$ a tensor-valued function

$$\rho_{\xi,\zeta}^{\mathcal{A}}: V \times V \times U \times U \longrightarrow \mathfrak{A} \otimes \mathfrak{A},$$

which satisfies the translation property

$$\rho_{\xi,\zeta}^{\mathcal{A}}(v_1+u,v_2+u;x_1,x_2) = \varrho_{\xi,\zeta}^{\mathcal{A}}(v_1,v_2;x_1,x_2).$$

Recall that for all types of the genus one curve E (smooth, nodal or cuspidal) we have a group homomorphism $(\mathbb{C}, +) \longrightarrow (P, +)$, which is locally a biholomorphic map.

After making these identifications, we get the germ of a meromorphic function

(30)
$$(\mathbb{C}^3, 0) \xrightarrow{\varrho} \mathfrak{A} \otimes \mathfrak{A}, \text{ where } \varrho(v_1 - v_2; x_1, x_2) := \rho_{\xi, \zeta}^{\mathcal{A}}(v_1, v_2; x_1, x_2).$$

This function is a non-degenerate skew-symmetric solution of AYBE.

Summary. Let $\mathbb{E} = (E, \mathcal{A})$ be a non-commutative projective curve, where E is an irreducible projective curve of arithmetic genus one and \mathcal{A} be a symmetric spherical order on E. Let P be the Jacobian of E and \mathcal{L} be a universal family of degree zero line bundles on E. Then we have a distinguished section $\gamma^{\mathcal{A}} \in \Gamma(B, \mathcal{A}^{\langle 1 \rangle} \otimes \mathcal{A}^{\langle 2 \rangle} \otimes \mu_1^*(\mathcal{L}) \otimes \mu_2^*(\mathcal{L}^{\vee}))$. Choosing trivializations ξ of \mathcal{A} (see (18)) and ζ of \mathcal{L} (see (19)), we get the germ of a meromorphic function $(\mathbb{C}^3, 0) \stackrel{\varrho}{\longrightarrow} \mathfrak{A} \otimes \mathfrak{A}$, which is a non-degenerate skew-symmetric solution of AYBE. A different trivialization $\tilde{\xi}$ of \mathcal{A} leads to a gauge-equivalent solution $(\varphi(x_1) \otimes \varphi(x_1))\varrho(v; x_1, x_2)$, where $(\mathbb{C}, 0) \stackrel{\varphi}{\longrightarrow} \operatorname{Aut}_{\mathbb{C}}(\mathfrak{A})$ is the germ of $\tilde{\xi}\xi^{-1}$. Analogously, another choice of a trivialization ζ leads to an equivalent solution $\exp(v(\beta(x_1) - \beta(x_2)))\varrho(v; x_1, x_2)$ for some holomorphic $(\mathbb{C}, 0) \stackrel{\beta}{\longrightarrow} \mathbb{C}$.

Remark 3.1. The simplest example of a symmetric spherical order is $\mathcal{A} = End_E(\mathcal{F})$, where \mathcal{F} is a simple vector bundle on E of rank n and degree d. It follows from [1, 4, 3] that such \mathcal{F} exists if and only if n and d are coprime and the sheaf of algebras $\mathcal{A} = \mathcal{A}_{(n,d)} = End_E(\mathcal{F})$ does not depend on the choice of \mathcal{F} . Moreover, according to [11, Proposition 1.8.1], any symmetric spherical order on an elliptic curve E is isomorphic to $\mathcal{A}_{(n,d)}$ for some 0 < d < n mutually prime.

Remark 3.2. Let $(u,v) \in P \times P \setminus D$ and $(x,y) \in \check{E} \times \check{E} \setminus \Xi$. Then we have canonical isomorphisms

$$\operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^u \big|_x, \mathcal{A}^v \big|_x \right) \cong H^0(E, \operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^u \big|_x, \mathcal{A}^v \big|_x \right) \cong H^0 \big(E, \mathcal{A}^{v-u}([x]) \big).$$

