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Abstract

We construct new examples of cubic surfaces, for which the Hasse principle
fails. Thereby, we show that, over every number field, the counterexamples
to the Hasse principle are Zariski dense in the moduli scheme of non-singular
cubic surfaces.

1 Introduction

1.1. –––– Cubic surfaces over Q that violate the Hasse principle are known for
more than 50 years. The first example of a cubic surface, for which the Hasse
principle provably fails, was contrived by Sir Peter Swinnerton-Dyer [SD], in 1962.
The construction had soon been generalized by L. J. Mordell [Mo], who found a
whole family of examples. A further generalization was recently given by one of the
authors [J].

A completely different kind of counterexample, being a diagonal cubic surface
with a very particular coefficient vector, was discovered by J. W. S. Cassels and
M. J. T. Guy [CG], in 1966. Later, J.-L. Colliot-Thélène, D. Kanevsky, and J.-J. San-
suc [CTKS] studied the arithmetic of these surfaces, in general.

Somewhat surprisingly, it seems that, until today, no cubic surface has been
found that violates the Hasse principle without being of one of these two types.
On the other hand, it is known that the Hasse principle is always valid for singular
cubic surfaces [Sk].
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1.2. –––– The coarse moduli scheme of non-singular cubic surfaces over a base
field K is the complement of a hypersurface in the four-dimensional weighted pro-
jective space P(1, 2, 3, 4, 5)K [Cl], [Do, Section 9.4.5]. All diagonal cubic surfaces
are geometrically isomorphic to each other. Thus, they correspond to a single point
on the moduli scheme.

On the other hand, the Swinnerton-Dyer-Mordell type surfaces are contained in
a two-dimensional closed subscheme of P(1, 2, 3, 4, 5)Q. Indeed, they are given by
equations of the form

T3(a1T0 + d1T3)(a2T0 + d2T3) = NK/Q(T0 + θT1 + θ2T2) , (1)

for K/Q a cyclic cubic field extension, θ ∈ K, and NK/Q the norm map from K
to Q.

Such surfaces have at least three Eckardt points. The reason is that the three
tritangent planes V (T3), V (a1T0 +d1T3), and V (a2T0 +d2T3) have a line in common.
Thus, on each of the three tritangent planes V (T0+θ(i)T1+θ(i)2T2), the corresponding
three lines meet at a single point. Lemma B.1 implies the claim.

1.3. Remarks. –––– i) Calculations with concrete coefficients indicate that,
generically, there are not more than three Eckardt points on the surfaces (1).

In this case, the automorphism groups of the cubic surfaces are isomorphic to S3

[Do, Proposition 9.1.27]. Therefore, the surfaces are of type VIII in I. V. Dolgachev’s
classification [Do, Table 9.6].

ii) On the other hand, a diagonal cubic surface has 18 Eckardt points, which is the
maximal number a non-singular cubic surface may have.

1.4. –––– Let H CK ⊂ P19(K) be the set of all cubic surfaces violating the
Hasse principle and C: P19− //__ P(1, . . . , 5) the Clebsch invariant map. In view of
the considerations above, one is tempted to consider the following problems.

i) Describe the Zariski closure in the moduli space of the locus HCK := C(H CK)
of the counterexamples to the Hasse principle.

ii) If dim HCK < 4 then find the geometric properties of cubic surfaces that are
implied by the arithmetic property of being a counterexample to the Hasse principle.

In particular, does every cubic surface that does not fulfill the Hasse principle au-
tomatically have Eckardt points?

1.5. –––– In this article, we will show that actually HCK is the full moduli space.
I.e., that the Hasse counterexamples are Zariski dense in the moduli space of cu-
bic surfaces. In particular, Problem ii) is pointless. Although certainly the case
of the base field Q is of particular interest, we will work over an arbitrary number
field K.
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2 A family of cubic surfaces

2.1. –––– We consider the cubic surface S over a number field K, given by the
equation

T0T1T2 = NL/K(aT0 + bT1 + cT2 + dT3) , (2)

for L/K a cyclic cubic field extension and a, b, c, d ∈ L.

2.2. –––– Let us assume d 6= 0 as, otherwise, this surface is a cone. Further, we
require that a/d, b/d, c/d 6∈ K. Then, as NL/K represents zero only trivially, S has
no K-rational point (t0 : t1 : t2 : t3) ∈ S(K) with more than one of t0, t1, t2 being equal
to 0.

To prove S(K) = ∅ for particular choices of K, a, b, c, and d, our strategy is
as follows. Suppose that there is a point (t0 : t1 : t2 : t3) ∈ S(K). Among t1/t0, t2/t1,
and t0/t2, consider an expression q that is properly defined and non-zero.

We will show that, for every prime ideal l of K with the exception of exactly
one, q ∈ Kl is in the image of the norm map N : LL → Kl, for L a prime of L lying
above l. Such a behaviour, however, is incompatible with global class field theory,
cf. [Ne, Chapter VI, Corollary 5.7] or [Ta, Theorem 5.1 together with 6.3].

2.3. Remark. –––– Equation (2) is similar to the Swinnerton-Dyer-Mordell type.
The only difference is that the three linear forms T0, T1, T2 are linearly independent.

2.4. –––– There is a conjecture due to J.-L. Colliot-Thélène [CTS, Conjecture C]
that actually every cubic surface violating the Hasse principle does so via the Brauer-
Manin obstruction, as introduced by Yu. I. Manin in [Ma, Chapter VI]. The new
examples are in agreement with Colliot-Thélène’s conjecture.

