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Abstract. We construct explicit examples of K3 surfaces o@which are of de-
gree 2 and the geometric Picard rank of which is equal to 1. ésteuct, partic-
ularly, examples in the form? = detM whereM is a symmetrig(3 x 3)-matrix
of ternary quadratic forms or a symmet(@x 6)-matrix of ternary linear forms.
Our method is based on reduction modpléor p=3 and 5.
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Introduction

In the projective plane, let a smooth curBeof degree 6 be given bys(x,y,z) = 0.
Then,w? = fg(x,y,2) defines an algebraic surfa&in a weighted projective space.
We have a double cover: S— P? ramified atrr 1 (B).

According to the Enriques classification of algebraic stefgSis an example of a
K3 surface (of degree two). In general, a K3 surface is a simphnected, projective
algebraic surface the canonical class of which is trivial.

Examples 1.1K3 surfaces embedded inR are automatically of even degree.

K3 surfaces of small degree may be described, explicitly3/sirface of degree two
is a double cover oP?, ramified in a smooth sextic. K3 surfaces of degree four are
smooth quartics ifP>. A K3 surface of degree six is a smooth complete intersecti@n
quadric and a cubic iR*. And, finally, K3 surfaces of degree eight are smooth coraplet
intersections of three quadricsii.

The Picard group of a K3 surface is known to be isomorphiétavheren may range
from 1 to 20. Itis generally known that a generic K3 surfacerdv is of Picard rank one.

Nevertheless, it seems that the first explicit examples ob3aces of geometric
Picard rank one have been constructed as late as in 2005I[3he&e examples are of
degree four.

The goal of the work described in this article is to provideleit examples of K3 sur-
faces defined oveR) which are of degree two and geometric Picard rank one.

1The computer part of this work was executed on the Sun Firez\R#ivers of the GaulR Laboratory for
Scientific Computing at the Géttingen Mathematisches titstBoth authors are grateful to Prof. Y. Tschinkel
for the permission to use these machines as well as to thensygtministrators for their support.



Let.7 be a K3 surface over a finite fielil,. Then, we have the first Chern class
c1: Pic(”) — H&(H5, Q1 (1))

into |I-adic cohomology at our disposal. There is a natural opmraif the Frobenius
on Hgt(yﬁFq,@ (1)). All eigenvalues are of absolute value 1. The Frobeniusaijmer on
the Picard group is compatible with the operation on cohogyl

Every divisor is defined over a finite extension of the groualdifiConsequently, on
the subspace P(Lé%Fq)G@z@ - Hgt(yﬁFq,@(l)), all eigenvalues are roots of unity.
Those correspond to eigenvalues of the Frobenius opermﬁbijt(yﬁq,@) which are
of the formq( for ¢ a root of unity.

We may therefore estimate the rank of the Picard groupﬁl?fjg) from above by
counting how many eigenvalues are of this particular form.

Estimates from below may be obtained by explicitly condtngc divisors. Un-
der certain circumstances, it is possible, that way, toutate rk Pi¢y7Fq), exactly.

Our general strategy is to use reduction modultf Sis a K3 surface ovef) then
there is the inequality

rkPic(Sg) < rk Pic(SFp)
which is true for every primg of good reduction.

Remark 1.2 Consider a complex K3 surfac SinceH (S, 0s) = 0, the Picard group
of Sis discrete and the first Chern class

c1: Pic(S) — H3(SZ) c H3(S,T)

is an injection. For divisors, numerical and homologicaligglence are known to coin-
cide [4, Corollary 1]. This shows, Ri§) equals the group of divisors modulo numeri-
cal equivalence.

2. Explicit divisors - Geometric constructions overlF,

In order to estimate the rank of the Picard group from below, meeds to explicitly con-
struct divisors. Calculating discriminants, it is possild show that the corresponding
divisor classes are linearly independent.

Assumption 2.1 For the algebro-geometric considerations described ;sthition, we
assume that we work over a ground field which is algebraicdtiged of characteris-
tic # 2.

Construction 2.2 i) One possible construction is to start with a branch cufge='0"
which allows a tritangent lin€. The pull-back ofG to the K3 surface? is a divi-
sor splitting into two irreducible components. The cormsgting divisor classes are lin-
early independent.



i) A second possibility is to use a conic which is tangent#lbranch sextic in six points.

Both constructions yield a lower bound of 2 for the rank of ieard group.