Analogously, we have canonical isomorphisms

$$\mathsf{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_x, \mathcal{A}^v \big|_x \big) \cong \mathcal{A}^{v-u} \big|_x \quad \text{and} \quad \mathsf{Hom}_{\mathbb{E}} \big(\mathcal{A}^u \big|_y, \mathcal{A}^v \big|_y \big) \cong \mathcal{A}^{v-u} \big|_y$$

such that the following diagram

$$(31) \qquad \begin{array}{c} \operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^{u} \big|_{x}, \mathcal{A}^{v} \big|_{x} \right) \overset{\operatorname{\underline{res}}^{\mathcal{A}}(u,v;x)}{\longleftrightarrow} \operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^{u}, \mathcal{A}^{v}(x) \right) \overset{\underline{\underline{\operatorname{ev}}^{\mathcal{A}}(u,v;x,y)}}{\longleftrightarrow} \operatorname{Hom}_{\mathbb{E}} \left(\mathcal{A}^{u} \big|_{y}, \mathcal{A}^{v} \big|_{y} \right) \\ \cong \bigvee_{\mathcal{A}^{v-u} \big|_{x}} \overset{\operatorname{\underline{res}}^{v-u}}{\longleftrightarrow} H^{0} \big(E, \mathcal{A}^{v-u} ([x]) \big) \overset{\underline{\underline{\operatorname{ev}}^{\mathcal{A}}(u,v;x,y)}}{\longleftrightarrow} \operatorname{A}^{v-u} \big|_{y} \end{array}$$

is commutative. Here, the linear maps $\operatorname{res}_x^{v-u}$ and $\operatorname{ev}_y^{v-u}$ are induced by the standard short exact sequences (10).

4. Elliptic solutions of AYBE

Let $\tau \in \mathbb{C}$ be such that $\operatorname{Im}(\tau) > 0$, $\mathbb{C} \supset \Lambda = \langle 1, \tau \rangle \cong \mathbb{Z}^2$ and $E = E_\tau = \mathbb{C}/\Lambda$. Recall some standard techniques to deal with holomorphic vector bundles on complex tori. An automorphy factor is a pair (A, V), where V is a finite dimensional vector space over \mathbb{C} and $A : \Lambda \times \mathbb{C} \longrightarrow \operatorname{GL}(V)$ is a holomorphic function such that $A(\lambda + \mu, z) = A(\lambda, z + \mu)A(\mu, z)$ for all $\lambda, \mu \in \Lambda$ and $z \in \mathbb{C}$. Such (A, V) defines the following holomorphic vector bundle on the torus E:

$$\mathcal{E}(A,V) := \mathbb{C} \times V/\sim$$
, where $(z,v) \sim (z+\lambda,A(\lambda,z)v)$ for all $(\lambda,z,v) \in \Lambda \times \mathbb{C} \times V$.

Given two automorphy factors (A, V) and (B, V), the corresponding vector bundles $\mathcal{E}(A, V)$ and $\mathcal{E}(B, V)$ are isomorphic if and only if there exists a holomorphic function $H : \mathbb{C} \to \mathsf{GL}(V)$ such that

$$B(\lambda, z) = H(z + \lambda)A(\lambda, z)H(z)^{-1}$$
 for all $(\lambda, z) \in \Lambda \times \mathbb{C}$.

Let $\Phi: \mathbb{C} \longrightarrow \mathsf{GL}_n(\mathbb{C})$ be a holomorphic function such that $\Phi(z+1) = \Phi(z)$ for all $z \in \mathbb{C}$. Then one can define the automorphy factor (A, \mathbb{C}^n) in the following way.

- $-A(0,z) = I_n$ (the identity $n \times n$ matrix).
- For any $k \in \mathbb{N}_0$ we set:

$$A(k\tau, z) = \Phi(z + (k-1)\tau) \dots \Phi(z)$$
 and $A(-k\tau, z) = A(k\tau, z - k\tau)^{-1}$.

For a proof of the following result, see [5, Proposition 5.1].

Proposition 4.1. Let 0 < d < n be coprime. Then the sheaf of orders $A = A_{(n,d)}$ has the following description:

(32)
$$\mathcal{A} \cong \mathbb{C} \times \mathfrak{A} / \sim$$
, where $(z, Z) \sim (z + 1, \operatorname{Ad}_X(Z)) \sim (z + \tau, \operatorname{Ad}_Y(Z))$,

X and Y are matrices given by (3) and $Ad_T(Z) = TZT^{-1}$ for $T \in \{X,Y\}$ and $Z \in \mathfrak{A}$.