In fact, the choice of a rational function such as T1/T0 is not at all arbitrary.
The principal divisor div(T1/T0) is the norm of a divisor, which is the difference of
two lines. Thus, the cyclic algebra

A := L(S){Y }/(Y 3 − T1

T0
)

over the function field K(S), where Y t = σ(t)Y for t ∈ L(S) and a fixed genera-
tor σ ∈ Gal(L/K), extends to an Azumaya algebra over S [Ma, Proposition 31.3].
This shows that we work, indeed, with a particular case of the Brauer-Manin ob-
struction.

2.5. Remarks. –––– i) The quotients T1

T0
/T2

T1
=

T 3
1

T0T1T2
and T1

T0
/T0

T2
= T0T1T2

T 3
0

are
norms of rational functions. Thus, the three expressions T1/T0, T2/T1, T0/T2 ac-
tually define the same Brauer class.

ii) The non-singular cubic surfaces of the form (2) have a pair of Galois-invariant
Steiner trihedra [EJ1, Fact 4.2]. Therefore, their Brauer groups are 3-torsion of
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order 3 or 9. A general procedure to calculate the Brauer-Manin obstruction to the
Hasse principle or weak approximation for such surfaces was described in [EJ2].

The methods developed there are, however, not necessary here in their full strength.
In fact, the most complicated case treated in [EJ2] is that of an orbit structure of
type [9, 9, 9] on the 27 lines. The surfaces of the form (2) generically have an orbit
structure of type [3, 3, 3, 9, 9], which is a technically much simpler case.

2.6. –––– Although certainly Brauer classes work behind the scenes, we will nev-
ertheless stick to the elementary language of class field theory in the main body of
this article. This will turn out to be completely sufficient for our purposes.

3 Unramified primes

3.1. Proposition (Inert primes). —– Let l be a prime ideal of K that is inert
in L/K. Write ` := #OK/l, denote by L the unique prime of L lying above l, and
assume that

• a, b, c ∈ OLL
, d ∈ O∗LL

,

• (a/d mod L), (b/d mod L), (c/d mod L) ∈ F̀ 3 are not contained in F̀ .

Finally, let S denote the surface (2).

a.i) If ` > 3 then S(Kl) 6= ∅.
ii) If a ≡ b (mod l) then S(Kl) 6= ∅.
b) For any (t0 : t1 : t2 : t3) ∈ S(Kl) such that t0t1 6= 0, the quotient t1/t0 ∈ Kl is in
the image of the norm map N : LL → Kl.

Proof. The assumptions imply that a, b, and c are L-adic units, too. Let us write
a := (a mod L), . . . , d := (d mod L) ∈ F̀ 3 .

a) The reduction SF̀ of S modulo l is given by

T0T1T2 = NF̀ 3/F̀ (aT0 + bT1 + cT2 + dT3) .

It is sufficient to show that SF̀ admits a non-singular F̀ -rational point.

i) We claim that the singular locus of SF̀ is zero-dimensional. To show this, assume
the contrary. Then there must exist a singular point x on the plane E := V (T0).
Let us write the equation of SF̀ in the form T0T1T2 = l0l1l2, for l0, l1, l2 the three
conjugates of the linear form aT0 + bT1 + cT2 + dT3. Then, by Lemma 3.2, x nec-
essarily satisfies T0 = T1 = 0 or T0 = T2 = 0. But this would require c/d ∈ F̀
or b/d ∈ F̀ and therefore contradicts our assumptions.

Hence, the singular locus of SF̀ is finite. It might happen that SF̀ is a cone over
a smooth cubic curve, but then it certainly has a non-singular F̀ -rational point.
Otherwise, it was shown by A. Weil that #SF̀ (F̀ ) ≥ `2 − 2` + 1 [We, page 557],
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cf. [Ma, Theorem 27.1 and Table 31.1]. Further, it is classically known that not
more than four points may be singular [Do, Corollary 9.2.3]. As `2 − 2`− 3 > 0 for
` > 3, this implies the assertion.

ii) We have a = b, hence (1 : (−1) : 0 : 0) ∈ SF̀ (F̀ ). Lemma 3.2 shows that this is a
non-singular point.

b) We assume the coordinates of the point to be normalized such that t0, . . . , t3 ∈ OKl

and at least one of them is a unit. The local extension LL/Kl is unramified of
degree three. We therefore have to show that νl(t1/t0) is divisible by three.

Assume the contrary. If t2 6= 0 then the equation of the surface ensures that
3|νl(t0t1t2). Thus, the values νl(ti), for i = 0, 1, 2, must be mutually non-congruent
modulo 3. Otherwise, we know at least νl(t0) 6≡ νl(t1) (mod 3) and t2 = 0. There are
two cases.

First case. There is no unit among t0, t1, t2.

Then t3 is a unit. Since we assume d to be a unit, too, we clearly have that
at0 + bt1 + ct2 + dt3 ∈ O∗LL

. Hence, NLL/Kl
(at0 + bt1 + ct2 + dt3) ∈ O∗Kl

, which, in
view of t0t1t2 not being a unit, contradicts the equation of the surface.

Second case. There is exactly one unit among t0, t1, t2.

Without restriction, assume that t0 is the unit. Again, we have that t0t1t2 is not
a unit. The equation of the surface then requires that NLL/Kl

(at0 + bt1 + ct2 + dt3)
must be a non-unit. To ensure this, we need at0 +bt1 +ct2 +dt3 6∈ O∗LL

, which means
nothing but

at0 + dt3 ≡ 0 (mod L) .