Tritangent. Assume, the ling is a tritangent to fs = 0”. This means, the restriction
of fs to G=2 P is a section o (6), the divisor of which is divisible by 2 in DiG). AsG
is of genus 0, this impliess | is the square of a sectiohe I'(G, €(3)). The form fg
may, therefore, be written & = 2 +1qgs for | a linear form definings, f a cubic form
lifting f, and a quintic fornys.

Consequently, the restriction af to T (G) is given by an equation of the form
w? = f2(s,t). We, therefore, hava*(G) = D; +D; whereD; andD; are the two irre-
ducible divisors given byv = +f(s,t). Both curves are isomorphic 8. In particular,
they are projective lines.

The adjunction formula shows2 = D;(D; +K) = D2. Analogously,D = —2.
Finally, we haveG? = 1. It follows that(D; +D5)? = 2 which yieldsD; D, = 3. For the
discriminant, we find
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guaranteeing rkP{c”) > 2.

Remark 2.3 We note explicitly that this argument works without modifioa if two or
all three points of tangency coincide.

Conic tangent in six points.If C is a conic tangent to the branch cunfg = 0” in six
points then, for the same reasons as above, we Taf@ = C, +C, whereC; andG
are irreducible divisors. Agail; andG, are isomorphic t& and, therefore, of genus 0.
This showsC? = C5 = —2. FurtherC? = 4 which implies(C; +C,)? = 8 andG, G, = 6.
Here, for the discriminant, we obtain
-2 6
’ 6 _2’:—327é0.

Thus, rkPi¢.) > 2 in this case, too.

Remark 2.4 Further tritangents or further conics which are tangenbimsints lead to
even larger Picard groups.

3. Explicit divisors — Practical tests overl,

A test for tritangents. The property of a line of being a tritangent may easily betenit
down as an algebraic condition. Therefore, tritangents beagearched for, in practice,
by investigating a Grobner basis.

More precisely, a general line P? can be described by a parametrization



Oap: t—[1:t:(@a+bt)].

Oap is a (possibly degenerate) tritangent of the sexge= 0" if and only if fs ogap is a
perfect square ifift]. This means,

f6(Gab (t)) = (Co +Cat +Cot? +cat?)?

is an equation which encodes the tritangent property gf Comparing coefficients, this
yields a system of seven equationsciy ¢;, C, andcz which is solvable if and only if
Oap is atritangent. The latter may be understood as well as amsyst equations i, b,
Co, C1, C2, andcz encoding the existence of a tritangent of the form above.

Using Magma, we compute the length dfy[a,b,cy,c1,C2,c3] modulo the corre-
sponding ideal. This is twice the number of the tritangents detected.

The remaining one dimensional family of lines may be testedagously using the
parametrizationga: t+— [1:a:t] andg: t— [0 :1:t].

Remarks 3.1a) To compute the length dfyfa, b,co,c1,¢2,¢3]/1, a Grébner basis df
is needed. The time required to compute such a basis overta fieid is usually a
few seconds. From the Grdbner basis, the tritangents magauokoff, explicitly.

b) Since the existence of a tritangent is a codimension liiondone occasionally finds
tritangents on randomly chosen examples.

A test for conics tangent in six points.A non-degenerate conic iff* allows a
parametrization of the form

c:t [(Co+Crt+Cot?) : (do +it +0at?) : (g +ert +e2t%)].

With the sextic fg = 07, all intersection multiplicities are even if and onlyf oc is a
perfect square ifiyt]. This may easily be checked by factorifigoc.

For smallg, that allows, at least, to search for conics which are definea I,
and tangent in six points. To achieve this, we listedjalt;® — 1) non-degenerate conics
overlty forg=3and 5.

Remark 3.2 A general approach, analogous to the one described aboveh would
be able to find conics defined ovE}, does not succeed. The Grébner basis required
becomes too large.

4. Upper bounds — The Frobenius operation on-adic cohomology

The Lefschetz trace formula. A method to understand the Frobenius operation on
HE (75, Q1) works as follows.

Count the points o’ over Iy and apply the Lefschetz trace formula [6] to com-
pute the trace of the Frobenirp§pd = ¢%. In our situation, it yields

Tr(p?) = #5 () — p™ 1.