For any $(k,l) \in I := \{1,\ldots,n\} \times \{1,\ldots,n\}$ denote $Z_{(k,l)} = Y^k X^{-l}$ and $Z_{(k,l)}^{\vee} = \frac{1}{n} X^l Y^{-k}$. Note that the operators $\mathsf{Ad}_X, \mathsf{Ad}_Y \in \mathsf{End}_{\mathbb{C}}(\mathfrak{A})$ commute. Moreover,

$$\operatorname{Ad}_X(Z_{(k,l)}) = \varepsilon^k Z_{(k,l)}$$
 and $\operatorname{Ad}_Y(Z_{(k,l)}) = \varepsilon^l Z_{(k,l)}$

for any $(k,l) \in I$. As a consequence $(Z_{(k,l)})_{(k,l)\in I}$ is a basis of \mathfrak{A} .

Let can: $\mathfrak{A} \otimes \mathfrak{A} \longrightarrow \operatorname{End}_{\mathbb{C}}(\mathfrak{A})$ be the canonical isomorphism sending a simple tensor $Z' \otimes Z''$ to the linear map $Z \mapsto \operatorname{tr}(Z' \cdot Z) \cdot Z''$. Then we have:

(33)
$$\operatorname{can}(Z_{(k,l)}^{\vee} \otimes Z_{(k,l)})(Z_{(k',l')}) = \begin{cases} Z_{(k,l)} & \text{if } (k',l') = (k,l) \\ 0 & \text{otherwise.} \end{cases}$$

Recall the expressions for the first and third Jacobian theta-functions (see e.g. [7]):

(34)
$$\begin{cases} \bar{\theta}(z) = \theta_1(z|\tau) = 2q^{\frac{1}{4}} \sum_{n=0}^{\infty} (-1)^n q^{n(n+1)} \sin((2n+1)\pi z), \\ \theta(z) = \theta_3(z|\tau) = 1 + 2\sum_{n=1}^{\infty} q^{n^2} \cos(2\pi n z), \end{cases}$$

where $q = \exp(\pi i \tau)$. They are related by the following identity:

(35)
$$\theta\left(z + \frac{1+\tau}{2}\right) = i\exp\left(-\pi i\left(z + \frac{\tau}{4}\right)\right)\bar{\theta}(z).$$

Lemma 4.2. For any $x \in \mathbb{C}$ consider the function $\varphi_x(w) = -\exp(-2\pi i(w+\tau-x))$. Then the following results are true.

• The vector space

(36)
$$\left\{ \mathbb{C} \stackrel{f}{\longrightarrow} \mathbb{C} \middle| \begin{array}{c} f \text{ is holomorphic} \\ f(w+1) = f(w) \\ f(w+\tau) = \varphi_x(w)f(w) \end{array} \right\}$$

is one-dimensional and generated by $\theta_x(w) := \theta(w + \frac{1+\tau}{2} - x)$.

- We have: $\mathcal{E}(\varphi_x) \cong \mathcal{O}_E([x])$.
- For $a, b \in \mathbb{R}$ let $v = a\tau + b \in \mathbb{C}$ and $[v] = v(v) \in E$. Then we have:

(37)
$$\mathcal{E}(\exp(-2\pi i v)) \cong \mathcal{O}_E([0] - [v]).$$

In these terms we also get a description of a universal family $\mathcal L$ of degree zero line bundles on E.

A proof of these statements can be for instance found in [7] or [6, Section 4.1].

Let $U \subset \mathbb{C}$ be a small open neighborhood of 0 and $O = \Gamma(U, \mathcal{O}_{\mathbb{C}})$ be the ring of holomorphic functions on U. Let z be a coordinate on U, $\mathbb{C} \xrightarrow{\eta} E$ be the canonical covering map, $\omega = dz \in H^0(E, \Omega)$ and $\Gamma(U, \mathcal{A}) \xrightarrow{\xi} \mathfrak{A} \otimes_{\mathbb{C}} O$ be the standard trivialization induced by the automorphy data $(\mathsf{Ad}_X, \mathsf{Ad}_Y)$. One can also define a trivialization ζ of the universal family \mathcal{L} of degree zero line bundles on E compatible with the isomorphisms (37).

Consider the following vector space

$$\mathsf{Sol}\big((n,d),v,x\big) = \left\{ \mathbb{C} \overset{F}{\longrightarrow} \mathfrak{A} \left| \begin{array}{c} F \text{ is holomorphic} \\ F(w+1) = \mathsf{Ad}_X\big(F(w)\big) \\ F(w+\tau) = \varphi_{x-v}(w) \mathsf{Ad}_Y\big(F(w)\big) \end{array} \right\}.$$

Proposition 4.3. The following diagram

is commutative, where for $F \in Sol((n,d),v,x)$ we have:

$$\overline{\mathsf{res}}_x(F) = \frac{F(x)}{\theta'\big(\frac{1+\tau}{2}\big)} \quad \text{and} \quad \overline{\mathsf{ev}}_y(F) = \frac{F(y)}{\theta\big(y-x+\frac{1+\tau}{2}\big)}.$$

The isomorphisms of vector spaces j_x^v, j_y^v and j are induced by the trivializations ξ and ζ as well as the pull-back functor η^* .