But then a/d ≡ −t3/t0 (mod L), which is impossible since the right hand side
modulo L is in F̀ , while the left hand side is not. �

3.2. Lemma. –––– Let K be a field, l0, l1, l2, l
′
0, l
′
1, l
′
2 ∈ K[T0, T1, T2, T3] linear

forms such that V (li) 6= V (l′j) for all 0 ≤ i, j ≤ 2, and S be the cubic surface,
given by l0l1l2 = l′0l

′
1l
′
2.

Then, every singular point on S lying on the plane V (l0) actually lies on at least
two of the planes V (li) and two of the planes V (l′j).

Proof. Let x be a singular point on S lying on the plane V (l0). Then x ∈ V (l′0l
′
1l
′
2).

Without restriction, we may suppose that x ∈ V (l′0). Further, the assumption
ensures that, after a suitable change of coordinates, we may assume that l0 = T0

and l′0 = T1. I.e., that S is given by the equation

F (T0, T1, T2, T3) := T0l1l2 − T1l
′
1l
′
2 = 0

and we consider a singular point x = (0 : 0 : t2 : t3). As ∂F
∂T0

(x) = l1l2(x) and
∂F
∂T1

(x) = l′1l
′
2(x), the assertion follows. �
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3.3. Lemma (Split primes). —– Let l be a prime of K that is split in L/K,
a, b, c, d ∈ L be arbitrary, and S be the cubic surface, given by equation (2).

a) Then S(Kl) 6= ∅.
b) Every non-zero element of Kl is a local norm for the extension L/K of global
fields.

Proof. a) The scheme SKl
is defined by the equation

T0T1T2 =
3∏
i=1

[σi(a)T0 + σi(b)T1 + σi(c)T2 + σi(d)T3]

for σi : K ↪→ L⊗KKl → Kl the three homomorphisms. There is a Kl-rational line
or plane, defined by T0 = σ1(b)T1 + σ1(c)T2 + σ1(d)T3 = 0.

b) This is a standard result from class field theory. �

3.4. Remark (The archimedean primes). —– i) Let σ : K ↪→ R be a real prime.
Then, for a, b, c, d ∈ L arbitrary, we also have SR,σ(R) 6= ∅. Further, every non-zero
real number is, with respect to σ, a local norm for the extension L/K of global fields.

Indeed, as L/K is a cubic Galois extension, there are three real primes σi : L→ R

extending σ. This immediately implies the second assertion. On the other hand,
SR,σ is given by the equation T0T1T2 =

∏3
i=1[σi(a)T0 + σi(b)T1 + σi(c)T2 + σi(d)T3].

Thus, the same argument as above yields plenty of real points.

In fact, it is known since the days of L. Schläfli [Sch, pp. 114f.] that a non-singular
cubic surface S over R always has real points. A nice geometric argument for this is
as follows. Start with a C-rational point x ∈ S (C) not lying on any of the 27 lines.
Unless x is already the extension of a real point, there is a unique line connecting x
with its complex conjugate x. This line meets S in a third point, which must be real.

ii) For σ : K ↪→ C a complex prime and a, b, c, d ∈ L arbitrary, we clearly have
SC,σ(C) 6= ∅. Further, every non-zero complex number is a local norm with respect
to σ.

4 Ramified primes–Reduction to a particular cone

4.1. –––– Local class field theory shows that a local field with residue field
F̀ for ` ≡ 2 (mod 3) does not allow any ramified, cyclic cubic extensions.
Hence, a cyclic cubic extension L/K may ramify only at primes l such that ei-
ther #OK/l ≡ 1 (mod 3) or #OK/l is a power of 3. We will consider the former
case in this article.
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4.2. Lemma. –––– Let p 6= 3 be a prime number.

i) Then the equation
27T0T1T2 = (T0 + T1 + T2)

3

defines a cubic curve C over Fp with a node at (1 :1 :1). The two tangent directions
at (1 :1 :1) are defined over Fp if and only if p ≡ 1 (mod 3).

ii) Let e ≥ 1 be any integer. Then, for every Fpe-rational point (t0 : t1 : t2) on C, at
least one of the expressions t1/t0, t2/t1, and t0/t2 is properly defined and non-zero
in Fpe. Further, these quotients evaluate solely to cubes in F∗pe.

Proof. i) It is a standard calculation to show that C has a singular point at (1 :1 :1)
and no others. The tangent cone at this point is defined by a binary quadric of
discriminant (−243) = −3 ·92. Thus, it splits if and only if (−3) is a quadratic
residue modulo p.

ii) The first assertion simply says that (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) 6∈ C. Fur-
ther, a calculation in any computer algebra system verifies that, in Z[T0, T1, T2], the
polynomial expression

(T 2
0 + 2T0T1 + T 2

1 + 5T0T2 − 4T1T2 − 5T 2
2 )3 + 729T0(T1 − T2)

3T 2
2

splits into two factors, one of which is 27T0T1T2 − (T0 + T1 + T2)
3. Hence, T0/T2 is

the cube of a rational function on C.
Further, for (t0 : t1 : t2) ∈ C(Fpe) with t2 6= 0, we see that t0/t2 ∈ Fpe is a cube,

except possibly for the case when t1 = t2. But then the equation of the curve shows
that t0/t2 = ( t0+2t2

3t2
)3.

Due to symmetry, the same is true for t1/t0 and t2/t1. This is the assertion. �

4.3. Example. –––– Consider the nodal cubic curve, defined by

T0T1T2 + (T0 + T1 + T2)
3 = 0

over F7. Besides the node at (1 : 1 : 1), there are the six F7-rational points
(1 : (−1) : 0), (1 : 0 : (−1)), (0 : 1 : (−1)), (1 : 1 : (−1)), (1 : (−1) : 1), and ((−1) : 1 : 1).
We see explicitly that, for every F7-rational point, at least one of the expressions
T1/T0, T2/T1, T0/T2 is properly defined and non-zero in F7 and that all these quo-
tients are cubes in F∗7 .