We have quod) = )\f + - +)\§2 =: 04(A1,-..,A22) when we denote the eigenvalues
of @by Ay1,...,A22. Newton’s identity [8]

1 k-1
S(A1,...,A22) = D Z}(—l)kﬁﬂffkfr (A1,...,A22)8 (A1,... ,A22)
=

shows that, doing this fat = 1,... .k, one obtains enough information to determine the
coefficient(—1)Ks, of t?27¥ of the characteristic polynomid of ¢.

Observe that we also have the functional equation
(*) P2 fp () = +% o (p% /1)
at our disposal. It may be used to convert the coefficiet't iato the one of22.

Methods for counting points. The number #/(IFy) of the points may be determined as
the sum

z [1+x(fe(x,.2)].

xy:Z GPZ(IFq )

Here, x is the quadratic character. The sum is well-defined siiggey,z) is uniquely
determined up to a sixth-power residue. To count the poiatgety, one would need
o?+q+ 1 evaluations ofs andy.

Here, a number of possibilities arise for optimization. V¢ two of them which we
describe below.

i) Symmetry: If fs is defined overlF, then the summands fok :y: z and
@([x :y: 7)) are equal. This means, oV, we may save a factor afif, on the
affine chart X = 1", we put in fory only values from a fundamental domain of
the Frobenius.

i) Decoupling: Supposefs contains only monomials of the formy8— or X2,
Then, on the affine chark'= 1", the form f may be written as a sum of a func-
tion iny and a function ire.

In O(glog q) steps, for each of the two functions, we build up a tablersgetiow
many times it adopts each of its values. Again, we may restnie of the tables to
a fundamental domain of the Frobenius. We tabulate the atiadharacter, too.
After these preparations, less thghadditions suffice to determine the number
of points.

The advantage of a decoupled situation is, therefore, thatvaluation of a poly-
nomial inlfy gets replaced by an addition.

Remark 4.1 Having implemented the point counting @) these optimizations allow to
determine the number df;io-rational points on a K3 surface” within half an hour
(without decoupling) on an AMD Opteron processor.

In a decoupled situation, the numberlgg-rational points may be counted within
two hours. In a few cases, we determined the numbers of pouslFi. This took



around two days. Without decoupling, the same counts woaré teken around one day
or 25 days, respectively.

This shows, using the methods above, we may effectively coenthe traces of
P, = @i ford=1,...,9,(10).

An upper bound for rk Pic (%—Fp) having counted till d = 10.

We know thatfp, the characteristic polynomial of the Frobenius, has a aémwsince
the pull-back of a line iP? is a divisor defined oveFy. Suppose, we determined(m")
ford=1,...,10. We may achieve an upper bound for rk(%p) as follows.

i) First, assume the minus sign in the functional equation Then, f, automatically
has coefficient 0 aftl. Therefore, the numbers of points counted suffice in thie tas
determinef,, completely.

ii) Then, assume that, on the other hand, the plus sign isptés (x). In this case,
the data collected immediately allow to compute all coeffits off, except that at!l,
Use the known zero ai to determine that final coefficient.

iii) Use the numerical test, described below, to decide Wwiign is actually present.

iv) Factor fp(pt) into irreducible polynomials. Check which of the factorg ayclo-
tomic polynomials and add their degrees. That sum is an upmand for rk Pio;f%Fp).

If step iii) had failed then one has to work with both candéafor f, and deal with
the maximum.

Verifying rk Pic (YFP) = 2 having counted tilld = 9, only.

Assume..” is a K3 surface ovelF, given by Construction 2.2.i) or ii). We, therefore,
know that the rank of the Picard group is at least equal to 2sifgpose that the divisor
constructed by pull-back splits already oV&y. This ensureg is a double zero ofp.
There is the following method to verify rk F{ié%Fp) =2.

i) First, assume the minus sign in the functional equafign This forces another zero
of fy at(—p). The data collected are then sufficient to deternijyeompletely. The nu-
merical test, described below, may indicate a contradictio

Otherwise, the verification fails. (In that case, we couldl §ihd an upper bound
for rk Pic(jﬂﬁFp) which is, however, at least equal to 4.)

ii) As we have the plus sign k), the data immediately suffice to compute all coeffi-
cients off, with the exception of those &, t'1, andt!?. The functional equation yields
a linear relation for the three remaining coefficientsf@fFrom the known double zero
at p, one computes another linear condition.

i) Let nrun through all natural numbers such tiggh) < 20. (The largest suahis 66.)
Assume, in addition, that there is another zero of the fpgm This yields further lin-
ear relations. Inspecting this system of linear equations,either achieves a contradic-
tion or determines all three remaining coefficients. In titter case, the numerical test
may indicate a contradiction.

