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Abstract

We construct nontrivial homomorphisms from the quasi group of some
cubic surfaces over Fp into a group. We show experimentally that the ho-
momorphisms constructed are the only possible ones and that there are no
nontrivial homomorphisms in the other cases. Thereby, we follow the classifi-
cation of cubic surfaces, due to A.Cayley.

1 The quasi group of a cubic surface

1.1. –––– According to Yu. I. Manin [Ma], a cubic surface V carries a structure
of a quasi group. For us, this shall simply mean the ternary relation

[x1, x2, x3] ⇐⇒ x1, x2, x3 non-singular, intersection of V with a line .

If V is defined over a field K then, on V reg(K), there is a structure of a quasi group.

1.2. –––– Here, the precise definition is that the lines lying entirely on the surface
shall not cause any relation. On the other hand, it is allowed that two or all three
points coincide. Then, the line shall simply be tangent to the surface of order two
or three.

1.3. Definition. –––– Let (Γ, [ ]) be a quasi group and (G,+) be an abelian group.
By a homomorphism p : Γ → G, we mean a mapping such that, for a suitable g ∈ G,

p(x1) + p(x2) + p(x3) = g

whenever [x1, x2, x3] is true.
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1.4. Fact. –––– The category of all homomorphisms from a quasi group Γ to
abelian groups has an initial object. The corresponding abelian group is Γ := ZΓ/N ,
for N the subgroup generated by 1 ·x1 + 1 ·x2 + 1 ·x3 − 1 ·x′

1 − 1 ·x′
2 − 1 ·x′

3 for all
[x1, x2, x3] and [x′

1, x
′
2, x

′
3].

Γ carries a surjective augmentation homomorphism s : Γ → Z. We will call ker s
the group associated with Γ.

1.5. Definitions. –––– Let V be a cubic surface over a field K.

i) We will call the group associated with the quasi group V reg(K) the Mordell-Weil
group of V . It will be denoted by MW(V ).

ii) We will call two points x1, x2 ∈ V reg(K) equivalent if [x1]− [x2] = 0 ∈ MW(V ).

1.6. Example. –––– Let V be the Cayley cubic given by the equation

xyz + xyw + xzw + yzw = 0

in P3 over a field K. Then, for a non-singular point p = (x0 : y0 : z0 : w0) ∈ V (K),
either no coordinate vanishes or exactly two of them. Accordingly, put

s(p) :=

{
x0y0z0w0 if x0, y0, z0, w0 ̸= 0 ,
−

∏
v=x0,y0,z0,w0 ̸=0

v otherwise .

Further, let l be a line in P3 not contained in V and denote by p1, p2, and p3 the
intersection points with V , which are supposed to be non-singular and K-rational
and counted with multiplicity.

Then, s(p1)s(p2)s(p3) is a perfect square in K.

Proof. This observation is easily checked by calculations in maple, treating the
possible cases separately. �

1.7. Example (continued). —– For V the Cayley cubic overK, the map s there-
fore induces a surjective homomorphism of groups

MW(V ) −→ K∗/(K∗)2 .

i) In particular, for the Cayley cubic over Q, the group MW(V ) is not finitely gen-
erated.

ii) On the other hand, for the Cayley cubic over a finite field Fq of odd characteristic,
we have MW(V ) ∼= Z/2Z. There are two different kinds of smooth points on V .
Two points p1, p2 ∈ V reg(Fq) are equivalent if and only if s(p1)s(p2) is a square.

The purpose of this article is to investigate this phenomenon more systematically.
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1.8. Remark. –––– The Mordell-Weil group is related to the famous Mordell-
Weil problem, which may be formulated as to find a minimal system of generators
for MW(V ).

1.9. –––– We are particularly interested in the cases when, for V a cubic surface
over a finite field, MW(V ) ̸= 0. The point is that there is the following

Application. Let V be a cubic surface over Q and p1, . . . , pt be primes satisfying
the following conditions.

i) There is no Fpi-rational line contained in the reduction Vpi .

ii) The singularities of Vpi do not lift to smooth Q-rational points on V .

Then, the reductions induce a natural homomorphism

MW(V ) −→ MW(Vp1)× . . .×MW(Vpt) .

If V has weak approximation then this map is a surjection.

1.10. –––– The is another application, which is related to the so-called Brauer-
Manin obstruction. This is a method, invented by Yu. I. Manin [Ma, Chapter. VI],
to explain the failure of the Hasse principle or weak approximation in certain cases.
It is based on the consideration of a non-trivial Brauer class α ∈ Br(V ) and the
corresponding p-adic evaluation maps

evα,p : V (Qp) −→ Br(Qp) = Q/Z, x 7→ α|x .

Proposition. Let p ̸= 2 be a prime number and F ∈ Zp[X0, X1, X2, X3] cubic form
defining a smooth cubic surface V over Qp. Suppose that all x ∈ V (Qp) specialize
to V reg

p and that MW(Vp) = 0.

Then, evα,p is constant for every α ∈ Br(V ).