4.4. Corollary. –––– Let ` be a prime power, but not a power of 3, and α ∈ F∗`
arbitrary.

i) Then the equation T0T1T2− 1
27

(αT0+T1+ 1
α
T2)

3 = 0 defines a nodal cubic curve C ′

over F̀ .

ii) For every F̀ -rational point (t0 : t1 : t2) on C ′, at least one of the expressions t1/t0,
t2/t1, t0/t2 is properly defined and non-zero in F̀ . Further, these quotients evaluate
only to elements in the coset of α modulo the cubic residues.
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Proof. i) The curve C ′ is isomorphic to C as it is obtained from C by substituting
αT0 for T0 and 1

α
T2 for T2.

This implies, as well, the first assertion of ii). Further, T1/αT0 = 1
α
T1/T0,

1
α
T2/T1,

and αT0/
1
α
T2 = α2T0/T2 are cubes as soon as they are properly defined in F∗` . �

4.5. Proposition (Ramified primes). —– Let l be a prime ideal of K that is
ramified in L/K. Suppose that ` := #OK/l is not a power of 3. Denote by L the
unique prime of L lying above l and assume that

• a ∈ OKL
, (a mod L) = α

3
,

• b ∈ OKL
, (b mod L) = 1

3
,

• c ∈ OKL
, (c mod L) = 1

3α
,

• d ∈ L\L3

for some α ∈ F∗` . Finally, let S denote the surface (2).

a) Then one has S(Kl) 6= ∅.
b) Let (t0 : t1 : t2 : t3) ∈ S(Kl) be any point. Then not more than one of t0, t1, t2
may vanish.

c.i) Suppose that α ∈ F∗` is a non-cube. Then the following is true.

Let (t0 : t1 : t2 : t3) ∈ S(Kl) be any point. If, for 0 ≤ i < j ≤ 2, one has titj 6= 0 then
the quotient tj/ti ∈ Kl is not in the image of the norm map N : LL → Kl.

ii) If α ∈ F∗` is a cube then, for any (t0 : t1 : t2 : t3) ∈ S(Kl), the quotients tj/ti ∈ Kl,
0 ≤ i < j ≤ 2, are local norms, as soon as they are properly defined.

Proof. Recall that we automatically have ` ≡ 1 (mod 3).

a) The reduction of S modulo l is given by T0T1T2− 1
27

(αT0 +T1 + 1
α
T2)

3 = 0. I.e., it
is the cone over the nodal cubic curve C ′, studied in Corollary 4.4. SF̀ has exactly
(`− 1)` non-singular F̀ -rational points.

b) We assume the contrary and consider the case that t1 = t2 = 0, the others
being analogous. The equation of the surface then requires at0 + dt3 = 0. As our
assumptions imply a 6= 0 and d 6= 0, we certainly have t0 6= 0 and t3 6= 0 and
may write d/a = −t0/t3. Here, the right hand side is an element of Kl. Hence,
3|νL(−t0/t3). On the other hand, since a is a unit, d/a ∈ L\L3. Thus, νL(d/a) = 1
or 2, which is a contradiction.

c) No Kl-rational point on S may reduce to the cusp (0 : 0 : 0 : 1) ∈ SF̀ (F̀ ). In-
deed, such a point could written in normalized form such that νl(t0), νl(t1), νl(t2) ≥ 1
and t3 is a unit. But then νl(t0t1t2) ≥ 3, while

νl(NLL/Kl
(at0+bt1+ct2+dt3)) = νL(at0+bt1+ct2+dt3) = νL(dt3) = νL(d) = 1 or 2 .

Consequently, Corollary 4.4.ii) shows that at least one of the quotients tj/ti is
properly defined and a unit in OKl

. Further, its residue modulo l is a cube if and
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only if α is. Hence, tj/ti ∈ Kl is a local norm when α is a cube and not a local
norm, otherwise. Remark 2.5.i) implies that the same is true for each of the three
quotients, as soon as it is properly defined in K∗l . �

5 The main result

5.1. Theorem. –––– Let L/K be a cyclic cubic extension that is ramified at at
least one prime. Denote by p1, . . . , pr ⊂ OK the ramified primes and write Pi for
the unique prime lying above pi. Suppose that qi := #OK/pi is not a power of 3,
for any i.

Choose a non-cube α1 ∈ F∗q1, cubes α2 ∈ F∗q2 , . . . , αr ∈ F
∗
qr , and assume that a, b, c,

d ∈ OL satisfy the following conditions.

i) d splits as (d) = P1· . . . ·PrL1· . . . ·Ls, where N(Li) are prime ideals 6=p1, . . . , pr.
I.e., (d) does not contain any inert prime and contains P1, . . . ,Pr exactly once.

ii) (a/d mod lOL), (b/d mod lOL), (c/d mod lOL) ∈ OL/lOL \OK/l for every inert
prime ideal l in K.

iii) a ≡ b (mod lOL) for every inert prime l of K such that #OK/l = 2 or 3.

iv) (a mod Pi) = αi

3
, (b mod Pi) = 1

3
, and (c mod Pi) = 1

3αi
, for i = 1, . . . , r.

Finally, let S denote the surface (2). Then S(AK) 6= ∅ but S(K) = ∅.

Proof. First step. Preparations.
Let l ⊂ OK be any prime ideal.

