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Abstract. The 27 lines on a smooth cubic surface over Q are acted upon
by a finite quotient of Gal(Q/Q). We construct explicit examples such that

the operation is via the index two subgroup of the maximal possible group.
This is the simple group of order 25 920. Our examples are given in pentahe-
dral normal form with rational coefficients. On the corresponding parameter

space, we search for rational points, discuss their asymptotic, and construct
an accumulating subvariety.

1. Introduction

1.1. Let S ⊂ P3 be a smooth cubic surface over an algebraically closed field.
It is well known that there are exactly 27 lines on S. The intersection matrix of
these lines is essentially the same for every smooth cubic surface. The group of all
permutations of the 27 lines respecting the intersection matrix is isomorphic to the
Weyl group W(E6).

For a smooth cubic surface S ⊂ P3 over Q, the 27 lines are, in general, not
defined over Q, but over an algebraic field extension L. If L is chosen to be the
minimal such field then the Galois group Gal(L/Q) is a subgroup of W(E6).

1.2. In a previous article [4], we described a strategy how to find explicit examples of
cubic surfaces over Q such that the Galois group Gal(L/Q) is exactly the index two
subgroup D1W(E6) ⊂ W(E6). This is the simple group of order 25 920.

Our approach was as follows. We considered cubic surfaces in pentahedral nor-
mal form with rational coefficients. For these, we studied the discriminant ∆.
We showed that Gal(L/Q) is contained in the index two subgroup if and only if
(−3)∆ is a perfect square in Q.

1.3. This leads to a point search on the double covering of P4 ramified at the
degree 32 discriminantal variety. A generalized Cremona transform reduces the
degree to eight.

In the present article, we will discuss the asymptotic of the Q-rational points of
bounded height on the resulting double covering and construct an accumulating sub-
variety. A final section is devoted to the problem to what extent this subvariety
is unique.
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2. The discriminant and the index two subgroup

The goal of this section is to fix notation and to recall some facts on cubic
surfaces and their discriminant.

2.1. One way to write down a cubic surface in explicit form is the so-called pen-
tahedral normal form. Denote by S(a0,...,a4) the cubic surface given in P4 by the
system of equations

a0X
3
0 + a1X

3
1 + a2X

3
2 + a3X

3
3 + a4X

3
4 = 0 ,

X0 + X1 + X2 + X3 + X4 = 0 .

Remark 2.2. A general cubic surface over an algebraically closed field may be
brought into pentahedral normal form over that field. Further, the coefficients are
unique up to permutation and scaling. This is a classical result, which was first
observed by J. J. Sylvester [9]. A proof is given in [2]. Cubic surfaces in pentahedral
normal form with rational coefficients are, however, special to a certain extent.

Definition 2.3. The expression

∆(S(a0,...,a4)) :=

a80 · . . . · a84 ·∏
i1,i2,i3,i4∈{0,1}

( 1
√
a0

+ (−1)i1
1

√
a1

+ (−1)i2
1

√
a2

+ (−1)i3
1

√
a3

+ (−1)i4
1

√
a4

)
is called the discriminant of the cubic surface S(a0,...,a4). Instead of ∆(S(a0,...,a4)),
we will usually write ∆(a0, . . . , a4).

Facts 2.4. a) ∆ ∈ Q[a0, . . . , a4] is a symmetric polynomial, homogeneous of de-
gree 32, and absolutely irreducible.

b) The cubic surface S(a0,...,a4) is non-singular if and only if ∆(a0, . . . , a4) ̸= 0.

Proof. [4, Lemma 2.5 and Corollary 2.10]. �
Theorem 2.5. Let a0, . . . , a4 ∈ Q such that ∆(a0, . . . , a4) ̸= 0. Then, the Galois
group operating on the 27 lines on S(a0,...,a4) is contained in the index two sub-
group D1W(E6) ⊂ W(E6) if and only if (−3)∆(a0, . . . , a4) ∈ Q is a perfect square.

�
Remark 2.6. This result was essentially known to H. Burkhardt [1, p. 341] in 1893.
Burkhardt gives credit to C. Jordan [6], who was the first to study the automor-
phism group of the configuration of the 27 lines on a cubic surface. In [4, Theo-
rem 2.12], we give a modern proof.

Proposition 2.7 (The two constraints). Suppose a0, . . . , a4 ∈ Z are such that
gcd(a0, . . . , a4) = 1 and (−3)∆(a0, . . . , a4) ̸= 0 is a perfect square in Q.

a) Then, a0, . . . , a4 all have the same sign.

b) Further, for every prime number p ≡ 2 (mod 3), all the p-adic valuations
νp(a0), . . . , νp(a4) are even.

Proof. This is shown in [4, Proposition 3.3]. �
Fact 2.8. There is a form ∆′ homogeneous of degree 8 such that

∆(a0, . . . , a4) = (a0 · . . . · a4)8 ·∆′(1/a0, . . . , 1/a4) .
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Proof. The octic ∆′ is given by the formula

∆′(x0, . . . , x4) :=∏
i1,i2,i3,i4∈{0,1}

(√
x0 + (−1)i1

√
x1 + (−1)i2

√
x2 + (−1)i3

√
x3 + (−1)i4

√
x4

)
.
�

Definition 2.9. We will call the birational map ι from P4 to itself, given by

(a0 : . . . : a4) 7→ (1/a0 : . . . : 1/a4) ,

a generalized Cremona transform. Note that the standard Cremona transform of P2

is (a0 : a1 : a2) 7→ (1/a0 : 1/a1 : 1/a2).