Proof. It is known that evα,p(x) depends only on the reduction of x modulo p
[B, Theorem 1]. Further, an application of Lichtenbaum duality [Li, Corollary 1]
proves that evα,p is induced by a group homomorphism MW(Vp) → Q/Z. �

1.11. Remark. –––– In [EJ], we studied explicit examples of cubic surfaces, for
which the Brauer-Manin obstruction works at certain primes. It was noticeable in
the experiments that the reduction types at the relevant primes were distributed
in an unusual way. Reducible reductions and reductions to the Cayley cubic oc-
curred frequently. This observation was actually the starting point of our investiga-
tions on the Mordell-Weil group.

1.12. –––– The goal of this article is to compare MW(V ) with a group more
tractable from the theoretical point of view. For cubic surfaces that are not
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too degenerate, this will be A0(V
reg), the degree-0 part of Suslin’s homology

group h0(V
reg). We will establish a canonical homomorphism

πV : MW(V ) −→ A0(V
reg)

for V a geometrically irreducible cubic surface over a finite field. Under minimal
assumptions, πV will be surjective.

1.13. Plan of the article. –––– In section 2, we will recall Cayley’s classification
of cubic surfaces. After this, we will consider two degenerate cases at first. Section 3
will be concerned with the situation of a cone. Then, there is a surjection to the
Mordell-Weil group of the underlying curve. Section 4 will treat the reducible case.
It will turn out that there is a nontrivial surjection from MW(V ) to a nontrivial
abelian group, which is given in an elementary manner. In section 5, we will con-
struct the homomorphism πV . Then, we will compute A0(V

reg) systematically for
each of the remaining cases of the classification of cubic surfaces.

At the end of the main body of the article, we will report on the comparison
between MW(V ) and A0(V

reg) in a large sample of examples. In an appendix, we
will discuss efficient algorithms to compute MW(V ) for a concrete surface.

2 Cayley’s classification of cubic surfaces

2.1. –––– Cubic surfaces are classified since the days of A.Cayley [Do, sec. 9.2].
According to this, there are the following types.

I) A normal cubic surface is either

i) in one of the 21 classes of surfaces with finitely many double points, listed in [Do,
Table 9.2.5]. This includes the case of a smooth cubic surface.

ii) Or the cone over a smooth cubic curve C.

II) A non-normal, geometrically irreducible cubic surface is either

i) a cubic ruled surface. There are two types of those [Do, Theorem 9.2.1], ordinary
and Cayley’s cubic ruled surfaces.

ii) Or the cone over a singular cubic curve. This might be a cubic with a self-inter-
section or a cusp.

2.2. –––– In the situation of a finite base field, the classification of geometrically
irreducible cubic surfaces is actually a little finer.

I.i) Among these types, 2A1, 3A1, 2A2, A2+2A1, 4A1, 2A2+A1, A3+2A1, and 3A2

have symmetries. This leads to 13 further types, where the singularities are defined
over extensions of the ground field.
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II.i) An ordinary cubic ruled surface may have its normal form xz2 + yw2 = 0 only
over a quadratic extension. This causes a third type of cubic ruled surfaces over a
finite field.

II.ii) In the case of the cone over a cubic curve with self-intersection, there are two
variants as to whether the two tangent directions at the point of intersection are
defined over the ground field or not.

2.3. –––– We will restrict ourselves to reduced cubic surfaces. In other words,
the following types of reducible surfaces are allowed.

i) A reducible cubic surface might consist of a quadric and a plane. There are four
cases where the quadric is nondegenerate. In fact, the quadric may split over the
ground field or not and the plane may be tangent or not. There are four more cases
when the quadric is a cone. The intersection with the plane might be a conic, two
lines, a double line, or a point.

ii) Finally, the surface might be reducible into three planes. There are two cases as
to whether their intersection is a point or a line. Observe that it is possible that the
decomposition into three planes is defined only after a finite field extension.

3 The case of a curve

3.1. –––– Let C ⊂ P2 be a reduced cubic curve over a field K. Then, in a
manner analogous to the surface case, there are a quasi group structure on C and
the Mordell-Weil group MW(C). This group is known in every case.

i) It may happen that all K-rational smooth points are contained in a line.
Then, the quasi group structure is empty and MW(C) = ker(sum: Z[L(K)] → Z).
We have this degenerate case whenever C contains a line defined over a proper ex-
tension of K. The same may happen even for a smooth cubic curve when #K ≤ 5.

Otherwise,

ii) MW(C) = J(C)(K) for C smooth, and

iii) MW(C) = K+ if C is a cubic curve with a cusp.

iv) If C is a cubic curve with a node then MW(C) = K∗ in case that the two tangent
directions at the node are defined over K. If the tangent directions are defined over
the quadratic extension F/K then MW(C) = ker(N: F ∗ → K∗).

v) When C is reducible into a line and a conic then MW(C) = ker(N: F ∗ → K∗)⊕Z,
MW(C) = K+ ⊕ Z or MW(C) = K∗ ⊕ Z depending on whether, over K, there are
no, one, or two points of intersection.

vi) When C is reducible into three components then MW(C) = K+ ⊕ Z2 or
MW(C) = K∗ ⊕ Z2 depending on whether the three points of intersection coincide
or not. In the case of three points of intersection, this is actually Menelaos’ Theorem.
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3.2. Fact (Cones). —– For V a cone over a cubic curve C, we have a canonical
surjection MW(V ) → MW(C).