Case 1. l = p1, . . . , pr.
Assumption i) implies that, for i = 1, . . . , r, one has d ∈ Pi \P2

i ⊂ Pi \P3
i . To-

gether with assumption iv), we see that Proposition 4.5 applies.

Case 2. l is an inert prime.
Then L := lOL is the unique prime lying above l. By assumption i), we know that
d ∈ O∗KL

. Thus, we are exactly in the situation of Proposition 3.1. Note that we
have S(Kl) 6= ∅ for primes l with #OK/l = 2, 3, too, as then a ≡ b (mod L).

Case 3. l is a split prime.
Then Lemma 3.3 applies.

Second step. The existence of an adelic point.
This is equivalent to the existence of a real point on SR,σ for every real prime
σ : K ↪→ R, a complex point on SC,σ for every complex prime σ : K ↪→ C, and a
Kl-rational point for every prime ideal l ⊂ OK . We know from Remark 3.4 that
SR,σ and SC,σ admit real and complex points, respectively. The presence of Kl-ra-
tional points for every l is guaranteed by Proposition 4.5.a), Lemma 3.3.a), and
Proposition 3.1.a).

Third step. The non-existence of a K-rational point.
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Suppose there would be a K-rational point (t0 : t1 : t2 : t3) ∈ S(K). Then, by Propo-
sition 4.5.b), among t0, t1, t2, not more than one may vanish. Choose 0 ≤ i < j ≤ 2
such that titj 6= 0 and consider the quotient tj/ti ∈ K.

This is a local norm at every archimedean prime and at every split prime by
Remark 3.4 and Lemma 3.3.b). It is a local norm at every inert prime, too, in view
of Lemma 3.1.b). Further, the quotient tj/ti is a local norm at the ramified primes
p2, . . . , pr, as was shown in Proposition 4.5.c). It is, however, not a local norm at
the prime p1.

The proof is complete, since such a behaviour is in contradiction with global class
field theory, [Ne, Chapter VI, Corollary 5.7] or [Ta, Theorem 5.1 together with 6.3].

�

5.2. Remark. –––– It might seem that, in ii), infinitely many congruences are re-
quired. But this is not actually true. A practical way to verify condition ii) is
the following.

• Choose elements z1, z2 ∈ OL such that 1, z1, z2 are K-linearly independent.
Then OL/〈1, z1, z2〉 is finite. I.e., for an inert prime l of K and L the prime lying
above l, one has OLL

= 〈1, z1, z2〉OKl
, with only finitely many exceptions l1, . . . , ls.

• For l1, . . . , ls, check condition ii) directly.

• Further, write

a/d = 1
N

(a0 + a1z1 + a2z2), b/d = 1
N

(b0 + b1z1 + b2z2), c/d = 1
N

(c0 + c1z1 + c2z2)

for ai, bi, ci ∈ OK and N ∈ OK an element that splits only into prime ideals split or
ramified in L/K and, possibly, into l1, . . . , ls.

Then check that the ideals gcd(a1, a2), gcd(b1, b2), gcd(c1, c2) ⊂ OK do not contain
any inert primes in their factorizations, except possibly l1, . . . , ls.

5.3. Example. –––– Let L := Q(ζ7 + ζ−1
7 ), z := ζ7 + ζ−1

7 − 2, and S be the cubic
surface over Q, given by equation (2), for

a := −1, b := 5 + 6z2, c := 3 + z2, d := z .

Then S violates the Hasse principle.

Proof. L is the unique cubic subfield of the cyclotomic extension Q(ζ7)/Q. It is
ramified only at 7. The primes (±1 mod 7) are split, the others are inert. The al-
gebraic integer z is chosen such that, for the unique prime of L lying above 7, we
have P = (z).

We work with the Q-linearly independent elements 1, z, z2, which form a Z-basis
for OK . Conditions i) and iii) of Theorem 5.1 are obviously satisfied. For iv), note
that, in F7, one has 1

3
= 5. Further, α = −1

5
= 4 is a non-cube and 5

4
= 3. Finally,

a/d = 1
7
(14 + 7z+ z2), b/d = 1

7
(−70 + 7z− 5z2), and c/d = 1

7
(−42− 14z− 3z2). �
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5.4. Example (continued). —– The equation of S is, in explicit form,

T 3
0 − 141T 2

0 T1 − 30T 2
0 T2 + 7T 2

0 T3 + 4863T0T
2
1 + 2233T0T1T2 − 532T0T1T3

+ 251T0T
2
2 − 119T0T2T3 + 14T0T

2
3 − 31499T 3

1 − 26286T 2
1 T2 + 6013T 2

1 T3

− 6799T1T
2
2 + 3157T1T2T3 − 364T1T

2
3 − 559T 3

2 + 392T 2
2 T3 − 91T2T

2
3 + 7T 3

3 = 0 .

S has bad reduction at 2, 3, 7, 3739, and 7589. While, at 7, the reduction is the
cone over the nodal cubic curve, described in Corollary 4.4, the reductions at the
other bad primes only have one singular point each. SF2 has a binode. The other
three have a conical singularity.

A minimization algorithm yields a reembedding of S as the surface, given by the
equation

−T 3
0 + 2T 2

0 T1 − T 2
0 T2 − 5T 2

0 T3 + T0T
2
1 − T0T1T2 + 7T0T1T3 + 2T0T

2
2 − 15T0T2T3

− 11T0T
2
3 − T 3

1 − 2T 2
1 T2 + 9T 2

1 T3 + T1T
2
2 + T1T

2
3 + T 3

2 + T 2
2 T3 + 8T2T

2
3 − T 3

3 = 0 .

