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Abstract

We present a method to compute the geometric Picard rank of aK3 surface
over Q. Contrary to a widely held belief, we show that it is possible to verify
Picard rank 1 using reduction at a single prime.

1 Introduction

1.1. –––– For complex, projective K3 surfaces, the Picard group is a highly inter-
esting invariant. In general, it is isomorphic to Zn for some n = 1, . . . , 20. A generic
K3 surface has Picard rank 1. Nevertheless, the first explicit examples of K3 sur-
faces over Q having geometric Picard rank 1 were constructed by R. van Luijk [vL]
as late as 2004. Van Luijk’s method is based on reduction modulo p. It works
as follows.

1.2. Approach (van Luijk). —– Let S be a K3 surface over Q.

i) At a place p of good reduction, the Picard group Pic(SQ) of the surface injects
into the Picard group Pic(SFp) of its reduction modulo p.

ii) On its part, Pic(SFp) injects into the second étale cohomology group
H2

ét(SFp,Ql(1)).

iii) Only roots of unity can arise as eigenvalues of the Frobenius Frob on the image
of Pic(SFp) in H2

ét(SFp,Ql(1)). The number of eigenvalues of this form, counted with
multiplicities, is therefore an upper bound for the Picard rank of SFp . One may
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compute the eigenvalues of Frob by counting the points on S, defined over Fp and
some finite extensions.

Doing this for one prime, one obtains an upper bound for rkPic(SFp), which is
always even. The Tate conjecture asserts that this bound is actually sharp. There-
fore, the best that could happen is to find a prime p that yields an upper bound of 2
for the rank of Pic(SQ).

iv) In this case, the assumption that the surface has Picard rank 2 over Q implies
that the discriminants of both Picard groups, Pic(SQ) and Pic(SFp), belong to the
same square class. Note here that reduction modulo p respects the intersection pair-
ing.

v) To obtain a contradiction, one combines information from two primes. It may
happen that one has a rank bound of 2 at both places but that different square
classes arise for the discriminants. Then, these data are incompatible with Picard
rank 2 over Q. Geometric Picard rank 1 is proven.

1.3. The improvement. –––– The idea behind Approach 1.2 is to consider the
specialization sp: Pic(SQ) ↪→ Pic(SFp) as an injection of lattices. Then, the two pos-
sibilities rkPic(SQ) < rkPic(SFp) and rkPic(SQ) = rkPic(SFp) are distinguished.
In the latter, the standard fact is used that disc Pic(SQ)/ disc Pic(SFp) is a per-
fect square.

We will show in this article that the assertion for the second case may be refined
to disc Pic(SQ) = disc Pic(SFp). More precisely, we shall prove that, at least for
p ̸= 2, the cokernel of sp : Pic(SQ) ↪→ Pic(SFp) is always torsion-free. This is true
actually in a by far more general situation than just for K3 surfaces.

1.4. Theorem. –––– Let R be a discrete valuation ring with quotient field K
of characteristic 0 and residue field k of characteristic p > 0. Further, let
π : X → SpecR be a morphism of schemes that is proper and smooth.

Suppose that R is of ramification degree e < p − 1 and that k is perfect.
Then, the cokernel of the specialization homomorphism spK : Pic(XK) → Pic(Xk)
is torsion-free.

1.5. Remarks. –––– a) In the applications, we will haveR = Z(p) ⊂ Q. Then, the
assumption simply means p ̸= 2.

b) We will show this theorem in section 3. As an application, one may prove
rkPic(SQ) = 1 for a K3 surface S using its reduction at a single prime. This works
as follows.

1.6. Approach. –––– Let a K3 surface S over Q be given.

i) For a prime p ̸= 2 of good reduction, perform steps i), ii) and iii) as in 1.2.
Thereby, the hope is to prove rkPic(SFp) = 2. Further, compute the discriminant
giving two explicit generators.
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Alternatively, to determine the discriminant, one might use the Artin-Tate for-
mula [Mi]. In this case, rk Pic(SFp) = 2 is shown only relative to the Tate conjecture.
Observe, however, that a surface with rkPic(SFp) = 1, due to a failure of the Tate
conjecture, would serve our purposes, as well.

ii) Assume rkPic(SQ) = 2. Then, according to Theorem 1.4, every invertible sheaf
on SFp must lift to SQ. Estimate the degree of a hypothetical effective divisor.
Finally, use Gröbner bases to verify that such a divisor does not exist.