4 Reducible cubic surfaces

4.1. –––– Let V be a reducible cubic surface over a field K. Then, there are two
essentially different cases.

i) There are two irreducible components, a plane E and a quadric, but the quadric
consists of two planes defined over a quadratic extension. Then, only the plane E
contains K-rational smooth points. We have an empty quasi group structure
and MW(V ) = ker(sum: Z[E(K)] → Z).

ii) Otherwise, when V decomposes into k = 2, 3 components, there is a canoni-
cal surjection MW(V ) � ker(sum: Zk → Z) ∼= Zk−1.

4.2. Example. –––– Over a finite field Fq of characteristic ̸= 2, let V be a re-
ducible cubic surface consisting of a nondegenerate quadratic cone Q and a plane E.
Suppose that E does not meet the cusp of Q. Then, there is a canonical surjection

MW(V ) � Z⊕ Z/2Z .

Proof. The homomorphism to Z is that from 4.1.ii). It remains to construct the
homomorphism to Z/2Z.

For this, we fix coordinates such that the cusp is in (1 : 0 : 0 : 0) and the plane E
is given by x = 0. Further, we assume without restriction that the plane “y = 0” is
tangent to the cone Q. Then, the cone is given by, say, yz +Kw2 = 0 for K ̸= 0.
The whole cubic surface has the equation

x(yz +Kw2) = 0 .

On the plane “x = 0”, we define the homomorphism MW(V ) → Z/2Z simply as
χ2

(
K(yz+Kw2)

)
for χ2 the quadratic character on F

∗
q . On the cone “yz+Kw2 = 0”,

we take χ2(xy), respectively χ2(−Kxz) when y = 0.
We have to show that this definition is indeed compatible with the quasi

group structure. For this, let (x : y : z : w) ∈ Q(Fq), (x
′ : y′ : z′ : w′) ∈ Q(Fq),

and (0 : y′′ : z′′ : w′′) ∈ E(Fq) be three collinear points. Then, we clearly have
(0 : y′′ : z′′ : w′′) = (0 : (x′y − xy′) : (x′z − xz′) : (x′w − xw′)). Furthermore,

(xy)(x′y′)K(y′′z′′ +Kw′′2) = Kxx′yy′[(x′y − xy′)(x′z − xz′) +K(x′w − xw′)2]

= −Kxx′yy′[xx′(yz′ + y′z + 2Kww′)]

= −Kx2x′2(−Ky2w′2 −Ky′2w2 + 2Kyy′ww′)

= K2x2x′2(yw′ − y′w)2

is a perfect square. �
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5 Irreducible cubic surfaces not being cones

5.0.1. –––– When a cubic surface V is irreducible, but geometrically reducible,
then it consists of three planes acted upon transitively by the Galois group. In this
case, V reg(K) = ∅ and, therefore, MW(V ) = 0. Thus, we may restrict ourselves to
the geometrically irreducible case.

5.1 Suslin’s singular homology group h0

5.1.1. –––– For a scheme of finite type over a field K, the singular homology
groups h∗(S) were introduced by A. Suslin [SV]. We will only need h0(S), for which
there is the following elementary description.

5.1.2. Fact. –––– Let S be an integral scheme of finite type over a field K. Then,

h0(S) = Z0(S)/Rat
′
0(S) .

Here, Z0(S) is the group of 0-cycles, i.e., the free abelian group over all closed points
of S. Rat′0(S) is generated by all 0-cycles of the following kind.

Let C ⊂ S be an irreducible curve, C ′ its normalization, and C the corresponding
smooth, proper model. Then, take all the cycles div(f) where f ̸≡ 0 is a rational
function on C which, after pull-back to C, is constantly 1 on C\C ′.

Proof. See [Sch, Theorem 5.1]. �

5.1.3. Remarks. –––– a) h0(S) is equipped with a natural map deg : h0(S) → Z.
We will denote its kernel by A0(S).

b) Let i : S1 → S2 be an arbitrary morphism of quasi-projective varieties over K.
Then, there is the induced homomorphism i∗ : h0(S1) −→ h0(S2), [x] 7→ [i(x)].
This immediately yields a map i∗ : A0(S1) −→ A0(S2).

5.1.4. Lemma. –––– Let V be a geometrically irreducible cubic surface over Fq.
Then, there is a canonical homomorphism

πV : MW(V ) −→ A0(V
reg) .

Proof. To each combination a1[p1] + . . . + ak[pk] for p1, . . . , pk ∈ V reg(K) and
a1 + . . . + ak = 0, the homomorphism i∗ assigns the corresponding cycle. We take
this as a definition for πV . To show that πV is well-defined, we have to verify
the following.

Assume that x1, x2, x3 are collinear and x′
1, x

′
2, x

′
3 are collinear, too. Suppose that

the connecting lines are not contained in V . Then,

[x1] + [x2] + [x3]− [x′
1]− [x′

2]− [x′
3] = 0 ∈ A0(V

reg) .
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For this, consider the pencil of planes through x1, x2, x3. Generically, the inter-
section with V is a curve, smooth at x1, x2 and x3. The only possible exceptions are
the tangent planes. We claim that the generic intersection curve is irreducible, too.
Indeed, the contrary would mean that all intersection curves contained a line. Sup-
pose, this is a line through x1. Then, V contains a pencil of lines through x1, which
implies V contains a plane through x1. Hence, V is reducible, a contradiction.