If each value oh turned out to be contradictory then we found that rl(mﬁp) =2.



Consequently, the equahty rk Rigg ) = 2 may be effectively provable having deter-
mined Ti(@") ford = 1,...,9,(10).

A numerical test. Given a polynomialf of degree 22, we calculate all its zeroes as
floating point numbers. If at least one of them is clearly ricalesolute valuep then f
can not be the characteristic polynomial of the Frobeniusaify K3 surface oveky.

Remarks 4.2i) This approach will always yield an even number for the upggmind of
the Picard rank. Indeed, the bound is

rkPic(#F,) < dimHE (75, Q1))
—#{ zeroes off, which are not of the forng,p} .

The relevant zeroes come in pairs of complex conjugate ntesndence, for a K3 surface
the bound is always even.

il) There is a famous conjecture due to John Tate [7] whicHimsghat the canonical in-
jectioncy: Pic(.% ) — HZ(A To ,Q,(1)) maps actually onto the sum of all eigenspaces
for the elgenvalues which are’roots of unity. Together wlith tconjecture of J.-P. Serre
claiming that the Frobenius operation on étale cohomolsglways semisimple, this
would imply that the bound above is actually sharp.

It is a somewhat surprising consequence of the Tate comgethiat the Picard rank of
a K3 surface oveFF}, is always even. For us, this is bad news. The obvious strategy
prove rkPi¢Sg) = 1 for a K3 surfaceS over @ would be to verify rkP|¢SF =1fora
suitable place of good reduction. The Tate conjecture indicates that fiséne hope for
such an approach.

5. How to prove rkPic(Sg) =1

Using the methods described above, on one hand, we canwciresten upper bounds for
the Picard rank. On the other hand, we can generate lowerdisdyyrexplicitly stating di-
visors. In an optimal situation, this may establish an eituek Pic(&ﬁ—Fp) =2.Howisiit
possible that way to reach Picard rank 1 for a surface definedlQ?

For this, a trick due to R. van Luijk [5, Remark 2] is helpful.

Fact 5.1 an Luijk) Assume, we are given a K3 surface® over IF; and a K3 sur-
face.”® overIFs which are both of geometric Picard rark Suppose further that the
discriminants of the intersection forms é’tir:(YTF@)) and Pic(yf(‘r’)) are essentially dif-
. . . . 3 Fs
ferent, i.e. their quotient is not a perfect squarelin
Then, every K3 surface S such that its reductioB &tisomorphic to7 @ and its
reduction at5 is isomorphic to © is of geometric Picard rank one.

Proof. The reduction maps,: PIC(SQ) — Plc(S?p) P|c(5’( )) are injective [3, Ex-
ample 20.3.6]. Observe here, [8g) is equal to the group Sf divisors diy modulo
numerical equivalence.

This immediately leads to the bound rk8g;) < 2. Assume, by contradiction, that
equality holds. Then the reductions of Bﬁ) are sublattices of maximal rank in both,
Pic(Sg,) = Plc(jﬂ )and Pi¢Sy,) = Pic(.7% A5 ))



The intersection product is compatible with reduction. rEfigre, the quotients
Disc PiqSg )/ Disc Piqu<3)) and DiscPi¢Sg)/ Disc Pi((ﬁ’%?) are perfect squares.
This is a contradiction to the assumption. O

Remark 5.2 Suppose that” ® and.”® are K3 surfaces of degree two given by ex-
plicit branch sextics ifP?. Then, using the Chinese Remainder Theorem, they can easily
be combined to a K3 surfacoverQ.

If one of them allows a conic tangent in six points and the pth&itangent then
the discriminants of the intersection forms on(&”%(?) and Pic(YTF(:)) are essentially
different as shown in section 2.

Remark 5.3 SupposeS is a K3 surface oveff) constructed that way. Thef§, cannot
be isomorphic, not even ovéy, to a K3 surfaces ¢ P® of degree 4. In particular, the
explicit examples, which we will describe in the next sewsipare different from those
of R. van Luijk [5].

Indeed, Pi€Si) = Z-(¢') and de= 2 mean that the intersection form on (g)
is given by (Z*" %M = 2nm All self-intersection numbers of invertible sheaves
on Sg are of the form 22 which is always different from 4.