5.5. Corollary. –––– Let L/K be a cyclic cubic extension that is ramified at at
least one prime, but unramified at all primes dividing 3. Choose a split prime l

of K and let ã, b̃, c̃, d̃ be four residue classes in [OL/lOL]∗ ∼= (F∗` )3.

Then there exists a cubic surface S that is a counterexample to the Hasse principle,
of the form

T0T1T2 = NL/K(aT0 + bT1 + cT2 + dT3) ,

for a, b, c, d ∈ OL such that (a mod lOL) = ã, . . . , (d mod lOL) = d̃.

Proof. Denote by p1, . . . , pr ⊂ OK the primes ramified in L/K.

First step. d.
Write Pi for the unique prime ideal lying above pi, for i = 1, . . . , r. Further, let
f ⊆ OK be the conductor of the extension L/K of global fields.

According to the Chinese remainder theorem, we may choose an element d′ ∈ OL

such that (d′ mod lOL) = d̃ and d′ is a uniformizer for each Pi. We find a partial fac-
torization

(d′) = P1 · . . . ·PrL1 · . . . ·Ls ·(m′) ,

where L1, . . . ,Ls are prime factors in L of split primes of K and m′ ∈ OK is an
element that splits into a product of inert primes. In particular, m′ is relatively
prime to l.

By Sublemma 5.7, we may choose some m ≡ m′ (mod l), m ≡ 1 (mod f), such
that (m) is a prime ideal. Indeed, l and f are relatively prime [Ne, Chapter VI,
Corollary 6.6], such that this is in fact a congruence condition modulo lf. According
to the decomposition law [Ne, Chapter VI, Theorem 7.3], the congruence m ≡ 1
(mod f) is clearly enough to ensure that (m) splits in L/K.
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Thus, put d := m· d′

m′ . Then d ∈ OL fulfills the congruence condition modulo lOL

and assumption i) of Theorem 5.1.

Second step. c.
By Lemma 5.6, there is a solution c′ ∈ OL of the congruence system

(c′ mod lOL) = (N(d)
d

mod lOL)·c̃ ,
(c′ mod piOL) = 1

3αi
·(N(d)

d
mod piOL) , i = 1, . . . , r ,

such that (c′ mod pOL) 6∈ OL/pOL \ OK/p for any prime p of K, different from the
ramified ideals pj.

Observe here that N(d)
d

is invertible modulo lOL in view of the first step. Further,
νPi

(N(d)
d

) = 2. Thus, actually, (N(d)
d

mod piOL) ∈ P2
i /P

3
i , which is a module over the

residue field.
Finally, put c := c′ · d

N(d)
. Then c ∈ OL fulfills the congruence condition mod-

ulo lOL and the assumptions on c made in Theorem 5.1.ii) and iv).

Third step. b.
Take a solution b′ ∈ OL of the congruence system

(b′ mod lOL) = (N(d)
d

mod lOL)·b̃ ,
(b′ mod piOL) = 1

3
·(N(d)

d
mod piOL) , i = 1, . . . , r ,

such that (b′ mod pOL) 6∈ OL/pOL \OK/p for any prime ideal p of K, different
from the pj, and put b := b′ · d

N(d)
. Then b ∈ OL fulfills the congruence condition

modulo lOL and the assumptions on b made in Theorem 5.1.ii) and iv).

Fourth step. a.
For this, take a solution a′ ∈ OL of the slightly larger congruence system

(a′ mod lOL) = (N(d)
d

mod lOL)·b̃ ,
(a′ mod piOL) = αi

3
·(N(d)

d
mod piOL) , i = 1, . . . , r ,

a′ ≡ b′ (mod lj) ,

such that (a′ mod pOL) 6∈ OL/pOL\OK/p for any unramified prime ideal p of K.
Here, the lj ⊂ OK run over all inert primes of K such that #OK/lj = 2 or 3.

To complete the construction, put a := a′ · d
N(d)

. Then a ∈ OL fulfills the congru-
ence condition modulo lOL and the assumptions on a made in Theorem 5.1.ii), iii),
and iv). �

5.6. Lemma. –––– Let K be a number field, L/K a cyclic cubic extension,
l1, . . . , lr ⊂ OK distinct prime ideals, and a1, . . . , ar ∈ OK. Then, for the con-
gruence system

a ≡ a1 (mod l1OL) ,

. . .

a ≡ ar (mod lrOL) .

12



there is a solution a ∈ OL such that (a mod lOL) 6∈ OL/lOL\OK/l for any prime
ideal l 6= l1, . . . , lr of K, unramified in L/K.

Proof. Choose elements z1, z2 ∈ OL such that 1, z1, z2 are K-linearly independent.
Then OL/〈1, z1, z2〉 is finite, such that OL⊗OK

OKl
= 〈1, z1, z2〉OKl

for all primes l

of K, with finitely many exceptions p1, . . . , ps. Unless these are among the li, add
congruence conditions

a ≡ bj (mod pjOL) ,

for j=1, . . . , s. Choose b1, . . . , bs ∈ OL such that (bj mod pjOL) 6∈ OL/pjOL\OK/pj,
whenever pj is unramified in L/K.