Thus, take a plane through x1, x2, x3, generating an irreducible intersection
curve C that is smooth in x1, x2 and x3. Further, take a plane through x′

1, x
′
2, x

′
3

generating an irreducible intersection curve C ′ that is smooth in x′
1, x

′
2 and x′

3 and
meets C only in smooth points x′′

1, x
′′
2, x

′′
3. The sublemma below, applied to C and C ′,

immediately yields the assertion. �

5.1.5. Sublemma. –––– Let C be an irreducible cubic curve. Assume that
p1, p2, p3 ∈ Creg as well as q1, q2, q3 ∈ Creg are triples of collinear points such that
{p1, p2, p3} ∩ {q1, q2, q3} = ∅.
Then, there is a rational function f on C having simple zeroes at p1, p2, p3, simple
poles at q1, q2, q3, no other zeroes or poles, and the value 1 at the possible singu-
lar point.

Proof. According to J. Plücker, an irreducible cubic curve may have at most one
singular point. We may therefore put f := K · l1/l2 for forms l1 and l2 defining
the lines. By assumption, these do not meet the singular point. If necessary, we
choose the constant K such that the value at the singularity is normalized to 1. �

5.2 h0 and the tame fundamental group

5.2.1. –––– Let S be a smooth surface over the finite field Fq for q = pr and let
S ⊇ S be a smooth compactification. Then, the tame fundamental group πt

1(S) of S
classifies all finite coverings of S which are tamely ramified at S\S.

The group πt
1(S) is independent of the choice of the compactification S. πt

1(S) is a
quotient of πét

1 (S). By the purity of the branch locus [SGA1, Exp. X, Théorème 3.1],
one has

πt
1(S)

ab
tors

∼= (πét
1 (S)

ab)prime to p ⊕ (πét
1 (S)

ab)p-power .

Again, this decomposition is independent of the choice of S.
The structural morphism S → SpecFq induces a surjection πt

1(S) → π1(SpecFq)
the kernel of which we will denote by πt,geo

1 (S). Note that πt,geo
1 (S) differs from

πt
1(SFq). The point is that the analogue of the natural short exact sequence [SGA1,

Exp. IX, Théorème 6.1] is only right exact for the tame fundamental group.

5.2.2. Theorem (Schmidt, Spieß). —– Let S be a surface over a finite field Fq

which is smooth and geometrically irreducible, but not necessarily proper.

i) Then, A0(S) is a finite abelian group.
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ii) There is a canonical isomorphism ιS : A0(S) −→ πt,geo
1 (S)ab.

Proof. See [SchS, Theorem 0.1]. �

5.2.3. Remarks. –––– a) Concretely, ιS is given as follows.

i) For a point x : SpecFq′ → S, consider the induced homomorphism

πét
1 (x) : Ẑ = πét

1 (SpecFq′) −→ πét
1 (S) � πt

1(S) � πt
1(S)

ab .

Send [x] to πét
1 (x)(1). This defines a homomorphism ι′S : h0(S) → πt

1(S)
ab.

ii) Clearly, the degree map deg : h0(S) → Z is compatible with the homomorphism
πt
1(S)

ab → πét
1 (SpecFq) = Ẑ induced by the structural morphism.

iii) The homomorphism ιS is exactly the restriction of ι′S to ker deg.

b) The map ι′S defines an isomorphism ĥ0(S) → πt
1(S)

ab.

5.3 The tame fundamental group and the Picard group

5.3.1. Fact. –––– Let V be a cubic ruled surface defined over the finite field Fq.
Then, πt,geo

1 (V reg) = 0.

Proof. It will suffice to show πt
1(V

reg

Fq
) = 0. In the present situation, a smooth

compactification of V reg

Fq
is given by a projective plane, blown up in one point.

The preimage of the singular locus is a (double) line through the point blown up.
Consequently, V reg

Fq
is a ruled surface over A1. This yields πt

1(V
reg

Fq
) = 0. �

5.3.2. Proposition. –––– Let V be a geometrically irreducible cubic surface
over Fq that is not a cone. Suppose V is normal, i.e., of one of the types I.i).
Then,

πt,geo
1 (V reg)ab = [(Pic(V reg)prime to p ⊗Z µ∨

∞)Gal(Fq/Fq)]∨ .

Here, ∨ denotes the Pontryagin dual, given by the functor Hom(·,Q/Z).

Proof. First step. p-torsion.

We know a smooth compactification V of V reg, explicitly. V
Fq

is isomorphic to
P2 blown-up in six points. In particular, we have πét

1 (VFq) = 0. This suffices for
πt
1(VFq)

ab
p-power = 0 and πt,geo

1 (V )abp-power = 0.

Second step. The Pontryagin dual.

Let us compute the Pontryagin dual (πt,geo
1 (V reg)ab)∨. For l prime to p, we have

Hom(πt,geo
1 (V reg)ab, 1

l
Z/Z) = Hom(πt

1(V
reg)ab, 1

l
Z/Z)/Hom(π1(SpecFq),

1
l
Z/Z)

= Hom(π1(V
reg)ab, 1

l
Z/Z)/Hom(π1(SpecFq),

1
l
Z/Z)

= H1
ét(V

reg, 1
l
Z/Z)/H1(Gal(Fq/Fq),

1
l
Z/Z) .
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According to the Hochschild-Serre spectral sequence

Hp(Gal(Fq/Fq), H
q
ét(V

reg

Fq
, 1
l
Z/Z)) =⇒ Hp+q

ét (V reg, 1
l
Z/Z) ,

the latter quotient is nothing but H1
ét(V

reg

Fq
, 1
l
Z/Z)Gal(Fq/Fq).