Comment on the proof. Since an analogous result is proven in [6, Corollary 4.2.1], we omit details here.

Now we are prepared to prove the main result of this work.

Theorem 4.4. Let $r_{((n,d),\tau)}(v;x,y)$ be the solution of AYBE corresponding to the datum $(E_{\tau}, \mathcal{A}_{(n,d)})$ with respect to the trivializations ξ (respectively, ζ) of \mathcal{A} (respectively, \mathcal{L}) introduced above. Then it is given by the expression (4).

Proof. We first compute an explicit basis of the vector space Sol((n,d),v,x). Let

$$F(w) = \sum_{(k,l)\in I} f_{(k,l)}(w) Z_{(k,l)}.$$

The condition $F \in Sol((n,d),v,x)$ yields the following constraints on the coefficients $f_{(k,l)}$:

(39)
$$\begin{cases} f_{(k,l)}(w+1) = \varepsilon^k f_{(k,l)}(w) \\ f_{(k,l)}(w+\tau) = \varepsilon^l \varphi_{x-v}(w) f_{(k,l)}(w). \end{cases}$$

It follows from Lemma 4.2 that the vector space of holomorphic solutions of the system (39) is one-dimensional and generated by the function

$$f_{(k,l)}(w) = \exp\left(-\frac{2\pi i d}{n}kw\right)\theta\left(w + \frac{1+\tau}{2} + v - x - \frac{d}{n}(k\tau - l)\right).$$

From Proposition 4.3 and formula (33) it follows that $r_{((n,d),\tau)}(v;x,y)$ is given by the following expression:

$$r_{((n,d),\tau)}(v;x,y) = \sum_{(k,l)\in I} r_{(k,l)}(v;z) Z_{(k,l)}^{\vee} \otimes Z_{(k,l)},$$

where z = y - x and

$$r_{(k,l)}(v;z) = \exp\left(-\frac{2\pi i d}{n}kz\right) \frac{\theta'\left(\frac{1+\tau}{2}\right)\theta\left(z+v+\frac{1+\tau}{2}-\frac{d}{n}(k\tau-l)\right)}{\theta\left(v+\frac{1+\tau}{2}-\frac{d}{n}(k\tau-l)\right)\theta\left(z+\frac{1+\tau}{2}\right)}.$$

Relation (35) implies that

$$\frac{\theta'\Big(\frac{1+\tau}{2}\Big)\theta\Big(z+v+\frac{1+\tau}{2}-\frac{d}{n}(k\tau-l)\Big)}{\theta\Big(v+\frac{1+\tau}{2}-\frac{d}{n}(k\tau-l)\Big)\theta\Big(z+\frac{1+\tau}{2}\Big)} = \frac{\theta'\Big(\frac{1+\tau}{2}\Big)\bar{\theta}\Big(z+v-\frac{d}{n}(k\tau-l)\Big)}{i\exp\Big(-\pi i\frac{\tau}{4}\Big)\bar{\theta}\Big(v-\frac{d}{n}(k\tau-l)\Big)\bar{\theta}(z)}$$

Moreover, it follows from (35) that $\theta'\left(\frac{1+\tau}{2}\right) = i\exp\left(-\pi i\frac{\tau}{4}\right)\bar{\theta}'(0)$. Hence, we get:

$$\begin{split} r_{(k,l)}(v;z) &= \exp\Bigl(-\frac{2\pi i d}{n}kz\Bigr) \frac{\bar{\theta}'(0)\bar{\theta}\Bigl(z+v-\frac{d}{n}(k\tau-l)\Bigr)}{\bar{\theta}\Bigl(v-\frac{d}{n}(k\tau-l)\Bigr)\bar{\theta}(z)} \\ &= \exp\Bigl(-\frac{2\pi i d}{n}kz\Bigr)\sigma\Bigl(v-\frac{d}{n}(k\tau-l),z\Bigr). \end{split}$$

Here we use the fact that the Kronecker elliptic function $\sigma(u,z)$ defined by (5) satisfies the formula: $\sigma(u,z) = \frac{\bar{\theta}'(0)\bar{\theta}_1(u+z)}{\bar{\theta}(u)\bar{\theta}(z)}$ (see for instance [13, Section 3]). We have a bijection $\{1,\ldots,n\} \longrightarrow \{0,\ldots,n-1\}$, $k\mapsto (n-k)$. Using this substitution as well as the identity $\sigma(u-d\tau,x) = \exp(2\pi i dz)\sigma(u,z)$, we end up with the expression (4), as asserted.