1.7. Example. –––– Consider the K3 surface S over Q, given by

w2 = x5y + x4y2 + 2x3y3 + x2y4 + xy5 + 4y6 + 2x5z + 2x4z2 + 4x3z3 + 2xz5 + 4z6 .

Then, rkPic(SQ) = 1.

Proof. For the reduction of S at the prime 5, one sees that the branch locus has
a tritangent line given by z − 2y = 0. It meets the branch locus at (1 : 0 : 0),
(1 : 3 : 1), and (0 : 1 : 2).

The numbers of points on S over F5d are, in this order, 41, 751, 15 626,
392 251, 9 759 376, 244 134 376, 6 103 312 501, 152 589 156 251, 3 814 704 296 876, and
95 367 474 609 376. Thus, the traces of Frob on H2

ét(SF5,Ql) are 15, 125, 0, 1 625,
−6 250, −6 250, −203 125, 1 265 625, 7 031 250, and 42 968 750.

[EJ1, Algorithm 23] shows that the sign in the functional equation is positive.
The characteristic polynomial of Frob is therefore completely determined. For its
decomposition into prime polynomials, we find (after Tate twist to H2

ét(SF5,Ql(1)))

1

5
(t− 1)2(5t20 − 5t19 − 5t18 + 10t17 − 2t16 − 3t15 + 4t14 − 2t13 − 2t12 + t11

+ 3t10 + t9 − 2t8 − 2t7 + 4t6 − 3t5 − 2t4 + 10t3 − 5t2 − 5t+ 5) .

This shows rkPic(SF5) ≤ 2.
The irreducible components of the pull-back of the tritangent line are explicit

generators for Pic(SF5). Such a component l, being a projective line, has self-
intersection number l2 = −2. Further, lh = 1 for h the pull-back of a line. If we had
rkPic(SQ) = 2 then the invertible sheaf O(l) would lift to SQ. We would have a
divisor L on SQ such that HL = 1 and L2 = −2. By [BPV, Proposition VIII.3.6.i],
such a divisor is automatically effective.

The equation HL = 1 shows that L is obtained from a line on P2, the pull-back
of which splits into two components. This is possible only for a line tritangent to the
branch locus. [EJ1, Algorithm 8] shows, however, using Gröbner bases, that such a
tritangent line does not exist. �

2 The cokernel of the restriction map

2.1. Notation. –––– i) Let R be a discrete valuation ring of unequal character-
istic. We will write K := Quot(R) for its quotient field, p for the maximal ideal,
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k := R/p for the residue field of characteristic p, and ν : K � Z for the normal-
ized valuation. Let e := ν(p) denote the ramification degree of R.

ii) Let X be an R-scheme. Then, we will write Xp for the special fiber and Xη for
the generic fiber of X. For L an extension of K, we will denote by XL the base
extension of Xη to L. Analogously, for l an extension of k, we will write Xl for the
base extension of Xp to l. In the particular case that l = Fq, the shortcut Xq shall
be used for Xl.

2.2. Proposition. –––– Let π : X → SpecR be a morphism of schemes that is
proper and flat. Suppose that the special fiber Xp is normal.

If R is complete and satisfies the condition e < p − 1 then the cokernel of the
restriction homomorphism Pic(X)→ Pic(Xp) is torsion-free.

Proof. This result was obtained by M.Raynaud in the course of his investigations
on the Picard scheme [Ra2, Théorème 4.1.2.1)]. �

2.3. Remark. –––– Assume, in addition, that the restriction homomorphism
H1(X,OX) → H1(Xp,OXp) is surjective. Then, the assertion of Proposition 2.2
may be established using the following elementary argument, which is also due to
M.Raynaud [Ra2, section 1].

Consider the functors T i on the category of all finitely generated R-modules to
finitely generated R-modules, given by T i(M) := H i(X, π∗M̃). Here, M̃ denotes the
coherent sheaf associated with the R-module M . According to [EGA III, Proposi-
tion (7.7.10)], the functor T 1 is right exact. Hence, by [EGA III, Théorème (7.7.5.II)],
T 2 is left exact. This, in turn, immediately implies that H2(X,OX) is torsion-free.