Third step. The torsion part of the Picard group.

We have Γ(V reg

Fq
,Gm) = F

∗
q . In fact, the A-, D-, and E-configurations do not contain

any principal divisor. This immediately yields H1
ét(V

reg

Fq
, µl) = Pic(V reg

Fq
)l for any l

prime to p. On V reg

Fq
, the sheaves µl and

1
l
Z/Z coincide up to the Galois operation.

We therefore have

Hom(πt,geo
1 (V reg)ab, 1

l
Z/Z) = (H1

ét(V
reg

Fq
, µl)⊗Z µ∨

l )
Gal(Fq/Fq)

= (Pic(V reg

Fq
)l ⊗Z µ∨

l )
Gal(Fq/Fq) .

Summing this up over all l, we see that

(πt,geo
1 (V reg)ab)∨ = (Pic(V reg)prime to p ⊗Z µ∨

∞)Gal(Fq/Fq) ,

which is equivalent to the assertion. �

5.3.3. Summary. –––– Thus, in order to compute A0(V
reg), we only need to know

Pic(V reg)tors for each of the 21 types of cubic surfaces summarized in I.i).

5.4 The 21 types of normal cubic surfaces not being cones

5.4.1. Fact. –––– Let V be a normal, proper surface over an algebraically closed
field and Ṽ its desingularization. Then,

Pic(V reg) = Pic(Ṽ )/⟨E1, . . . , Ek⟩ ,

where E1, . . . , Ek denote the irreducible components of the preimages of the singu-
larities on Ṽ . �

5.4.2. Theorem. –––– Let V be an irreducible cubic surface over Fq, not being
a cone. Suppose that V is normal, i.e., of one of the 21 types I.i).

Then, the Picard group Pic(V reg) is torsion-free for 17 of the 21 types. For the four
remaining types, the torsion is given in the table below.

type singularities Pic(V reg)tors

XVI 4A1 Z/2Z
XVIII A3 + 2A1 Z/2Z
XIX A5 +A1 Z/2Z
XXI 3A2 Z/3Z
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Proof. We distinguish the cases systematically. Each time, we apply Fact 5.4.1.

One has Pic(Ṽ ) ∼= Z7. The signature is (1,−1,−1,−1,−1,−1,−1). I.e., we have
torsion-freeness in the case of a smooth cubic surface.

Otherwise, the A-, D-, or E-configuration of (−2)-curves generates a sublattice
of Pic(Ṽ ). The quotient has torsion if and only if this sublattice can be refined
in Z7 without enlarging the rank. This immediately shows torsion-freeness in the
cases An for n ̸= 3 and E6 as the lattice discriminants are square-free.

For the other cases, the constructions described in [Do, page 278] yield explicit
generators for sublattices of Z7. We summarize them in the following table.

2A1
(2,−1,−1,−1,−1,−1,−1)
(0, 0, 0, 0, 0, 1,−1)

A3

(0, 0, 0, 0, 0, 1,−1)
(0, 0, 0, 0, 1,−1, 0)
(0, 0, 0, 1,−1, 0, 0)

A2 +A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A2 : (0, 0, 0, 0, 0, 1,−1)
A2 : (0, 0, 0, 0, 1,−1, 0)

3A1

(2,−1,−1,−1,−1,−1,−1)
(0, 0, 0, 0, 0, 1,−1)
(0, 0, 0, 1,−1, 0, 0)

2A2

1. A2 : (0, 0, 0, 0, 0, 1,−1)
1. A2 : (0, 0, 0, 0, 1,−1, 0)
2. A2 : (0, 0, 1,−1, 0, 0, 0)
2. A2 : (0, 1,−1, 0, 0, 0, 0)

A3 +A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A3 : (0, 0, 0, 0, 0, 1,−1)
A3 : (0, 0, 0, 0, 1,−1, 0)
A3 : (0, 0, 0, 1,−1, 0, 0)

D4

(1,−1,−1,−1, 0, 0, 0)
(0, 1, 0, 0,−1, 0, 0)
(0, 0, 1, 0, 0,−1, 0)
(0, 0, 0, 1, 0, 0,−1)

A2 + 2A1

1. A1 : (2,−1,−1,−1,−1,−1,−1)
2. A1 : (0, 0, 0, 0, 0, 1,−1)

A2 : (0, 0, 0, 1,−1, 0, 0)
A2 : (0, 0, 1,−1, 0, 0, 0)

A4 +A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A4 : (0, 0, 0, 0, 0, 1,−1)
A4 : (0, 0, 0, 0, 1,−1, 0)
A4 : (0, 0, 0, 1,−1, 0, 0)
A4 : (0, 0, 1,−1, 0, 0, 0)

D5

(1,−1,−1, 0, 0, 0,−1)
(0, 1,−1, 0, 0, 0, 0)
(0, 0, 1,−1, 0, 0, 0)
(0, 0, 0, 1,−1, 0, 0)
(0, 0, 0, 0, 1,−1, 0)