6. An explicit K3 surface of degree two

Examples 6.1We consider two particular K3 surfaces over finite fields.

i) By 279, we denote the surface oV given by the equation
W2 = (v = X2y + (% +y2 +2)(2Cy +X32+22yz+ X2 2 4 2xy +2y* +7*)

= 2y 4+ X2+ Xy + 2 yz+ X2 33y + 3Pz + 23y + 38
+ 2 P24 PP+ 2Ry P42 L 42y 42X P42y Py LD

i) Further, let#© be the K3 surface ovéfs given by

W2 =y + XY+ 23 Y xy? +4ye 42024 22 + 432 +2x2 +428.

Theorem 6.2Let S be any K3 surface ové} such that its reduction modul®is iso-
morphic t0.2°% and its reduction modulb is isomorphic ta#©. Then rkPic(Sg) = 1.

Proof. We follow the strategy described in Remark 5.2. For the tidacus of 2°°,
the conic given byx® +y? + 72 = 0 is tangent in six points. The branch locus %
has a tritangent given by— 2y = 0. It meets the branch locus @t: 0:d, [1 : 3 : 1],
and0:1:2.

It remains necessary to show that rk@c? ) < 2 and rkPi¢Z.? ) < 2. To verify
these assertions, we used the methods described in sectmnebunted points OVéify
andlFq, respectively, fod < 10. For©, we could use the faster method since the sextic
form on the right hand side is decoupled. O



Corollary 6.3 Let S be the K3 surface ovér given by

W = —ACYy+ 71X z+ XY +5xyz+ X 2 + TCYe —5xCy2z+ 5y Z + 4
+ 62y +5x2y° 7 — 5X2YPZ + BXPYZ + 5x2 7 — AxyP +5xy> 7 — 32
—6y° +5y* 72 —5y°7 +48.

i) ThenrkPic(Sg) = 1.
ii) Further, SQ) # 0. For example[2 ; 0:0:1 € S(@Q).

Remarks 6.4i) For the K3 surface2 ©, our calculations show the following.

The numbers of the points defined ollgs ford=1,...,10 are, in this order, 14, 92, 758,
6752,59834,532820,4796120, 43068728, 387421463, and®XB12. The traces

of the Frobeniugp, . = ¢° on Hgt(%gs,@) are equal to 4, 10, 28, 190, 784, 1378,
13150, 22006, 973, and 293410.

The sign in the functional equation is positive. For the aeposition of the characteristic
polynomialf, of the Frobenius, we find (after scaling to zeroes of absoafige 1)

(t —1)2(3t20 1 2119 1 218 4 217 4 16 413 12 11 10
—t9 28 —2t" 1t 23 22 + 2t +-3)/3

with an irreducible polynomial of degree 20. The assumptibthe negative sign leads
to zeroes the absolute values of which range (without sgfiom 2598 to 3464.

i) For the K3 surface?©, our calculations yield the following results.

The numbers of points ovdiys are, in this order, 41, 751, 15626, 392251, 9759376,
244134376, 6103312501, 152589156251, 3814704296 87@)%B67 474609 376.
The traces of the Frobenius d#(#°,@Q,) are 15, 125, 0, 1625-6250, —6250,

57

—203125, 1265625, 7031250, and 42968 750.

The sign in the functional equation is positive. For the deposition of the scaled char-
acteristic polynomial of the Frobenius, we find

t— 1)2(5t2° _5t19 _5t18 L 1 r17 _ 16 _3t15 4 4414 413 _ 12 4411
+3t10 1% — 28 — 27 - 4t® —3t°5 — 2% 1103 —5t2 —5t +5)/5.

The assumption of the negative sign leads to zeroes thewbs@lues of which range
(without scaling) from 308 to 6398.

7. An explicit K3 surface of degree two given by a symmetri¢3 x 3)-determinant

Examples 7.1Consider the following two K3 surfaces over finite fields.

i) By 27, we denote the surface ovigs given by the equation? = f5(x,y,z) for



2XY4+2y2 Yz 2RPAXYHXZHYZH27  DPAXZYZ+ZP
fo(X,y,2) = det| 2¢4xy+xzt+yz+22 224Xy XYHY2 +yz+ 272
2 AXZ+YZ+ 2 XYHP Y2422 2+2xy+2y2 +2yz

= 28+ 28y + 22+ 2V +xXyz+Cy2 + 3y Z +C 7 + 232y
+3XPY37+ 2RV 4 Xy + XYL+ +yP 2+ +yP + 278

i) Further, let% be the K3 surface ovéfs given byw? = fg(x,y,z) for

42 +4xz+y? 22432 B2 2xy+ 2xz 14y +3yz+ 272
fo(x,y,2) = det 22132 2R 1Ay + 42 yzh 32 dxyr2xzhy? +Ayzt A2
L2 2xy+2xz+ A2 +3yz+ 27 AXy+2xz+Ye +Ayz+ Az 42 4xz+32

= HE+ 20y + X7+ XY + X2+ + A
+ 2y + 2 +Axy +-x2 +42° .