Lemma 2.10. a) ∆′ ∈ Q[x0, . . . , x4] is a symmetric polynomial, homogeneous of
degree eight and absolutely irreducible.

b) One has ∆′(0, x1, . . . , x4) = D2 for a symmetric, homogeneous quartic form
D ∈ Q[x1, . . . , x4].

Proof. See [4, Lemma 4.5]. �

Remarks 2.11. i) The ramification locus R := ”∆′ = 0” is a rational threefold.
The parametrization ι : P3 → R given by

ι : (t0 : . . . : t3) 7→
(
t20 : t21 : t22 : t23 : (t0 + . . .+ t3)

2
)

is a finite birational morphism.

ii) The equation D = 0 defines the Roman surface of J. Steiner.

3. Rational points on the discriminantal covering

3.1. A point search.

3.1.1. We are interested in smooth cubic surfaces S(a0,...,a4) such that the Galois
group operating on the 27 lines is exactly equal to D1W(E6).

By Theorem 2.5, this implies that (a0 : . . . : a4) ∈ P4(Q) gives rise to a
Q-rational point on the discriminantal covering. Further, according to Fact 2.4.b),
(a0 : . . . : a4) is supposed not to lie on the ramification locus.

Finally, if two of the coefficients were the same, say a0 = a1, then S(a0,...,a4) al-
lowed the tritangent plane x0+x1 = 0, which was defined overQ. Consequently, the
order of the group acting on the lines could be at most 1152.

Thus, on the double covering π : O → P4
Q, given by

w2 = (−3)∆′(x0, . . . , x4) ,

we searched for rational points such that

i) w ̸= 0,

ii) the five coordinates x0, . . . , x4 are pairwise different from each other.

3.1.2. Surprisingly many solutions have been found. It turned out that there are
4 900 907 essentially different solutions up to a height limit of 3000. Under symme-
try, they give rise to 120 solutions each. The smallest ones are (1 : 3 : 7 : 9 : 12),
(1 : 3 : 4 : 7 : 13), (1 : 3 : 7 : 12 : 13), and (3 : 7 : 9 : 12 : 13). For a few height
limits, we indicate the number of solutions up to that limit in the table below.
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Table 1. Numbers of solutions up to various height limits

limit # limit # limit # limit #
10 0 150 4 659 500 93 680 1250 741 701
25 20 200 10 039 600 140 393 1500 1 111 303
50 209 250 17 429 750 236 403 2000 2 088 752
80 892 300 25 778 800 276 409 2500 3 339 244
100 1 481 400 54 331 1000 460 330 3000 4 900 907

Remark 3.1.3. We used the constraints shown above to optimize the search-
ing algorithm. On one hand, it is sufficient to search for solutions such that
0 < x0 < x1 < x2 < x3 < x4. On the other hand, only 751 of the positive in-
tegers up to 3000 fulfill the condition that all prime divisors p ≡ 2 (mod 3) have
an even exponent.

3.2. The conjecture of Manin.

3.2.1. Let X be a non-singular (weak) Fano variety over Q. Assume that
X(Q) ̸= ∅. Then, the conjecture of Manin [5] makes the following prediction
for the number of Q-rational points on X of bounded anticanonical height.

There exists some τ > 0 such that, for every Zariski open set X◦ ⊆ X that is
sufficiently small but non-empty,

#{x ∈ X◦(Q) | h−K(x) < B} ∼ τB logrB

for r := rkPic(X) − 1 and B ≫ 0. There is a conjectural description [7] for the
constant τ , which we will not use here.

Unfortunately, O is singular. In this situation, one has to consider a resolution Õ
of singularities and compare heights.

Theorem 3.2.2. i) The singular locus of O is reducible into ten components.
The component S(x0,x1) is given by

x0 − x1 = 0 , x2
2 + x2

3 + x2
4 − 2x2x3 − 2x2x4 − 2x3x4 = 0 .

The others are obtained by permuting coordinates.

ii) Let pr: Õ → O be the proper and birational morphism obtained by blowing up
the ten singular components.

a) Then, Õ is non-singular, i.e., pr is a resolution of singularities.

b) Further, rkPic(Õ) = 11.

c) The canonical divisor of Õ is K = pr∗KO for KO = −π∗H and H a hyper-
plane section of P4.

Proof. This is shown in [4, Proposition 5.2 and Theorem 5.3]. �

Remark 3.2.3 (The prediction—Manin’s conjecture for the double covering O).
Theorem 3.2.2.ii.c) implies

h−K(y) = h−pr∗KO
(y) = h−KO

(pr(y)) = hnaive,P4(π(pr(y)))

for every y ∈ Õ(Q). Manin’s conjecture therefore predicts that, for every sufficiently
small, non-empty, Zariski open subset O◦ ⊆ O,

#{x ∈ O◦(Q) | hnaive,P4(π(x)) < B} ∼ τB log10B .
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The reader might want to compare Table 2 below, where the actual numbers are
given for a reasonably chosen Zariski open subset.

Remark 3.2.4. The proof given in [4] actually shows that Pic(Õ) ∼= Z11 is a trivial
Gal(Q/Q)-module. This implies that there is no Brauer-Manin obstruction present
on Õ.