4A1

(2,−1,−1,−1,−1,−1,−1)
(0, 0, 0, 0, 0, 1,−1)
(0, 0, 0, 1,−1, 0, 0)
(0, 1,−1, 0, 0, 0, 0)

2A2 +A1

A1 : (2,−1,−1,−1,−1,−1,−1)
1. A2 : (0, 0, 0, 0, 0, 1,−1)
1. A2 : (0, 0, 0, 0, 1,−1, 0)
2. A2 : (0, 0, 1,−1, 0, 0, 0)
2. A2 : (0, 1,−1, 0, 0, 0, 0)
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A3 + 2A1

1. A1 : (2,−1,−1,−1,−1,−1,−1)
2. A1 : (0, 0, 0, 0, 0, 1,−1)

A3 : (0, 0, 0, 1,−1, 0, 0)
A3 : (0, 0, 1,−1, 0, 0, 0)
A3 : (0, 1,−1, 0, 0, 0, 0)

A5 +A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A5 : (0, 0, 0, 0, 0, 1,−1)
A5 : (0, 0, 0, 0, 1,−1, 0)
A5 : (0, 0, 0, 1,−1, 0, 0)
A5 : (0, 0, 1,−1, 0, 0, 0)
A5 : (0, 1,−1, 0, 0, 0, 0)

3A2

1. A2 : (1,−1,−1,−1, 0, 0, 0) =: v1
1. A2 : (1, 0, 0, 0,−1,−1,−1) =: v2
2. A2 : (0, 1,−1, 0, 0, 0, 0) =: v3
2. A2 : (0, 0, 1,−1, 0, 0, 0) =: v4
3. A2 : (0, 0, 0, 0, 1,−1, 0) =: v5
3. A2 : (0, 0, 0, 0, 0, 1,−1) =: v6

Table 1: Sublattices in Z7 generated by the A-, D-, and E-configurations

The assertions now follow from mechanical calculations.

In the cases where torsion-freeness is claimed, one may easily extend the basis of
the sublattice given to a basis of Z7. For example, consider the types An + A1.
Then, we have subsets of the lattice base consisting of 2e1 − e2 − · · · − e7, ei − ei+1

for i = 3, . . . , 6, e1, and e7.

In the cases 4A1, A3 + 2A1, and A5 + A1, the lattices may indeed be extended by
the vector (1, 0,−1, 0,−1, 0,−1) without changing the ranks. The lattices obtained
in this way are not further refinable within Z7.

In the case 3A2, the vector (v1 + v3 − v4)− (v2 + v5 − v6) = −3e3 + 3e6 is obviously
3-divisible. The refined lattice has discriminant 3 and is, therefore, not refinable
any further. �

6 Surjectivity

6.1. Corollary. –––– Let V be a geometrically irreducible cubic surface over Fq,
not being a cone. If

πV : MW(V ) −→ A0(V
reg)

is not surjective then V reg has a nontrivial finite covering which is trivial over every
Fq-rational point.

Proof. Under the assumption, the image of the canonical map V reg(Fq) → h0(V
reg)

generates a subgroup which is not dense. Hence, there are l > 1 and a surjective,
continuous homomorphism α : h0(V

reg) → Z/lZ sending the whole image of V reg(Fq)
to zero.

The same is true for the composition α◦ι′V reg : πt
1(V

reg) → Z/lZ. But this simply
means that the l-sheeted covering of V reg defined by α◦ι′V reg has exactly l Fq-rational
points above every x ∈ V reg(Fq). �
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6.2. Remark. –––– Suppose, πV were not surjective. Then, according to the
lemma, we have a nontrivial covering W such that #W (Fq) = l·#V reg(Fq). The Weil
conjectures, proven by P.Deligne, assure that this may be possible only for very
small q.

6.3. Example. –––– Let V be a cubic surface of type 4A1 over the finite field Fq.
Then, the canonical homomorphism

πV : MW(V ) −→ A0(V
reg)

is surjective for q > 13.

Proof. Assume the contrary. Then, according to Corollary 6.1, we have a twofold
covering p : V ′ → V ramified at the four singularities such that, over every smooth
Fq-rational point of V , there are two of V ′. Being a cubic surface, V has at least
q2 − 5q + 1 points. Hence, #V reg(Fq) ≥ q2 − 5q − 3.

On the other hand, χtop(V ) = 3 + 6 − 4 ·2 = 1, as V reg is P2 blown up in six
points with four lines deleted. Therefore, χtop(V

′) = 6. Indeed, V ′ consists of the
two sheets above V reg and four points of ramification.

We claim #V ′(Fq) ≤ q2+4q+1. For this, first observe that V ′ is simply connected
as, otherwise, V reg had more coverings than the twofold one. Let k be the number
of blow-ups necessary in order to desingularize V ′. Then, dimH2

ét(V ,Ql) = k + 4
and one has the naive estimate #V (Fq) ≤ q2 + (k + 4)q + 1. The claim follows.