Theorem 7.2Let S be any K3 surface ové} such that its reduction modul®is iso-
morphic to2” and its reduction modulb is isomorphic ta?. ThenkPic(Sg) = 1.

Proof. Consider the branch locus ¢f . For the conicC, given byx? +xy+2xz+ 2> =0,
there is the parametrization

q: U U2 :2: (207 +2u)].
We find
fs(q(u)) = (U+1)?(W® +u* +u® +u+1)?,

i.e. C admits the property of being tangent in six points and theesmonding divisor
on %2 splits already ovels. The branch sextic o has a degenerate tritangent given
byx=0.

To verify that rkPi¢2%,) < 2 and rkPi¢%f, ) < 2, again, we used the methods
described in section 4. We counted points o¥g#, respectivelylFq, for d < 10.
Observe that, fo?”, we could use the faster method since the sextic form on g ri
hand side is decoupled. O

Corollary 7.3 Let S be the K3 surface ové) given by W = fg(x,y,2) for

—6x2 +5xy—6xz— 43392 —Byz  2x2 —5xy— 5xz— 150/2 —5yz— 722 —x2 —3xy+ Txz— 62 —2yz+ 72
fe (X, Y, Z) = det|2e —5xy— 5xz— 150y2 —5yz— 722 22 +4xy — 6y? +6yz+ 322 axy—3xz+y? +4yz— 2
—x2 —3xy+ Txz— 6y —2yz+ 772 axy—3xz+y? +dyz— 2 —x2 +5xy+ 6xz+ 5y? +5yz+ 32

= 14x° - 118y —64x°z+8021x*y? 4+ 220 yz— 114¢* 2
—202493y? — 477003y’ z — 635CYZ + 457
—64753y* —247925%y°7+ 26 045¢Cy?7Z — 2 745CyZ — 153¢ 7

—3382Ky> —10710y*z— 463 24%y>Z — 62 45(ky* 7>
—3075¢y# — 3842

4240255 —77345°z—143884*7 — 201885°7 — 3945577
—1055/2 —1967°.



i) ThenrkPic(Sg) = 1.
ii) Further, SQ) # 0. For example[155; 0:1:0 € S@).

Remarks 7.41) For the K3 surfaceZ’, our calculations show the following.

The numbers of the points defined olgs ford=1,...,10 are, in this order, 14, 88, 800,
6664, 59114,531136,4782344,43029952, 387550223 and7®H5%¥ 8. The traces
of the Frobeniugy, , = ¢ onHZ(25%,Q)) are 5, 7, 71, 103, 65,305, 625,16 769,
129734, and-28823.

The decomposition of the scaled characteristic polynoiwsial
(t —1)2(3t20 4119 4- 218 16 15 4 24 4 13 4 3112
+2t10 438 4 2t7 4216 15 +t* +-2t% +1 +3)/3.
By consequence, the geometric Picard rank is equal to 2.
i) For the K3 surface?’, our calculations yield the following results.

The numbers of points ovéizs are, in this order, 33, 669, 15522, 391861, 9768668,
244132734, 6103019942, 152588860821, 3814709624 8985867 420137 974.
The traces of the Frobenius Mﬁt(%s,@) are 8, 44,-103, 1236, 30437891,
—495683, 970196, 12359273, ard1502651.

The decomposition of the scaled characteristic polynoisial
(t —1)2(5t20 4219 £18 4 5t17 1 2116 4 15 4 514 4 gr13 4 4112 4 1L
+-8t10 4-2t9 + 48 1 8t7 4-5t° +2t° + 2t% +-5t3 +-t% 42t +5)/5.

Consequently, the geometric Picard rank is equal to 2.

A probabilistic method to construct symmetric (3 x 3)-matrices with decoupled de-
terminant.
A general ternary sextic has 28 coefficients. It is decouibl8l of these vanish. Thus, a
randomly chosen sextic form ify[X,y, 7 is decoupled with a probability af 15, Thisis
too low for our purposes.