3.3. Infinitely many solutions.

Proposition 3.3.1. There are infinitely many Q-rational points on O. In fact,
over the quadric surface Q in P4, given by l = q = 0 for

l := x0 + x1 + x2 − 3x3 − 3x4 ,

q := x2
0 + x2

1 + x2
2 + 9x2

3 − x0x1 − x0x2 − 3x0x3 − x1x2 − 3x1x3 − 3x2x3 ,

the double covering π : O → P4
Q splits. In particular, there are one or two

Q-rational points above each Q-rational point of Q.

Proof. Modulo IQ, one has actually

(3.1) (−3)∆′(x0, . . . , x4) = [ 643 (x0 − x1)(x0 − x2)(x1 − x2)(x3 − x4)]
2 . �

Remarks 3.3.2. i) The difference of the two octic forms in equation (3.1) consists
of 495 monomials. To verify the assertion, one may first use the linear equation to
eliminate x4 and then check that the remaining octic form in x0, . . . , x3 is divisible
by the quadratic form q.

Actually, a simple Gröbner base calculation reveals the fact that equation (3.1) is
true even modulo I 2

Q.

ii) There is another proof for Lemma 3.3.1, which is somehow easier from the com-
putational point of view but less canonical. In fact, Q is parametrized by the
birational map ι : P2 //__ Q,

(t0 : t1 : t2) 7→(
(t20 + t21 + t22 − t0t1 − t0t2 − t1t2) : (t

2
0 + t21 + t22 − t0t1 + 2t0t2 − t1t2) :

: (t20 + t21 + t22 − t0t1 − t0t2 + 2t1t2) : t
2
2 : (t20 + t21 − t0t1)

)
,

being defined over Q. The locus where ι is undefined does not contain any
Q-rational point since the quadratic form t20 + t21 − t0t1 does not represent zero
over Q. A direct calculation shows

(−3)∆′(ι(t0, t1, t2)) = [576t0t1(t0 − t1)t
3
2(t

2
0 + t21 − t0t1 − t22)]

2 .

Here, the factor t0 corresponds to (x0 − x1), t1 to (x0 − x2), (t0 − t1) to (x1 − x2),
and (t20+ t21− t0t1− t22) to (x3−x4). The factor t

3
2 is somehow artificial. For t2 = 0,

the parametrization is constant to (1 : 1 : 1 : 0 : 1).

The parametrization ι is actually constructed in a very naive manner. Start with
the point (1 : 1 : 1 : 0 : 1) and determine for which value of τ ̸= 0 the point

(1 : (1 + τt0) : (1 + τt1) : (τt2/3) : (1 + τ(t0 + t1 − t2)/3))

is contained in the quadric surface Q. Many other parametrizations would serve
the same purpose.

Remarks 3.3.3. i) The surface Q is obviously symmetric under permutations
of {x0, x1, x2}. It is symmetric under switch of x3 and x4, too. All in all, there are
ten mutually different copies of Q.
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ii) Q is a smooth quadric surface. The two pencils of lines on Q are defined
over Q(

√
−3) and conjugate to each other.

iii) This implies that Pic(Q) = Z. The Picard group has two generators as soon as
the ground field contains Q(

√
−3).

For quadrics such as Q, Manin’s conjecture is proven. Here, for the canonical
divisor, one has KQ = −2H for H the hyperplane section on Q. Hence, the square
of the naive height is an anticanonical height. The number of points of naive
height ≤B is therefore asymptotically τQB

2 for some constant τQ.

This means that π−1(Q) ⊂ O is an example of a so-called accumulating subvariety.
The growth of the number of rational points on π−1(Q) is faster than predicted for
a sufficiently small Zariski open subset of O.

Remark 3.3.4. As the height limit of 3000 is too low, most of the rational points
found are actually not contained in π−1(Q) or one of its copies. Cf. Table 2 below
for the numbers of points on O with those over the copies of Q excluded.

Table 2. Numbers of solutions, accumulating subvarieties excluded

limit # limit # limit # limit #
10 0 150 4 101 500 86 897 1250 699 160
25 12 200 8 989 600 130 723 1500 1 049 502
50 156 250 15 760 750 221 187 2000 1 977 863
80 736 300 23 496 800 258 899 2500 3 166 974
100 1 248 400 50 070 1000 432 737 3000 4 651 857

To visualize the growths of the numbers of solutions, we include the follow-
ing graphs. Observe that the vertical scale is logarithmic.

0 1000 2000 3000

10

1000

10^5

10^7

Figure 1. Numbers of solutions. The lower graph indicates the
accumulating subvarieties, the upper graph their complement.

Remarks 3.3.5. i) The smallest Q-rational points on Q with no two coordinates
equal are (3 : 9 : 12 : 1 : 7) and (1 : 7 : 13 : 3 : 4). [4, Algorithm 3.7] shows that,
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indeed, these two points yield cubic surfaces such that the 27 lines are acted upon
by the simple group D1W(E6). According to B. L. van der Waerden, this is the
generic behaviour on Q.

ii) When testing the cubic surface corresponding to (3 : 9 : 12 : 1 : 7), [4, Algo-
rithm 3.7] works with the primes 19 and 73. Therefore, we have an explicit infinite
set of Q-rational points that lead to the group D1W(E6). It is given by those points
on Q reducing to (3 : 9 : 12 : 1 : 7) modulo both 19 and 73.