Remark 4.5. Let $r(u; x_1, x_2)$ be a non-degenerate skew-symmetric solution of AYBE (1) satisfying (2). Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ and $\mathfrak{A} \xrightarrow{\pi} \mathfrak{g}, Z \mapsto Z - \frac{1}{n} \operatorname{tr}(Z) I_n$. Then

$$\bar{r}(x_1, x_2) = (\pi \otimes \pi)(r_1(x_1, x_2))$$

is a solution of the classical Yang-Baxter equation

a solution of the classical rang–Baxter equation
$$\left\{ \begin{array}{l} \left[\bar{r}^{12}(x_1, x_2), \bar{r}^{13}(x_1, x_3) \right] + \left[\bar{r}^{13}(x_1, x_3), \bar{r}^{23}(x_2, x_3) \right] + \left[\bar{r}^{12}(x_1, x_2), \bar{r}^{23}(x_2, x_3) \right] = 0 \\ \bar{r}^{12}(x_1, x_2) = -\bar{r}^{21}(x_2, x_1), \end{array} \right.$$

see [9, Lemma 1.2]. Under certain additional assumptions (which are fulfilled provided $\bar{r}(x_1, x_2)$ is elliptic or trigonometric), the function $R(x_1, x_2) = r(u_0; x_1, x_2)$ (where $u = u_0$ from the domain of definition of r is fixed) satisfies the quantum Yang–Baxter equation

$$R(x_1, x_2)^{12} R(x_1, x_3)^{13} R(x_2, x_3)^{23} = R(x_2, x_3)^{23} R(x_1, x_3)^{13} R(x_1, x_2)^{12},$$

see [10, Theorem 1.5]. In fact, the expression (4) is a well-known elliptic solution of Belavin of the quantum Yang–Baxter equation; see [2].

References

- [1] M. Atiyah, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3) 7 (1957) 414–452.
- [2] A. Belavin, Dynamical symmetry of integrable quantum systems, Nuclear Phys. B 180 (1981), no. 2, FS 2, 189–200.
- [3] L. Bodnarchuk, Yu. Drozd, Stable vector bundles over cuspidal cubics, Cent. Eur. J. Math. 1 (2003), no. 4, 650–660.
- [4] I. Burban, Stable vector bundles on a rational curve with one node, Ukraïn. Mat. Zh., 55 (2003), no. 7, 867–874.
- [5] I. Burban, T. Henrich, Vector bundles on plane cubic curves and the classical Yang–Baxter equation, Journal of the European Math. Society 17, no. 3, 591–644 (2015).

- [6] I. Burban, B. Kreußler, Vector bundles on degenerations of elliptic curves and Yang-Baxter equations, Memoirs of the AMS 220 (2012), no. 1035, vi+131 pp.
- [7] D. Mumford, Tata lectures on theta I, Progress in Math. 28, Birkhäuser, 1983.
- [8] A. Levin, M. Olshanetsky, A. Zotov, Odd supersymmetrization of elliptic R-matrices, J. Phys. A 53 (2020), no. 18, 185202, 16 pp.
- [9] A. Polishchuk, Classical Yang-Baxter equation and the A_{∞} -constraint, Adv. Math. **168** (2002), no. **1**, 56–95.
- [10] A. Polishchuk, Massey products on cycles of projective lines and trigonometric solutions of the Yang-Baxter equations, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 573–617, Progr. Math. 270, Birkhäuser, 2009.
- [11] A. Polishchuk, Geometrization of trigonometric solutions of the associative and classical Yang-Baxter equations, arXiv:2006.06101.
- [12] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete 88, Springer, 1976.
- [13] D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991), no. 3, 449–465.

Universität Paderborn, Institut für Mathematik, Warburger Strasse 100, 33098 Paderborn, Germany

 $Email\ address: {\tt burban@math.uni-paderborn.de}$

UNIVERSITÄT PADERBORN, INSTITUT FÜR MATHEMATIK, WARBURGER STRASSE 100, 33098 PADERBORN, GERMANY

Email address: aperuzzi@math.uni-paderborn.de