Further, the short exact sequence

0 −→ U1 −→ O∗
X −→ O∗

Xp
−→ 0

shows that coker(Pic(X)→ Pic(Xp)) injects into H2(X,U1). Finally, as e < p− 1,
the exponential map provides us with an isomorphism OX

·p→ pOX
exp→ U1.

2.4. Remarks. –––– i) The additional assumption of 2.3 is fulfilled in our appli-
cations.

ii) For prime-to-p torsion, the assertion of Proposition 2.2 is true in a more gen-
eral situation.

2.5. Proposition. –––– Let π : X → SpecR be a proper morphism of schemes.

If R is Henselian then the cokernel of the restriction homomorphism
Pic(X)→ Pic(Xp) has no prime-to-p torsion.

Proof. Let l ̸= p be a prime number. We will show that there is no l-torsion.
For this, we observe at first that, according to a consequence of the theorem on
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proper base change [SGA4, Exp. XII, Corollaire 5.5.iii)], the restriction morphism
induces bijections H1

ét(X,µl)
∼=−→ H1

ét(Xp, µl) and H2
ét(X,µl)

∼=−→ H2
ét(Xp, µl).

Using the fact [SGA6, Exp. X, diagramme (7.13.10)] that the restriction homo-
morphisms on the Picard groups and étale cohomology commute with the Chern
maps, we see that restriction induces a surjection Pic(X)l � Pic(Xp)l and an injec-
tion Pic(X)/l ↪→ Pic(Xp)/l.

Applied to the two commutative diagrams of short exact sequences

0 // Pic(X)l //

�
��

Pic(X) //

��

PX
//

��

0 0 // PX
·l //

��

Pic(X) //

��

Pic(X)/l //

↪→
��

0

0 // Pic(Xp)l // Pic(Xp) // PXp
// 0 , 0 // PXp

·l // Pic(Xp) // Pic(Xp)/l // 0 ,

the snake lemma now shows that the induced homomorphism

coker(Pic(X)→ Pic(Xp)) −→ coker(PX → PXp)

is a bijection, while

coker(PX → PXp)
·l−→ coker(Pic(X)→ Pic(Xp))

is injective. Consequently, coker(Pic(X)→ Pic(Xp)) has no l-torsion. �

3 The cokernel of the specialization map

3.1. –––– In this section, we will continue to use the notation from 2.1.
Let π : X → SpecR be a morphism of schemes that is proper and smooth. We have
the restriction homomorphisms

Pic(Xη)←− Pic(X) −→ Pic(Xp) .

As π is smooth, the arrow to the left is a bijection [SGA6, Exp. X, App. 7.8].
Consequently, there is a natural homomorphism sp: Pic(Xη) → Pic(Xp), which is
called the specialization.

3.2. Lemma. –––– Let π : X → SpecR be a morphism of schemes that is proper
and smooth.

If R is complete and satisfies the condition e < p − 1 then the cokernel of the
specialization homomorphism sp: Pic(Xη)→ Pic(Xp) is torsion-free.

Proof. The assertion follows directly from Proposition 2.2. �
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3.3. –––– Let K ′/K be an extension field equipped with a discrete valuation
extending that on K. Denote by R′ the discrete valuation ring and by k′ the
residue field. The morphism X ×SpecR SpecR′ → SpecR′, obtained by base change,
induces a specialization homomorphism spK′ : Pic(XK′)→ Pic(Xk′).

There are the following two applications.

i) Suppose R to be complete. Then, for every finite extension K ′/K, there is a
unique [Se, Chap. II, §2, Proposition 3] discrete valuation extending the valuation
on K. The direct limit of the homomorphisms spK′ : Pic(XK′) → Pic(Xk′) is a
natural homomorphism spK : Pic(XK)→ Pic(Xk), again called the specialization.

ii) For general R, fix an embedding K ↪→K̂ of the algebraic closure of K into that of
its completion. By functoriality, this induces a homomorphism Pic(XK)→ Pic(X

K̂
).

Composing with sp
K̂
, constructed in i), one has a specialization homomorphism

spK : Pic(XK)→ Pic(Xk).

3.4. Proposition. –––– Let π : X → SpecR be a morphism of schemes that is
proper and smooth.

Suppose that R is complete, satisfies the condition e < p− 1, and that k is perfect.
Then, the cokernel of the specialization homomorphism spK : Pic(XK) → Pic(Xk)
is torsion-free.