3.3.6. Some of the surprising properties of Q are described by the following
two facts.

Fact 3.3.7. Q meets the octic R only within its singular locus. Actually,

Q ∩R ⊂ S(x0,x1) ∪ S(x0,x2) ∪ S(x1,x2) ∪ S(x3,x4) .

Proof. Suppose (x0 : . . . : x4) ∈ Q ∩R. Then, formula (3.1) implies that x0 = x1,
x0 = x2, x1 = x1, or x3 = x4. The equation x0 = x1 yields x0 = (−x2+3x3+3x4)/2.
Substituting this into the quadratic relation q(x0, . . . , x4) = 0 from the definition
of Q shows

x2
2 + x2

3 + x2
4 − 2x2x3 − 2x2x4 − 2x3x4 = 0 .

For the relations x0 = x2, x1 = x2, and x3 = x4, the situation is analogous. �
Fact 3.3.8. Q is tangent to all five coordinate hyperplanes.

The points of tangency are (0 : 3 : 3 : 1 : 1), (3 : 0 : 3 : 1 : 1), (3 : 3 : 0 : 1 : 1),
(1 : 1 : 1 : 0 : 1), and (1 : 1 : 1 : 1 : 0). �
3.3.9. The quadric surface Q determines the linear form l uniquely. On the other
hand, the quadratic form q is unique only up to a multiple of l. One might have
the idea to fix a canonical representative q by the requirement that the quadric
threefold, given by q = 0, contain some of the singular components entirely. This is
possible to a certain extent.

Fact. a) There is no quadric threefold in P4 containing the singular components
S(x0,x1) and S(x3,x4).

b) There is, however, a one-dimensional family of quadric threefolds in P4 con-
taining S(x0,x1) and S(x0,x2). It is given by ft = 0 for a parameter t and

ft := −tx2
0 + x2

1 + x2
2 + x2

3 + x2
4 −

− (1− t)x0x1 − (1− t)x0x2 + 2x0x3 + 2x0x4 +

+ (1− t)x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x2x4 − 2x3x4 = 0 .

Proof. The statement that a quadric threefold contains S(x0,x1) is equivalent to
saying it is given by an equation of the form q = 0 for

q := a(x2
2 + x2

3 + x2
4 − 2x2x3 − 2x2x4 − 2x3x4) + (a0x0 + . . .+ a4x4) · (x0 − x1) .

The assumptions of a) yield a linear system of equations that is only trivially solv-
able. On the other hand, the system of equations for b) leads to a two-dimensional
vector space. �
Remark 3.3.10. This family is attached to the rational map f : P4 //__ P1,

(x0 : . . . : x4) 7→ (x2
1 + x2

2 + x2
3 + x2

4 − x0x1 − x0x2 + 2x0x3 + 2x0x4 +

+ x1x2 − 2x1x3 − 2x1x4 − 2x2x3 − 2x2x4 − 2x3x4)

: (x2
0 − x0x1 − x0x2 + x1x2) .
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The map f enjoys the following remarkable properties.

i) Its locus of indeterminacy is equal to S(x0,x1) ∪ S(x0,x2).

ii) The fiber at t = −1 is a singular quadric of rank three. The fiber at infinity is
reducible into the two hyperplanes x0 = x1 and x0 = x2. All other special fibers
are smooth.

iii) The special fiber at t = 1
3 may also be written as

4q + (−7x0 + 5x1 + 5x2 + 9x3 − 3x4)l = 0 .

In particular, the accumulating subvariety Q is contained within this fiber.

iv) The fiber at t = 1
3 contains more of the rational points known than any other,

even after deleting the accumulating subvarieties. The singular fiber at t = −1
follows next.

3.4. A statistical method.

3.4.1. We detected the quadric surface Q by a statistical investigation of the ra-
tional points found on O.

The theoretical background for this is a supplement to Manin’s conjecture.
In fact, it is expected that the rational points on Õ that lie outside the accu-
mulating subvarieties are equidistributed with respect to a certain measure, the
so-called Tamagawa measure. This includes that, for p a prime of good reduc-
tion, every Fp-rational point on Õp is equally likely to occur as the reduction of a
Q-rational point.

Thus, in order to detect an accumulating subvarietiy, one might look at the ratio-
nal points found and search for irregularities in the distribution of their reductions
modulo p.

3.4.2. More precisely, our method was as follows. For a fixed good prime p, we
counted how many rational points reduced to each of the points modulo p. This sim-
ply meant to group the known rational points into residue classes. Thereby, we
ignored the points reducing to the ramification locus.

Example 3.4.3. For p = 53, most residue classes contained less than 500 points.
However, there were exceptional residue classes containing between 1150 and
1250 points. Finally, some residue classes were even more exceptional as they con-
tained more than 2000 points. We illustrate the distribution in the histogram below.

1000 2000

100000

1000

10

#points in a residue class

#residue classes

Figure 2. Numbers of rational points in the residue classes
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When working with a different prime that is approximately of the same size, one
ends up with a similar picture.

3.4.4. The Q-rational points on Õ are clearly not equidistributed modulo primes
such as p = 53. Assuming that this phenomenon is explained by an accumu-
lating subvariety, one would expect this subvariety to reduce only to exceptional
residue classes. We therefore filtered our data by extracting the rational points that
reduce to exceptional residue classes modulo several primes.