Since OL is a Dedekind domain, the Chinese remainder theorem applies and we
actually have only one congruence condition a ≡ A (mod I). Take, at first, any
solution a′ ∈ OL of it and write it in the form

a′ = 1
N

(a0 + a1z1 + a2z2) ,

for a0, a1, a2 ∈ OK and N ∈ OK a product of the exceptional primes p1, . . . , ps.
The congruence condition will clearly not be violated as long as we vary a1 and a2

in their respective residue classes modulo NI.
By Sublemma 5.7, we may choose a representative a1 such that (a1) is a product

of some prime divisors of NI and one further prime p′. In addition, we may choose
a2 such that (a2) is a product of some some prime divisors of NI and a prime p′′ 6= p′.
Then a := 1

N
(a0 +a1z1 +a2z2) ∈ OL solves the congruence system modulo the ideals

li and pj.
Now let l ⊂ OK , l 6= l1, . . . , lr, be any prime ideal, unramified in L/K. If l = pj,

for some j, then (a mod lOL) 6∈ OL/lOL\OK/l is fulfilled by construction. But, oth-
erwise, l is not a divisor of of NI. Then 1

N
∈ OKl

and a1 and a2 cannot be both
divisible by l. This implies the assertion. �

5.7. Sublemma. –––– Let K be a number field, I ⊂ OK an ideal, and x ∈ OK.
Put t := lcm

n∈N
(gcd(In, (x))).

Then there exist infinitely many pairwise non-associated elements y1, y2, . . . ∈ OK

such that yi ≡ x (mod I) and that each (yi) factors into t and a prime ideal.

Proof. Write (x) = xt. Then x is an ideal, relatively prime to I. It is known that
there exist infinitely many prime ideals pi ⊂ OK with the property below.

There exist some ui, vi ∈ OK , ui ≡ vi ≡ 1 (mod I) such that

pi ·(ui) = x·(vi) .

Indeed, the invertible ideals of K modulo the principal ideals generated by elements
from the residue class (1 mod I) form an abelian group that is canonically isomor-
phic to the ray class group ClIK

∼= CK/C
I
K of K [Ne, Chapter VI, Proposition 1.9].
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Thus, the claim follows from the Cebotarev density theorem applied to the ray class
field KI/K, which has the Galois group Gal(KI/K) ∼= ClIK .

Take one of these prime ideals. Then pit ·(ui) = xt ·(vi) = (xvi). As pit ⊂ OK ,
this shows that xvi is divisible by ui. Put yi := xvi/ui. Then (yi) = pit. Further,
yi ≡ x (mod I). �

5.8. Theorem. –––– Let K be any number field, Ureg ⊂ P19
K the open subset

parametrizing non-singular cubic surfaces, and H CK ⊂ Ureg(K) be the set of all
cubic surfaces over K that are counterexamples to the Hasse principle.

Then the image of H CK under Clebsch’s invariant map

C: Ureg −→ P(1, 2, 3, 4, 5)K

is Zariski dense.

Proof. Consider the family p : S → A12
C of cubic surfaces, given by the equation

T0T1T2 =
∏2

i=0

∑3
j=0 aijTj. Clebsch’s fundamental invariants, when applied to this

family, define a rational map Cl : A12
C − //__ P(1, 2, 3, 4, 5)C. We know that Cl is dom-

inant. Indeed, up to isomorphy, every non-singular cubic surface appears as a fiber
of the family p [Do, Corollary 9.3.4].

For a cyclic cubic extension L/K, there is the similar family p(L) : S (L) → A12
K ,

given by

T0T1T2 =
2∏
i=0

[(a0 + σi(z1)a1 + σi(z2)a2)T0 + · · ·+ (d0 + σi(z1)d1 + σi(z2)d2)T3] ,
(3)

where (1, z1, z2) is a K-basis of L and σ0, σ1, σ2 ∈ Gal(L/K) denote the three ele-
ments.

After base extension to C, the family p(L) becomes isomorphic to p. As the
property of being dominant may be tested after extension of the base field, we see
that the Clebsch invariant map Cl(L) : A12

K − //__ P(1, 2, 3, 4, 5)K , associated to the
family p(L), is dominant, too.

Now assume that C(H CK) ⊂ P(1, 2, 3, 4, 5)K were not Zariski dense. Then,
even more, the image under Cl(L) of the counterexamples to the Hasse princi-
ple, contained in the family p(L), has to be contained in a proper closed subset
V ⊂ P(1, 2, 3, 4, 5)K . Since Cl(L) is dominant, this implies that (Cl(L))-1(V ) is a
proper closed subset of A12

K .
In other words, there exists a non-zero polynomial f ∈ K[Aj, . . . , Dj]j=0,1,2 of a

certain degree d such that, for every counterexample to the Hasse principle of the
form (2) with a = a0 + a1z1 + a2z2, . . . , d = d0 + d1z1 + d2z2 ∈ OL, one has

f(a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2) = 0 .

Without restriction, assume that the coefficients of f are algebraic integers.
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We will show that this is in contradiction with our results above. For this, let us
choose a particular field L that it is ramified at at least one prime, but unramified
at all primes lying above 3. Such a choice is possible due to Lemma 5.10.

Further, take a prime ideal l ⊂ OK that does not divide all the coefficients of f ,
guarantees OL⊗OK

OKl
= 〈1, z1, z2〉OKl

, splits in L, and is large enough to ensure

(` − 1)12 > d`11 for ` := #OK/l. The existence is of such a prime follows from the
decomposition law together with the Cebotarev density theorem.