On the other hand, we can think of decoupling as solving arlimear system of
15 equations in 36 variables. One could try to attack thisesydy a Grébner base cal-
culation. We use a mixture of both methods. More precisedyde the following.

Method 7.5 We construct the matrik in the particular form

ax,y,z) bx,2) ci1(x,y,2)
M= b(X, ) CZ(X7 Y, Z) C3(X7 Y, Z)
ci(X,y,2) ca(x.y,z) d(x2)

i) We choose the quadratic forms, ¢, ¢z, andd, randomly.

ii) In a second step, we have to fix the nine coefficients of thedgatic formsa andb.
The coefficients of de¥ atx®—~1y'zl fori,j > 0 are linear functions of the coefficients



of a andb. Observe that the summand?d does not contribute to these critical coeffi
cients.

Thus, we have to solve a system of 15 linear equations in rariables. Naively, such a
system is solvable with a probability qf®.

If it is not solvable then we go back to the first step.

Remarks 7.61) We randomly generated a sample of 30 surfaces @fgefFor each of
them, the branch locus was smooth and had passed the twadésstibed in section 3,
to exclude the existence of a tritangent and to ensure thaseswactly one conic ové;
tangent in six points.

We could establish the equality rk P{%ﬁa) = 2 inthree of the examples. Example 7.1.i)
reproduces one of them.

if) Using the probabilistic method described above, we gateel a sample of 50 surfaces
overlFs. We made sure that, for each of them, the branch sextic wasthittad exactly
one tritangent, and no conic ov&g tangent in six points. Further, it was decoupled
by construction. It tookvagna approximately one hour to generate that sample.

Having counted points ovéizs for d < 9, we could establish the equality rk %s) =2
in two of the examples. For those, we determined, in additioe numbers of points
overlF;0. Example 7.1.ii) reproduces one of the two.

8. An explicit K3 surface of degree two given by a symmetri¢6 x 6)-determinant

Examples 8.1Consider the following K3 surfaces over finite fields.

i) By 2"/, we denote the surface ovs given by the equation? = fs(x,y, z) for

000022 021121 211120

010101 222222 110121
fe(xyz):detxoozj'lz +y 120110 +z 102112
e 011111 121111 111001
201122 221122 221022

212120 120120 012120

=8 3y + 232+ 2N + 2 yz+ 2Pz 4+ X2 2
+2xy° +2xy*z+2y8 + 2Pz 4P 2y .

i) Further, let%” be the K3 surface ovéfs given byw? = fg(x,y, z) for

343441 003301 211105
430210 020131 104444
304030 305035 142302
fe(xy.2) =detixf ;o551 3|TY[ 310355 "% 143122
413102 033501 040231
100321 115513 542210

= 28 X0y + 28y 432 + 3y + 23 2 + 32y + 3% L+ 2xy° +420 .



Theorem 8.2Let S be any K3 surface ové} such that its reduction modul®is iso-
morphic to.2”" and its reduction modul6 is isomorphic to%”’. ThenkPic(Sg) = 1.

Proof. Consider the branch locus . For the conicC, given byxz+y? +2yz+ 22> =0,
there is the parametrization

q: U [(2u? +u+1) susll.
We find
fs(Q(u)) = (U? +u+2)? (u*+u+2)?,

i.e. C admits the property of being tangent in six points and theesmonding divisor
on %’ splits already ovel;. The branch sextic a#’ has a degenerate tritangent given
by x=

To verlfy that rkPuﬁ%’ ) <2 and rkP|¢{/,7// ) <2, again, we used the methods
described in section 4. We counted points o}Pgr andIFz, respectively, fod < 10.
Observe, forZ’, we could use the faster method since the sextic form on g hiand
side is decoupled. O

Corollary 8.3 Let S be the K3 surface ovéy given by W = f5(x,y,2) for

2382 21 3 6 -1 4 0 52 -2 5 1 2 1 1 1 5 0

21 28 0 7 6-5 5 2 54 -7 4 156 4-1 4

—_ 3 0-1-5-=2 5 -2 5 0-5-=2 0 16 2-2-5 2

f6 (X’y’ Z) _det X -6 7-5 7 12 +y -2 4 -5 -2 -5 -5 + 1 42 6-3 7
-1 6 -2 1 5 2 57 -2 -5 54 5-1 -5 -3 -7 -4