This leads to a list of points that are supposed to lie on one or more accumu-
lating subvarieties. To determine a single one of these, we selected an exceptional
residue class modulo 53. Among the coordinates of the corresponding points, we
searched for linear and quadratic dependencies. The equations for Q, given above,
arised in this way.

Remark 3.4.5. Having removed the points lying above Q and its copies, there is
no further statistical abnormality to be seen from our data.

Nevertheless, it would be exaggerating to say this might suggest that all accu-
mulating subvarieties have been found. The problem is that an accumulating sub-
variety could have, say, quadratic growth but a very small constant factor. In such
a case, it can not be detected by our statistical method.

4. Accumulating subvarieties

4.1. The goal of this section is to prove that there are no other accumulating
subvarieties that are, in a certain sense, similar to Q. Similarity shall include to be
a non-degenerate quadric surface, over which the double covering π : O → P4

Q splits.
In view of the first constraint established above, this implies that the real points

on such a quadric surface S are contained in the 16-ant

{ (x0 : . . . : x4) ∈ P4(R) | x0, . . . , x4 ≥ 0 or x0, . . . , x4 ≤ 0 } .

Further, there are strong restrictions for the behaviour at the boundary.
By Lemma 2.10.b), we know that ∆′ is a perfect square on the coordinate hy-
perplane H0, given by x0 = 0. On the other hand, we require (−3)∆′ to be a
perfect square on S.

A way to realize both of these, seemingly contradictory, requirements is to
make S ∩H0 a curve of degree two, on which (−3) is the square of a rational func-
tion. The only such examples are two lines over Q(

√
−3) that are conjugate to

each other. This implies that S must necessarily be tangent to H0 and the point
of tangency must be a Q-rational point on the ramification locus R.

Theorem 4.2. Suppose S ⊂ P4
Q is a smooth quadric surface such that the double

covering π : O → P4
Q splits over S. Assume further that S is tangent to the five

coordinate hyperplanes H0, . . . , H4 and that, for each i, the point of tangency is
actually contained in one of the three lines on Hi ∩R.

Then, S is equal to Q or one of its copies under permutation of coordinates.

Remark 4.3. On the Steiner surface H0 ∩ R, there are two types of Q-ratio-
nal points. There are the three lines given by (0 : r : r : s : s) and permutations
of the four coordinates to the right. The other Q-rational points are of the form
(0 : t21 : . . . : t24) for t1, . . . , t4 ∈ Q such that t1 + . . .+ t4 = 0.
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Lemma 4.4. Assume S is as in Theorem 4.2. Further, write

P (0) := (0 : x
(0)
1 : x

(0)
2 : x

(0)
3 : x

(0)
4 )

for the point of tangency of S with the coordinate hyperplane H0.

Then, x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 ̸= 0.

Proof. Assume, to the contrary, that x
(0)
1 = 0. The assumption on the type of the

points of tangency made in Theorem 4.2 implies that one more coordinate must van-
ish. Without restriction, we may assume P (0) = (0 : 0 : 0 : 1 : 1). The tangent
plane at P (0) is given by x0 = 0 and another linear relation C1x1 + . . .+C4x4 = 0.
Whatever the coefficients are, there is a tangent vector (v0, . . . , v4) such that v1 < 0
or v2 < 0. The implicit function theorem yields a real point (x0 : . . . : x3 : 1) ∈ S(R)
satisfying x1 < 0 or x2 < 0. This is a contradiction. �
Lemma 4.5. Assume that the quadric surface S is tangent to the coordinate hyper-
planes H0, H1, and H2 in (0 : x

(0)
1 : x

(0)
2 : x

(0)
3 : x

(0)
4 ), (x

(1)
0 : 0 : x

(1)
2 : x

(1)
3 : x

(1)
4 ),

and (x
(2)
0 : x

(2)
1 : 0 : x

(2)
3 : x

(2)
4 ), respectively.

Then,

x
(0)
1 x

(1)
2 x

(2)
0 − x

(0)
2 x

(1)
0 x

(2)
1 = 0

or

x
(0)
1 x

(1)
2 x

(2)
0 + x

(0)
2 x

(1)
0 x

(2)
1 = 0 ,

x
(0)
1 x

(1)
0 x

(2)
3 − x

(0)
1 x

(2)
0 x

(1)
3 − x

(1)
0 x

(2)
1 x

(0)
3 = 0 ,

x
(0)
1 x

(1)
2 x

(2)
3 + x

(0)
2 x

(2)
1 x

(1)
3 − x

(1)
2 x

(2)
1 x

(0)
3 = 0 ,

x
(0)
2 x

(1)
0 x

(2)
3 − x

(0)
2 x

(2)
0 x

(1)
3 + x

(1)
2 x

(2)
0 x

(0)
3 = 0 .

Proof. The linear equation by which S is defined may be written

(4.1) L0x0 + L1x1 + L2x2 + L3x3 + L4x4 = 0 .

We distinguish three cases.

First case. L4 ̸= 0.

Then, we may use the linear equation (4.1) to eliminate x4 from the quadratic equa-
tion. Write

Q0x
2
0 +Q1x

2
1 +Q2x

2
2 +Q3x

2
3 +

+Q4x0x1 +Q5x0x2 +Q6x0x3 +Q7x1x2 +Q8x1x3 +Q9x2x3 = 0 .