Proof. By [Se, Chap. III, §5, Corollaire 1 du Théorème 3], K has a unique maximal
unramified extension Knr, which is actually the filtered direct limit of all finite
unramified extensions K ′/K.

An unramified extension does not change the ramification degree. Hence, accord-
ing to Lemma 3.2, the homomorphisms spK′ : Pic(XK′) → Pic(Xk′) have torsion-
free cokernels. As the filtered direct limit is an exact functor, the same is true
for spKnr : Pic(XKnr)→ Pic(Xk).

We claim that the specialization homomorphism spK has the same image
in Pic(Xk) as spKnr . For this, let L ∈ Pic(XK). The inertia group I := Gal(K/Knr)
sends L to a finite orbit {L1, . . . ,Lm}. The specializations of L1, . . . ,Lm

in Pic(Xk) are all the same. Therefore,

m·spK(L ) = spK(L
⊗m) = spK(L1⊗ · · · ⊗Lm) = spKnr(L1⊗ · · · ⊗Lm) ,

since L1⊗ · · · ⊗Lm is I-invariant. Hence, m·spK(L ) ∈ im spKnr . As spKnr has a
torsion-free cokernel, we see that spK(L ) ∈ im spKnr , too. �

3.5. Remark. –––– The argument above uses that Pic(XL) = Pic(XK)
Gal(L/K).

This equality is certainly not correct, in general. It is true as soon as Y (K) ̸= ∅ for
every connected component Y of X.

As π is smooth, we indeed have Y (Knr) ̸= ∅. To see this, let s : Spec l → Yk be
a point defined over a finite extension. By [EGA IV, Proposition (17.5.3)], s may be
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lifted to a morphism SpfS → Y for S the corresponding unramified extension of R.
[EGA III, Théorème (5.4.1)] yields the desired point.

3.6. Theorem. –––– Let R be a discrete valuation ring with quotient field K
of characteristic 0 and residue field k of characteristic p > 0. Further, let
π : X → SpecR be a morphism of schemes that is proper and smooth.

Suppose that R is of ramification degree e < p − 1 and that k is perfect.
Then, the cokernel of the specialization homomorphism spK : Pic(XK) → Pic(Xk)
is torsion-free.

3.7. Corollary. –––– Let p ̸= 2 be a prime number and X be a scheme proper
and flat over Z. Suppose that the special fiber Xp is non-singular.

Then, the cokernel of the specialization homomorphism spQ : Pic(XQ) → Pic(XFp
)

is torsion-free. �

3.8. Remark. –––– The technical condition on the ramification degree cannot
be omitted. In fact, D.Maulik and B.Poonen [MP, Example 3.12] constructed
counterexamples to the assertion of Theorem 3.6 in the situation that e ≥ p− 1.

3.9. Remarks (Elementary reductions). —– i) Let R′ be a discrete valuation
ring, finite and flat over R. Then, the assertion for pr2 : X×SpecRSpecR

′ → SpecR′,
obtained by base-change, implies that for π.

ii) In particular, we may suppose that π : X → SpecR has a section.

iii) We may suppose that the fibers of π are geometrically connected.

Indeed, as π : X → SpecR is proper and smooth, one has π∗OX = S̃ for S a fi-
nite étale R-algebra [EGA III, Remarque (7.8.10.i)]. Hence, there exists a discrete
valuation ring R′, étale over R, such that S⊗RR′ is a direct product of finitely
many copies of R′. This means that the connected components of X ×SpecR SpecR′

have geometrically connected fibers. Knowing the assertion for each component
separately, the proof will be complete.

3.10. Proposition. –––– Let R be a discrete valuation ring of characteristic 0
and π : X → SpecR a proper and smooth morphism of schemes. Suppose that π
has a section and that the fibers of π are geometrically connected.

Then, the specialization homomorphisms spK : Pic(XK) → Pic(Xk) and
sp

K̂
: Pic(X

K̂
)→ Pic(Xk) have the same image.

Proof. As spK factors via sp
K̂
, we clearly have im spK ⊆ im sp

K̂
. We will show the

reverse inclusion in several steps. Let an invertible sheaf L ∈ Pic(X
K̂
) be given.

We have to construct an invertible sheaf L ′ ∈ Pic(XK) having the same specializa-
tion as L .
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First step. The Picard scheme.