Consequently, 2(q2 − 5q− 3) ≤ 2·#V reg(Fq) ≤ #(V ′)reg(Fq) ≤ q2 +4q+1, which
implies q ≤ 14, immediately. �

7 Some observations

7.1. Lemma. –––– Let V be a cubic surface over the finite field Fq. Suppose that,
in every equivalence class of V reg(Fq), there is a point not contained in any of the
lines lying on V .

i) Suppose #MW(V ) = 2. Assume further that not all points of V reg(Fq) are con-
tained in a plane. Then, for the two equivalence classes M0,M1 of V reg(Fq), we
have the relation #M1 −#M2 = ±q.

ii) Suppose #MW(V ) = 3. Then, the three equivalence classes M0,M1,M2 of
V reg(Fq) are of the same size.

Proof. i) Without restriction, assume that the classes are denoted in such a way
that a line not entirely contained in V always meets zero or two points from M1.

Then, fix a point x ∈ M1 not contained in a line lying on V . By assumption,
there is some x′ ∈ V reg(Fq) outside the plane tangent at x. The line g connecting x
and x′ meets V in two distinct points x, y ∈ M1 and in z ∈ M0.

13



Now, we intersect V with the pencil of planes containing g. We assert that each of
the curves Ct arising contains as many points fromM0 as fromM1. This immediately
implies the assertion. Indeed, equinumerosity occurs as soon as we count the points
x, y, and z multiply.

Let now Ct be one of the intersection curves. We first observe that x ∈ Ct is
a smooth point. In fact, we do not intersect V with the tangent plane at x since
that does not contain g. Ct may be reducible. However, x is, by assumption, not
contained in a line. Therefore, for every p ∈ Ct(Fq), there is a unique p′ ∈ Ct(Fq)
such that x, p, and p′ are collinear. As p and p′ are in different classes, the asser-
tion follows.

ii) Here, there are two cases.

First case. If x ∈ Mi, y ∈ Mj, and z ∈ Mk are the three points of intersection of a
line with V then i+ j + k ≡ 0 (mod 3).

We choose a point x ∈ M0 which is not contained in any of the lines on V . Then, for
every p ∈ M1, there is a unique p′ ∈ M2 such that x, p, and p′ are collinear. As this
assignment is invertible, one has #M1 = #M2. Analogously, a starting point x ∈ M1

yields the equality #M2 = #M0.

Second case. If x ∈ Mi, y ∈ Mj, and z ∈ Mk are the three points of intersection of
a line with V then i+ j + k ̸≡ 0 (mod 3).

We may assume without restriction that i + j + k ≡ 1 (mod 3). Choose a point
x ∈ M0 which is not contained in any of the lines on V . The tangent plane Tx

contains, besides x, only points from M1. Further, there are exactly q + 1 of them,
as, by the assumption of this case, there is no line tangent at x of order three.
On the other hand, outside Tx, the sets M0 and M1 are equinumerous since the lines
through x cause a bijection. Consequently, #M1 = #M0 + q.

Analogously, we obtain #M2 = #M1 + q and #M0 = #M2 + q when starting
with a point x ∈ M1 or x ∈ M2, respectively. Thus, the second case is contradictory.

�

7.2. Definition. –––– Let V be a cubic surface over the finite field Fq such
that #MW(V ) = 2. Then, V reg(Fq) decomposes into exactly two equivalence classes.
We will call the equivalence class negative that occurs an even number of times on
each line.

7.3. Lemma (Connection to the Hessian). —–
Let V , given by F (X0, . . . , X3) = 0, be a cubic surface over the finite field Fq of
characteristic ̸= 2. Suppose #MW(V ) = 2. Then, the following is true.

If p ∈ V reg(Fq) is a negative point not lying on a line contained in V then the Hessian

det
∂2F

∂Xi∂Xj

(p)
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is a non-square in Fq.

Proof. Consider the tangent plane Tp at p. The intersection Cp := V ∩ Tp is a
cubic curve with a singularity at p. Thus, in affine coordinates and locally near p,
the equation of Cp is of the form Q(x, y) +K(x, y) = 0 for a quadratic form Q and
a cubic form K.

By assumption, there is no line in Tp meeting p with multiplicity 3. This means,
in particular, that p ∈ Cp is a double point, not a triple point. Further, the two
tangent directions at p are not defined over Fq. In other words, the binary quadratic
form Q does not represent zero over Fq. This exactly means that minus the discrim-
inant of Q is a non-square in Fq. It is a direct calculation to show that (− discQ)
coincides, up to square factors, with the Hessian of F at p. �

8 Experiments

8.1. Description of the sample. –––– We let p run through the prime numbers
form 5 through 101. For each of the primes, we followed the classification of cubic
surfaces as described in 2.2 and 2.3. For each type, we selected ten examples by
help of a random number generator. For those types which clearly have no moduli,
we took only one example. We avoided the surfaces decomposing into three planes
over a proper extension of Fp as, for these, MW(V ) is known to degenerate. All in
all, we worked with 330 cubic surfaces per prime.

For each surface, we determined the partition of V (Fp) into equivalence classes.
For this, we run an implementation of Algorithm A.3 in magma.

8.2. The results. –––– The partition of the points found allowed us to determine
MW(V ) for every surface in the sample.

There is another observation, which is by far more astonishing. In each case,
according to the theory described, we know an abelian group, MW(V ) naturally
surjects to. It turned out that MW(V ) was equal that group with only one exception.