Tangency of H0 at (0 : x
(0)
1 : x

(0)
2 : x

(0)
3 : x

(0)
4 ) means that the two linear forms

(Q4x
(0)
1 +Q5x

(0)
2 +Q6x

(0)
3 )x0 + (2Q1x

(0)
1 +Q7x

(0)
2 +Q8x

(0)
3 )x1 +

+ (2Q2x
(0)
2 +Q7x

(0)
1 +Q9x

(0)
3 )x2 + (2Q3x

(0)
3 +Q8x

(0)
1 +Q9x

(0)
2 )x3

and

L0x0 + L1x1 + L2x2 + L3x3 + x4

together generate x0. This enforces the linear relations

2x
(0)
1 Q1 + x

(0)
2 Q7 + x

(0)
3 Q8 = 0 ,

2x
(0)
2 Q2 + x

(0)
1 Q7 + x

(0)
3 Q9 = 0 ,(4.2)

2x
(0)
3 Q3 + x

(0)
1 Q8 + x

(0)
1 Q9 = 0 .
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The two other points of tangency yield relations that are completely analogous.
Altogether, we find the homogeneous linear system of equations associated with
the 9× 10-matrix

0 2x
(0)
1 0 0 0 0 0 x

(0)
2 x

(0)
3 0

0 0 2x
(0)
2 0 0 0 0 x

(0)
1 0 x

(0)
3

0 0 0 2x
(0)
3 0 0 0 0 x

(0)
1 x

(0)
2

2x
(1)
0 0 0 0 0 x

(1)
2 x

(1)
3 0 0 0

0 0 2x
(1)
2 0 0 x

(1)
0 0 0 0 x

(1)
3

0 0 0 2x
(1)
3 0 0 x

(1)
0 0 0 x

(1)
2

2x
(2)
0 0 0 0 x

(2)
1 0 x

(2)
3 0 0 0

0 2x
(2)
1 0 0 x

(2)
0 0 0 0 x

(2)
3 0

0 0 0 2x
(2)
3 0 0 x

(2)
0 0 x

(2)
1 0


.

If this matrix is of rank 9 then the quadratic equation defining S is, up to scal-
ing, determined uniquely. In fact, this case is degenerate. There is a linear form
in x0, . . . , x3 only, vanishing on the three points given. The unique solution of the
system corresponds to the square of this linear form.

Consequently, the rank is at most 8. The ten 9× 9-minors must all vanish.
These minors are polynomials in x

(0)
0 , . . . , x

(2)
3 having

(x
(0)
1 x

(1)
2 x

(2)
0 − x

(0)
2 x

(1)
0 x

(2)
1 )

as their greatest common divisor. After division by this, we are left with ten sextics.
It turns out that they are precisely the squares and pairwise products of

the four cubics x
(0)
1 x

(1)
2 x

(2)
0 + x

(0)
2 x

(1)
0 x

(2)
1 , x

(0)
1 x

(1)
0 x

(2)
3 − x

(0)
1 x

(2)
0 x

(1)
3 − x

(1)
0 x

(2)
1 x

(0)
3 ,

x
(0)
1 x

(1)
2 x

(2)
3 +x

(0)
2 x

(2)
1 x

(1)
3 −x

(1)
2 x

(2)
1 x

(0)
3 , and x

(0)
2 x

(1)
0 x

(2)
3 − x

(0)
2 x

(2)
0 x

(1)
3 + x

(1)
2 x

(2)
0 x

(0)
3 .

Second case. L4 = 0 and L3 ̸= 0.

As the roles of the third and fourth coordinates may be interchanged, we have, as in
the first case, x

(0)
1 x

(1)
2 x

(2)
0 − x

(0)
2 x

(1)
0 x

(2)
1 = 0 or

x
(0)
1 x

(1)
2 x

(2)
0 + x

(0)
2 x

(1)
0 x

(2)
1 = 0 .

Suppose that the second variant is present. Then, the linear equation (4.1)
implies that the vector (x

(0)
3 , x

(1)
3 , x

(2)
3 )t is linearly dependent of (0, x

(1)
0 , x

(2)
0 )t,

(x
(0)
1 , 0, x

(2)
1 )t, and (x

(0)
2 , x

(1)
2 , 0)t. For these vectors instead of (x

(0)
3 , x

(1)
3 , x

(2)
3 )t,

the three more relations asserted are clearly true.

Third case. L3 = L4 = 0.

In this situation, we may write the three points of tangency in the form
(0 : L2 : (−L1) :x

(0)
3 :x

(0)
4 ), (L2 : 0 : (−L0) :x

(1)
3 :x

(1)
4 ), and (L1 : (−L0) : 0 :x

(2)
3 :x

(2)
4 ).

It turns out that the relation

x
(0)
1 x

(1)
2 x

(2)
0 + x

(0)
2 x

(1)
0 x

(2)
1 = 0

is automatically fulfilled. Further, L0, L1, L2 ̸= 0. Each of the three equations
still to be proven reduces to L0x

(0)
3 − L1x

(1)
3 + L2x

(2)
3 = 0.