Our assumptions on π imply that it is cohomologically flat in dimension zero
[EGA III, Proposition (7.8.6)]. Hence, by [Ar1, Theorem 7.3], the Picard func-
tor PicX/R is representable by an algebraic space P := PicX/R that is locally of
finite type over R. According to [FGA, Exp. 236, Théorème 2.1.i)], P is separated.
This is enough to ensure that P is actually a scheme [Ra1, Théorème (3.3.1)]. Fur-
ther, every closed subset Z ⊆ P , being of finite type, is proper over R.

Second step. The representing morphism.

The invertible sheaf L ∈ Pic(X
K̂
) is defined over a finite extension L of K̂. Hence, it

defines a morphism i : SpecL→ P . As K̂ is complete, there is a unique prolongation
to L of the discrete valuation on K̂. I.e., we have a discrete valuation ring S ⊇ R̂.
There is a unique continuation j : SpecS → P of i.

Third step. Artin approximation.

By Lemma 3.12, we have S = Ŝ for a discrete valuation ring S, finite over R. Write L
for the quotient field of S. This is a finite extension of K.

We now recall that discrete valuation rings of characteristic zero are excel-
lent [EGA IV, Scholie (7.8.3.iii)]. In particular, M. Artin’s approximation re-
sults [Ar2] are applicable. According to [Ar2, Corollary (2.5)], there are an étale
extension S ′ of S and a morphism j′ : SpecS ′ → P of schemes that coincides, up to
extensions of the base field, with j on the special fiber.

Corresponding to j′, there is some ξ ∈ PicX/R(SpecS
′).

Fourth step. An invertible sheaf.

As the fibers of X are geometrically connected, we have π∗OX = OSpecR. Fur-
ther, since π has a section, one has [FGA, Exp.232, Proposition 2.1]

PicX/R(T ) = Pic(X ×SpecR T )/Pic(T )

for every R-scheme T . In particular,

PicX/R(SpecS
′) = Pic(X ×SpecR SpecS ′)/Pic(SpecS ′)

= Pic(X ×SpecR SpecS ′) .

Hence, ξ defines an invertible sheaf on X×SpecRSpecS
′. Let L ′ ∈ Pic(XL) be its re-

striction to the generic fiber. Then, by construction, L ′ has the same specialization
as L . The assertion follows. �

3.11. Remark. –––– Suppose thatH1(X,OX) = 0. Then, Proposition 3.10 is sig-
nificantly more elementary. In fact, the Picard scheme PK is of dimension zero [FGA,
Exp. 236, Proposition 2.10.iii)] in this case. Hence, every point on PK is defined
over K. No approximation argument is necessary.

Actually, the assumption H1(X,OX) = 0 is fulfilled in the examples, discussed
in 1.7 and below in section 4.
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3.12. Lemma. –––– Let R be a discrete valuation ring with quotient field K of
characteristic zero and L/K̂ a finite field extension of its completion.

Then, there exists a subfield L ⊂ L, finite over K, such that L̂ = L.

Proof. Choose a primitive element x of L over K̂ and let f ∈ K̂[X] be its mini-
mal polynomial. Then, the assertion is an immediate consequence of [Se, Chapitre II,
§2, Exercice 2]. �

3.13. Proof of Theorem 3.6. –––– Consider the completion R̂ of R and denote
by K̂ the corresponding quotient field. The ramification degree of R̂ is the same as
that of R. Therefore, Proposition 3.4 shows that the specialization homomorphism
sp

K̂
: Pic(X

K̂
)→ Pic(Xk) has a torsion-free cokernel. Further, by Proposition 3.10,

spK has the same image in Pic(Xk) as spK̂. This implies the assertion. �

4 The obstruction to first order deformations

The obstructions to lifting invertible sheaves were essential for the elementary proof
of Proposition 2.2, as discussed in 2.3. In some cases, they can be made explicit.

4.1. Proposition. –––– Let S be a K3 surface of degree 2 over Q, given explic-
itly by

w2 = f6(x, y, z)

for f6 ∈ Z[x, y, z] of degree 6. Suppose, for a prime p ̸= 2 of good reduction, there
is an Fp-rational line “ℓ = 0”, tritangent to the ramification locus of Sp. Write l
for an irreducible component of the pull-back of the tritangent.