By Corollary 5.5, we know that there are counterexamples to the Hasse principle
of the form (2), with a, b, c, d ∈ OL and (a mod lOL), . . . , (d mod lOL) ∈ (OL/lOL)∗

arbitrary. Consequently,

f(a0, a1, a2, b0, b1, b2, c0, c1, c2, d0, d1, d2) ≡ 0 (mod l) ,

whenever a0 + a1z + a2z
2, . . . , d0 + d1z + d2z

2 ∈ OL are invertible modulo lOL.
This shows that (f mod l) vanishes on at least (`−1)12 vectors in F12

` , a contradiction
to the lemma below. �

5.9. Lemma. –––– Let ` be a prime power and f ∈ F̀ [X1, . . . , Xn] a non-zero
polynomial of degree d.

Then the number N(`) of solutions of f(x1, . . . , xn) = 0 in Fn` satisfies the inequality
N(`) ≤ d`n−1.

Proof. For F̀ the prime field, this is the lemma in [BS, Chapter 1, Paragraph 5.2].
For the general case, the argument given there works equally well. �

5.10. Lemma. –––– Let K be a number field. Then there exists a cyclic cubic
extension L/K that is ramified at at least one prime of K, but unramified at all
primes above 3.

Proof. Probably the easiest way to see this is as follows. Let p ≡ 1 (mod 3) be a
prime number such that K/Q is unramified at p. Choose F to be the unique cubic
subfield of Q(ζp)/Q. Then KF/Q is ramified at p, which shows that L := KF 6= K.
This immediately implies Gal(L/K) ∼= Gal(F/Q) ∼= Z/3Z. By construction. L/K
is unramified at all primes above 3. Further, it must be ramified at some of the
primes of K lying above p. �

5.11. Remark (Variants). —– The family constructed in Theorem 5.1 turned
out to be sufficient to prove the main result, but it is certainly not unique in this re-
spect. At least the following modifications are possible.

i) One may allow that (d) contains some of the ideals P1, . . . , Pr twice instead
of once.

ii) The congruence conditions required modulo the primes P1, . . . ,Pr could be weak-
ened. In fact, the choice of αi in Theorem 5.1 actually determines whether the local
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invariant (Tj/Ti, LPi
/Kpi

) is 1
3
, 2

3
, or 0. One has to combine the conditions at the

r ramified primes in such a way that the sum is non-zero in 1
3
Z/Z.

A Other reduction types

A.1. –––– One might ask for counterexamples to the Hasse principle of the
form (2), having other reduction types at the ramified primes. We will show that this
is impossible, at least for p not dividing 3 and as long as we insist on a, b, c, d ∈ OLP

.

A.2. Lemma. –––– Let L be a cyclic cubic extension of the number field K and
p be a prime of K that is ramified in L/K. Suppose that q := #OK/p is not a
power of 3 and write P for the unique prime of L lying above p.

Further, let a, b, c, d ∈ L ∩ OLP
and S be the cubic surface, given by (2). Assume

that, for every (t0 : t1 : t2 : t3) ∈ S(Kp), the quotients t1/t0, t2/t1, t0/t2, as soon as
they are properly defined in K∗p , are local norms.

Then d ≡ 0 (mod P) and 27abc ≡ 1 (mod P).

Proof. The assumption implies q ≡ 1 (mod 3). Further, the reduction SFq of the
cubic surface S at a ramified prime is given by

T0T1T2 = (aT0 + bT1 + cT2 + dT3)
3 .

It suffices to show that there are non-singular Fq-rational points on SFq such that
the quotients are non-cubes, except in the asserted situation. There are three cases.

First case. d 6= 0.
Then, after a change of coordinates that does not involve T0 and T1, SFq is the cubic
surface, given by T0T1T2 = T 3

3 . It is obvious that there are non-singular points such
that t1/t0 is a non-cube.

Second case. d = 0, a, b, c 6= 0.
After changing coordinates, SFq is T0T1T2 = A(T0 + T1 + T2)

3 for A = abc. As-
sume A 6= 1

27
, as this is the claimed exception.

Then SFq is the cone over a non-singular curve C of genus one. The triple cover
T 3 = T1/T0 is unramified and defines another curve C̃ of genus one. The assumption
that t1/t0 is always a cube leads to #C̃(Fq) = 3·#C(Fq), which contradicts Hasse’s
bound for q ≥ 16.

Finally, a systematic test shows that, for q = 4, 7, 13 and A 6= 0, 1
27
∈ Fq, it does

never happen that all the quotients are cubes.

Third case. d = 0 and at least one of a, b, c is zero.
Without restriction, assume c = 0. Then the equation of SFq simplifies to
T0T1T2 = (aT0 + bT1)

3. Considering the partial derivative by T2, we see that, in-
dependently of what a and b are, every point such that t0t1 6= 0 is non-singular.
We may choose t0, t1 ∈ F∗q arbitrarily and find a point just by calculating t2. �
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B A geometric lemma

B.1. Lemma. –––– The cubic surfaces having at least three Eckardt points are
contained in a two-dimensional closed subset of the moduli scheme of non-singular
cubic surfaces.

Proof. This follows rather directly from the investigations undertaken by E. Dard-
anelli and B. van Geemen in [DG]. A cubic surface over an algebraically closed base
field may either allow a pentahedral form

a0T
3
0 + . . .+ a4T

3
4 = 0, T0 + . . .+ T4 = 0

or not.

In the first case, in order to have three Eckardt points, three of the five coefficients
have to be equal to each other [DG, 2.2]. In particular, the corresponding surfaces
are contained in a two-dimensional subset of the moduli scheme.

Otherwise, the surface might be cyclic, ns1 or ns2 [DG, 5.1–5.3]. Cyclic surfaces
form a one-dimensional subset, while ns2 surfaces form a two-dimensional subset in
the moduli scheme [DG, Theorem 6.6]. Finally, the ns1 surfaces with at least three
Eckardt points may be parametrized by a two-dimensional family [DG, Proposition
5.7.(4) and (5)]. �
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