We may use the linear equation (4.1) to eliminate x0 from the quadratic equation.
Write

Q0x
2
1 +Q1x

2
2 +Q2x

2
3 +Q3x

2
4 +

+Q4x1x2 +Q5x1x3 +Q6x1x4 +Q7x2x3 +Q8x2x4 +Q9x3x4 = 0 .
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Tangency of H0 at (0 : L2 : (−L1) : x
(0)
3 : x

(0)
4 ) yields the linear relations

L2(2L2Q0 − L1Q4 + x
(0)
3 Q5 + x

(0)
4 Q6)−

− L1(−2L1Q1 + L2Q4 + x
(0)
3 Q7 + x

(0)
4 Q8) = 0 ,

2x
(0)
3 Q2 + x

(0)
1 Q5 + x

(0)
2 Q7 + x

(0)
4 Q9 = 0 ,

2x
(0)
4 Q3 + x

(0)
1 Q6 + x

(0)
2 Q8 + x

(0)
3 Q9 = 0 .

Tangency of H1 and H2 leads to linear relations completely analogous to those
given in (4.2). Altogether, we find the homogeneous linear system of equations
associated with the 9× 10-matrix

2L2
2 2L2

1 0 0 −2L1L2 x
(0)
3 L2 x

(0)
4 L2 −x

(0)
3 L1 −x

(0)
4 L1 0

0 0 2x
(0)
3 0 0 x

(0)
1 0 x

(0)
2 0 x

(0)
4

0 0 0 2x
(0)
4 0 0 x

(0)
1 0 x

(0)
2 x

(0)
3

0 −2L0 0 0 0 0 0 x
(1)
3 x

(1)
4 0

0 0 2x
(1)
3 0 0 0 0 −L0 0 x

(1)
4

0 0 0 2x
(1)
4 0 0 0 0 −L0 x

(1)
3

−2L0 0 0 0 0 x
(2)
3 x

(2)
4 0 0 0

0 0 2x
(2)
3 0 0 −L0 0 0 0 x

(2)
4

0 0 0 2x
(2)
4 0 0 −L0 0 0 x

(2)
3


.

If this matrix is of rank 9 then, again, we have a degenerate case. There is a linear
form in x1, . . . , x4 only, vanishing on the three points given. The unique solution
of the system corresponds to the square of this linear form.

Consequently, all the ten 9× 9-minors must vanish. Actually, when deleting the
fourth column, the corresponding minor is

−16L4
0L1L2(L0x

(0)
3 − L1x

(1)
3 + L2x

(2)
3 )2 . �

Remark 4.6 (Interpretation). The relations established in Lemma 4.5 may be
interpreted as follows. The coordinates of three points of tangency form a 3 × 5-
matrix  0 x

(0)
1 x

(0)
2 x

(0)
3 x

(0)
4

x
(1)
0 0 x

(1)
2 x

(1)
3 x

(1)
4

x
(2)
0 x

(2)
1 0 x

(2)
3 x

(2)
4

 .

We may scale such that x
(1)
0 = x

(0)
1 and x

(2)
0 = x

(0)
2 .

i) Then, the leftmost 3×3-block is either symmetric, i.e., x
(2)
1 = x

(1)
2 , or symmetric

up to sign. Then, x
(2)
1 = −x

(1)
2 .

ii) In the latter case, the column vector (x
(0)
3 , x

(1)
3 , x

(2)
3 )t is a linear combination of

the column vectors (0, x
(1)
0 , x

(2)
0 )t, (x

(0)
1 , 0, x

(2)
1 )t, and (x

(0)
2 , x

(1)
2 , 0)t.

Remarks 4.7. i) In the non-symmetric variant, (x
(0)
4 , x

(1)
4 , x

(2)
4 )t is a linear combi-

nation of the column vectors (0, x
(1)
0 , x

(2)
0 )t, (x

(0)
1 , 0, x

(2)
1 )t, and (x

(0)
2 , x

(1)
2 , 0)t, too.

The roles of the third and fourth coordinates may be interchanged.

ii) Actually, in this variant, linear dependence of the three vectors (0, x
(1)
0 , x

(2)
0 )t,

(x
(0)
1 , 0, x

(2)
1 )t, and (x

(0)
2 , x

(1)
2 , 0)t is a non-trivial condition. Observe, they do not

form a base of R3. In the symmetric variant, an analogous condition would
be empty.
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Remark 4.8. For each triple consisting of points of tangency of S with a coordi-
nate hyperplane, relations of the same kind must be fulfilled.

Proof of Theorem 4.2. For each of the five points of tangency, we have at least
two pairs {i, j} ⊂ {0, . . . , 4} such that xi = xj . There are two cases.

First case. Each of the ten pairs of {0, . . . , 4} appears exactly once.

Without restriction, the point of tangency to H0 is (0 : 1 : 1 : t : t). Again without
loss of generality, (1 : 0 : s : 1 : s) is the point of tangency to H1. The structure of
the remaining three points of tangency is then fixed. The five points form a matrix
as follows, 

0 1 1 t t
1 0 s 1 s
1 r 0 r 1
t q t 0 q
t t p p 0

 .

Lemma 4.5 implies that r = s. Indeed, r = −s would enforce that both (t, 1,−s)t

and (t, s, 1)t are linearly dependent of (0, 1, 1)t, (1, 0,−s)t, and (1, s, 0)t. This is a
contradiction, since (0, s− 1, s+ 1)t is not in the span of these three.