One has f6 ≡ f2
3 + ℓf5 (mod p) for homogeneous forms f3, f5 ∈ Z[x, y, z]. Put

G(x, y, z) := (f6 − f2
3 − ℓf5)/p .

Then, O(l) lifts to Sp2 if and only if G vanishes in Fp[x, y, z]/(ℓ, f3, f5).

Proof. Suppose that O(l) has a lift L ∈ Pic(Xp2). Then, L /pL ∼= O(l).
Since multiplication by p induces an isomorphism L /pL ∼= pL , we automatically
have a short exact sequence

0 −→ O(l) −→ L −→ O(l) −→ 0 .

As H1(Xp,O(l)) = 0, the restriction map H0(Xp2 ,L ) → H0(Xp,O(l)) is a surjec-
tion. I.e., the divisor l on Xp necessarily lifts to an effective Cartier divisor on Xp2 .

This is possible only when the line defined by ℓ may be lifted to P2
p2 in such a

way that it is still a tritangent. On the other hand, if ℓ may be lifted to P2
p2 such

that it is still a tritangent then clearly O(l) lifts to Xp2 .
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Explicitly, the condition means that f6 is a square modulo p2 and some lift of ℓ.
Writing

f6 ≡ (f3 + pf ′
3)

2 + (ℓ+ pℓ′)(f5 + pf ′
5) (mod p2) ,

one immediately sees that this is equivalent to the assertion that G vanishes in
Fp[x, y, z]/(ℓ, f3, f5). �

4.2. Remark. –––– There is another proof that consists of the determination of
the cohomological obstruction to lifting O(l). I.e., of the image of O(l) under the
connecting homomorphism d : Pic(Xp)→ H2(Xp,OXp) that is induced by the short
exact sequence

0 −→ OXp −→ O∗
Xp2
−→ O∗

Xp
−→ 0 .

The obstruction may easily be computed in Čech cohomology for a suitable affine
open covering of Xp2 . Via the corresponding isomorphism H2(Xp,OXp)

∼= Fp, our
result is indeed ((−G) mod (p, ℓ, f3, f5)). The necessary calculations are, however,
rather lengthy and shall not be reproduced here.

4.3. –––– In the examples below, we will use the obstruction in its explicit form,
as given in Proposition 4.1. The methods for point counting, which we apply, are
explained in some detail in [EJ1, EJ2, EJ4].

4.4. Example. –––– Let S be a K3 surface over Q given by w2 = f6(x, y, z).
Suppose

f6(x, y, z) ≡ x6 + 2x5z + 2x4y2 + 2x4z2 + 2x3y3 + 2x3z3

+ 2x2y4 + 2x2y3z + x2z4 + xy3z2 + 2xz5 + y6 (mod 3) .

Assume further that the coefficient of y2z4 is not divisible by 9.

Then, rkPic(SQ) = 1.

Proof. A direct calculation shows that, modulo 3, the right hand side is f 2
3 + xf5

for f3 = 2x3 + 2x2z + xz2 + 2y3 and f5 = 2x3y2 + x2z3 + 2xy4 + 2z5. Thus, the
branch locus of S3 has a tritangent line given by x = 0.

The numbers of points over F3d are, in this order, 19, 127, 676, 6 751, 58 564,
532 414, 4 791 232, 43 038 703, 387 383 311, and 3 486 675 052. For the decomposition
of the characteristic polynomial of the Frobenius on H2

ét(SF3 ,Ql(1)), we find

1

3
(t− 1)2(3t20 − 3t19 − 3t18 + 8t17 − 3t16 − 4t15 + 6t14 − 4t13 + 2t12 + 4t11

− 7t10 + 4t9 + 2t8 − 4t7 + 6t6 − 4t5 − 3t4 + 8t3 − 3t2 − 3t+ 3) .

This shows rkPic(SF3) ≤ 2.
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Let l be an irreducible component of the pull-back of the tritangent line. We have
to show that the obstruction to lifting O(l) is non-zero. For this, we observe that x,
f3, and f5 do not generate the monomial y2z4. However, G contains this monomial
by its very definition. �

4.5. Example. –––– Consider the K3 surface S over Q, given by w2 = f6(x, y, z)
for

f6(x, y, z) = 4x6 + 2x5y + 12x5z + 2x4y2 + 4x4yz + 12x4z2 + 24x3y3 − 57x3y2z

− 9x3yz2 + 6x3z3 + 8x2y4 − 5x2y3z − 72x2y2z2 + 7x2yz3 + 4x2z4

+ 20xy4z − 52xy3z2 − 57xy2z3 + 7xyz4 + 4y5z − 7y4z2 − 18y3z3

+ 7y2z4 + 12yz5 + 2z6 .