The exception occurred for p = 5. It was the cone over the elliptic curve given
by y2 = x3+2x. As this elliptic curve has only two F5-rational points, the construc-
tion of MW(V ) must degenerate.

8.3. Remark. –––– This effect clearly becomes much worse for p = 2 or 3. This is
one of the reasons why these primes were excluded from the experiments.

8.4. Summary. –––– Case I.i) Among the normal cubic surfaces having only
double points, we always found MW(V ) = 0 except for the cases 4A1, A3 + 2A1,
A5 + A1, and 3A2. In the first three of these cases, we have MW(V ) = Z/2Z.

Finally, in the case 3A2, we established that MW(V ) = Z/3Z for p ≡ 1 (mod 3) and
Frob acting on the singular points by an even permutation and for p ≡ 2 (mod 3)
and Frob acting by an odd permutation. Otherwise, MW(V ) = 0.
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Cases I.ii) and II.ii) Ignoring the exception mentioned, for the cones, MW(V ) was
always equal to the Mordell-Weil group of the underlying curve.

Case II.i) The cubic ruled surfaces always fulfilled MW(V ) = 0.

Two components. When V consisted of a non-degenerate quadric and a plane, we
always found that MW(V ) = Z, two points being equivalent if and only if they
belonged to the same component. When the quadric was a cone and the plane did
not meet the cusp, it turned out that MW(V ) = Z⊕Z/2Z, the surjection described
in Example 4.2 being bijective.

A cubic surface consisting of a cone and a plane through the cusp is a cone over
a reducible cubic curve. Here, MW(V ) was always isomorphic to the Mordell-Weil
group of the curve.

Three components. A cubic surface consisting of three planes meeting in a point is
the cone over a triangle. MW(V ) was always equal to the Mordell-Weil group of
the triangle.

Finally, three planes meeting in a line form a cone in may ways. Hence, two distinct
points are never equivalent to each other. We have MW(V ) ∼= (K+)2 ⊕ Z2.

8.5. Remark. –––– The case of a cubic surface consisting of three planes with a
line in common is the easiest from the theoretical point of view. For Algorithm A.3,
it is, however, the most complicated one. No simplification occurs as no equivalent
points may be found. The running time is dominated by steps iv) and v), which are
otherwise negligible. For p > 70, we excluded this case from the experiments.

8.6. Remark. –––– On a Quad-Core AMD Opteron Processor 2356, the total
CPU time was eight minutes for p = 5, a little less than an hour for p = 37, three
and a half hours for p = 71, and more than ten hours for p = 101.

A Algorithms

A.1. Algorithm (Equivalent points). —– i) Using a random number generator,
choose four distinct points x11, x12, x21, x22 ∈ V reg(Fq).

ii) Determine four points x13, x23, x31, x32 ∈ V reg(Fq) such that the relations
[x11, x12, x13], [x21, x22, x23], [x11, x21, x31], and [x12, x22, x32] are fulfilled. If this turns
out to be impossible as (x11, x12), (x21, x22), (x11, x21), or (x12, x22) are lying on a
line completely contained in V then output FAIL and terminate prematurely.

iii) Determine points x33 and x′
33 such that [x13, x23, x33] and [x31, x32, x

′
33]. If this

turns out to be impossible as (x13, x23) or (x31, x32) are lying on a line completely
contained in V then output FAIL and terminate prematurely.

iv) Output “x33 and x′
33 are equivalent.”
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A.2. Algorithm (A point being equivalent to a given x0 ∈ V reg(Fq)). —–

i) Execute Algorithm A.1 in order to find two mutually equivalent points x1 and x2.

ii) Determine a point x′
1 such that [x1, x0, x

′
1]. If this turns out to be impossible

as (x1, x0) are lying on a line completely contained in V then output FAIL and
terminate prematurely.

iii) Now, determine a point x′
0 such that [x′

1, x2, x
′
0]. If this turns out to be impossible

as (x′
1, x2) are lying on a line completely contained in V then output FAIL and

terminate prematurely.

iv) Output “x′
0 is equivalent to x0.”

A.3. Algorithm (Partition of the points). —–

i) Choose a natural number N .

ii) Decompose V reg(Fq) into a set M = {N1, . . . , Nm} = {{x1}, . . . , {xm}} of single-
tons.

iii) Execute Algorithm A.1, Nq2 times. When two equivalent points x1 ∈ Mk

and x2 ∈ Ml for k ̸= l are found, unite Mk with Ml and reduce m by 1.

iv) List the singletons still contained in M, i.e., the points that were never met in
step iii). For each element in the list obtained, execute Algorithm A.2 N times.
When two equivalent points x1 ∈ Mk and x2 ∈ Ml for k ̸= l are found, unite Mk

with Ml and reduce m by 1.

v) If sets of size less than q remain in M then choose a single element from each of
these sets. For each element in the list obtained, execute Algorithm A.2 N times.
When two equivalent points x1 ∈ Mk and x2 ∈ Ml for k ̸= l are found, unite Mk

with Ml and reduce m by 1.

vi) Output the partition of V reg(Fq) found.

A.4. Remarks. –––– i) Algorithm A.3 finds a partition which is possibly too fine
in comparison with the actual partition into equivalence classes.

ii) In practice, the value N = 7 seems to work perfectly, for p = 5 as well as for the
biggest primes for which such an algorithm seems reasonable.
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