For the same reason, p = q. Further, we have q = ±1 and s = ±t such that we
end up with four one-parameter families,

0 1 1 t t
1 0 t 1 t
1 t 0 t 1
t 1 t 0 1
t t 1 1 0

,


0 1 1 t t
1 0−t 1−t
1−t 0−t 1
t 1 t 0 1
t t 1 1 0

,


0 1 1 t t
1 0 t 1 t
1 t 0 t 1
t−1 t 0−1
t t−1−1 0

,


0 1 1 t t
1 0 −t 1 −t
1 −t 0 −t 1
t−1 t 0−1
t t−1−1 0

.

The linear equation of S requires that the matrices considered are of rank at most 4.
However, in the second and third families, the determinants (t2− t− 1)(t3+2t− 1)
and (t2 + t− 1)(t3 − 2t2 − 1) have no rational zeroes. For the fourth family, we find
(t + 1)(t2 − t + 1)(t2 + 3t + 1) for the determinant. But, for t = −1, we had four
equal coordinates in several of the points of tangency. Finally, for the first family,
the determinant is (t+ 1)(t2 − 3t+ 1)2 and the value t = −1 could be possible.

The corresponding data lead to systems of equations that are uniquely solvable
up to scaling. The resulting quadric surface is given by l = q = 0 for

l := x0 + x1 + x2 + x3 + x4 ,

q := x2
0 + x2

1 − x2
2 − x2

3 + 3x0x1 + x0x2 − x0x3 − x1x2 + x1x3 − 3x2x3 .

This surface is indeed smooth and tangent to all five coordinate hyperplanes but
the double covering π : O → P4

Q does not split over it.

Second case. One of the ten pairs of {0, . . . , 4} appears at least twice.

Without loss of generality, the points of tangency to H0 and H1, respectively,
are (0 : 1 : 1 : t : t) and (1 : 0 : 1 : s : s). If the point of tangency to H2

were (1 : (−1) : 0 : 1 : (−1)) then, by Lemma 4.5, both (t, s, 1)t and (t, s,−1)t had to
be linear combinations of (0, 1, 1)t, (1, 0,−1)t, and (1, 1, 0)t. This is a contradiction,
since (0, 0, 2)t is not in the span of these three.



14 ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

Consequently, the five points of tangency form a matrix as follows,
0 1 1 t t
1 0 1 s s
1 1 0 r r
t ±s ±r 0 q
t ±s ±r ±q 0

 .

Assume that one of the “r” or “s” actually carries a minus sign. Without restric-
tion, there is “−r” in the fourth line. Then, Lemma 4.5 yields the contradiction
that (t, r, q)t must be a linear combination of (0, 1, t)t, (1, 0,−r)t, and (t, r, 0)t.
Further, if there were a “−q” in the fifth line then (1, r, r)t had to be a linear
combination of (0, t, t)t, (t, 0,−q)t, and (t, q, 0)t, which is not the case, either.

Finally, in the fourth line, we must have two pairs of equal entries. Without re-
striction, suppose that q = t and r = s. All in all, we find a matrix of the form

0 1 1 t t
1 0 1 s s
1 1 0 s s
t s s 0 t
t s s t 0

 .

For the determinant, one calculates 2t2(4s− t−1). We may conclude that s = t+1
4 .

For every t ̸= 0, these data lead to systems of equations that are uniquely solvable
up to scaling. The result is the one-parameter family St of quadric surfaces given
by lt = qt = 0 for

lt := (t− 1)x0 − 2tx1 − 2tx2 + 2x3 + 2x4 ,

qt := (t+ 1)2x2
0 + 4(t+ 1)tx2

1 + 4(t+ 1)tx2
2 + 16x2

3 −
− 4(t+ 1)tx0x1 − 4(t+ 1)tx0x2 + 8(t− 1)x0x3 +

+ 8(t− 1)tx1x2 − 16tx1x3 − 16tx2x3 .

For each t ̸= 0, the quadric surface St is indeed smooth and tangent to all five
coordinate hyperplanes.

In order to check for which values of t the double covering π : O → P4
Q splits

over St, we first restrict to the intersection Ct := St ∩ “x1 = x0+x2”. This is a
smooth conic for each t ̸= 0. A parametrization ιt : P1 → Ct is given by

(u : v) 7→ (16tu2 : ((t2 + 18t+ 1)u2 + 8(t+ 1)tuv + 16t2v2) :

: ((t2+2t+1)u2 + 8(t+1)tuv + 16t2v2) : ((t2+2t+1)tu2 + 8(t−1)t2uv + 16t3v2) :

: ((t2 + 10t+ 9)tu2 + 8(t+ 3)t2uv + 16t3v2)) .

The binary form (−3)∆′(ιt(u, v)) of degree 16 factors into u6((t+ 1)u+ 4tv)4 and
a form of degree six that is irreducible for general t. We ask for the values of t,
for which this sextic is a perfect square. According to magma, its discriminant is
equal to

C(t− 3)(t− 1)6(3t− 1)6t83(t2 + 8t− 1)4(19t3 − 82t2 + 59t− 16)2

for C a 103-digit integer. Over S1, the double covering π : O → P4
Q does not split.

The cases t = 3 and t = 1
3 both yield the accumulating subvariety Q studied in

subsection 3.3. They are equivalent to each other under the permutation (0)(13)(24)
of coordinates. �
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