4 -5 5-2 2 6 14 0-5 -4 3 0 4 2 74 0

—=7613916%°+23118408%%y +21007572%°z
+2560933%*y? +48733731%'yz—31415498%*7
—141937719%y° +283035188°y°z— 434 14981%°yZ — 5367 46&°7

—175763034%y* + 168686 098%y°z— 421490 018°y*7
+160009 15%°yZ — 153566 95%°7

—90295278y° +17577957%y'z— 285747 188y*7
+32758525%°7 — 215766 34%y7# + 944790457

+133220° +31145°2+38071%* 2 —324195°7 — 47681977
+40284%2 —17426%°.

i) ThenrkPic(Sg) = 1.
ii) Further, SQ) # 0. For example[1286 ; 1:1: 1€ S@).

Remarks 8.4i) For the K3 surface?”, our calculations show the following.

The numbers of the points defined ouBy for d = 1,...,10 are, in this order, 12,
90, 783, 6534, 59697, 535329, 4793661, 43079526, 3875210013487 248045.
The traces of the Frobeniug. . = ¢“ on Hgt(%i?’ ,Q) are 3, 9, 54,27, 648, 3888,
10692, 32805, 100602, ar’fd 463644. :



The decomposition of the scaled characteristic polynoiwsial
(t— 1)2 (3tzo +3t19 4. 3t18 4 o417 | 3416 L 15 13 3412 411
—6t10 —at® 3% — 27 425 43t 4263 + 3t 43t +3)/3.
Consequently, the geometric Picard rank is equal to 2.
i) For the K3 surface?”’, our calculations yield the following results.

The numbers of points ovdis are, in this order, 36, 666, 15711, 391706, 9763601,
244152021, 6103934341, 152589189186, 38147053551819%B67 412593 451.
The traces of the Frobenius dﬂgt(% ,Q,) are 11, 41, 86, 1081,-2024, 11396,
418716, 1298561, 8089556, ard9 047 174.

The decomposition of the scaled characteristic polynoiwsial
(t —1)2(5t20 —t19 4118 4 2t17 1 315 414 13 (12 411
+2t10 19 448 —2t7 1% +3t° + 263 +t2 —t +5)/5.
By consequence, the geometric Picard rank is equal to 2.

A probabilistic method to construct symmetric (6 x 6)-matrices with decoupled de-
terminant.

Method 8.5 a) We construct a symmetri6 x 6)-matrix My the entries of which are
linear forms only iny andz. The goal is that its determinant is decoupled, i.e.

detMy = ay? +b?

for certaina,b € Ty, not both vanishing.
This leads to five conditions for the coefficients.
i) We choose all entries iNy randomly except fofMg)11.

ii) The determinant is linear in the coefficients @y )11. Therefore, we have a system
of five linear equations in two variables. Such a system igsada¢ with a probability
of g2 which is enough for our purposes.

If there is no solution then we return to step i).

b) We construcM in the form
M =My +xA

for A a symmetric matrix with entries ifi;.

i) First, look at the monomialsyz>~ for i = 1,...,4, only. To make their coeffi
cients vanish leads to a system of four linear equationsetreral, its solutions form a
17-dimensional vector space.

if) For decoupling, there are six further coefficients whiate required to be zero.
This means, we are left with 17 parameters and six non-liegaations.

We choose the parameters randomly and iterate this progathtil a solution has
been found. Naively, the probability to hit a solutiorgi®, each time.



Remarks 8.6i) We randomly generated a sample of 50 surfaces yeFor each of
them, the branch sextic was smooth and had passed the twalésstribed in section 3,
to exclude the existence of a tritangent and to ensure thaseswactly one conic ové;
tangent in six points.

We established rk P(é&”ﬁ’s) = 2in eleven of the examples. Example 8.1.i) is one of them.

i) Using the probabilistic method described above, we gateel a sample of 120 sur-
faces overlFs. For each of them, the branch sextic was decoupled, by canistn.
We made sure, in addition, that it was smooth, had exacthtraagent, and no conic,
defined overls, which was tangent in six points. It should be remarked th&bdk
Magna half a day to generate that sample.

Having counted points ovéizs for d <9, we could establish the equality rkP&‘Tj )=2
in three of the examples. For those, we determined, in aufdithe numbers of points
overlF;0. Example 8.1.ii) reproduces one of the three.
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