Then, rkPic(SQ) = 3.

Proof. We have

f6 = (2x3 + 2x2z + 2y2z + yz2 + z3)2

+ (2x2 + 2xz + yz + z2)(x3y + 2x3z + x2y2 + x2yz + 2x2z2 + 12xy3

− 34xy2z − 9xyz2 − 2xz3 + 4y4 − 15y3z − 7y2z2 + 9yz3 + z4)

and

f6 = 4(x3 + 2x2y + 2x2z + xy2 + xyz + xz2 + y2z + yz2 + z3)2

− (x2 + xz + yz + z2)(14x3y + 4x3z + 22x2y2 + 22x2yz + 8x2z2 − 8xy3

+ 61xy2z + 9xyz2 + 6xz3 − 4y4 + 15y3z + 11y2z2 − 6yz3 + 2z4) .

Hence, there are two conics C1 and C2, each of which is six times tangent to the
ramification locus of S. The irreducible components of their pull-backs yield the
intersection matrix 

−2 6 1 3
6 −2 3 1
1 3 −2 6
3 1 6 −2

 ,

which is of rank 3. Hence, rk Pic(SQ) ≥ 3.
On the other hand, S has good reduction at the prime p = 3. Point counting over

extensions of F3 shows that the characteristic polynomial of the Frobenius operating
on H2

ét(SF3 ,Ql(1)) is

1

3
(t− 1)4(3t18 + 3t17 + 2t16 + 2t15 + 4t14 + 5t13 + 4t12 + 3t11 + 6t10 + 8t9

+ 6t8 + 3t7 + 4t6 + 5t5 + 4t4 + 2t3 + 2t2 + 3t+ 3) .
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Consequently, we have rkPic(SF3) ≤ 4.

In particular, the assumption rkPic(SQ) > 3 implies rkPic(SQ) = rkPic(SF3).
Theorem 3.6 guarantees that the specialization map spQ : Pic(SQ)→ Pic(SF3) must
be bijective. Giving one invertible sheaf L ∈ Pic(SF3) with a non-trivial obstruction
will be enough to yield a contradiction.

For this, observe that the ramification locus of S3 has a tritangent line given
by x+ y + z = 0. Indeed,

f6(x, y, z) ≡ (x3 + x2y + xy2 + y3)2 + (x+ y + z)(2x3y2 + x3yz + 2x2yz2 + 2xy4

+ xy3z + xy2z2 + 2xyz3 + xz4 + 2y5 + 2y4z + yz4 + 2z5) (mod 3) .

Modulo the ideal (3, x + y + z), we have f3 ≡ x3 + x2y + xy2 + y3,
f5 ≡ −(x5 + x3y2 + x2y3 + xy4 + y5), and G ≡ x6 + 2x5y + x4y2 + 2xy5 + y6.
Trying to generate G by 3, x + y + z, f3, and f5 now leads to a system of seven
linear equations in six unknowns that is easily seen to be unsolvable. �

4.6. Remarks. –––– i) It is not at all hard to generate more examples similar to
1.7 and 4.4. Choosing the coefficients in Fp at random, one usually finds Picard
rank 2 over Fp after a few trials. One may work with small primes, only, say p ≤ 7.

Clearly, for our arguments, it is of importance to have explicit generators
for Pic(SFp). In practice, it turns out that a second generator may often be found.
We have no formal reason for this. However, [Ko] might give an indication.

In example 4.4, we applied a linear transform in order to make the obstruction
depend only on a single coefficient. In general, one would have a linear form in
the coefficients.

ii) Example 4.5 is a bit more particular. Both conics, which are six times tangent to
the ramification sextic, simultaneously lift to Q. This is not at all the generic be-
haviour.

iii) It seems to be substantially more difficult to construct examples, for which
rkPic(X) ≤ rkPic(Xp) − 2 may be shown. To understand the problem, recall the
obstruction homomorphism δ : Pic(Xp) → H2(X,OX), introduced in Remark 2.3.
In Proposition 4.1, we calculated δ(O(l)) at a precision of one p-adic digit.

In order to verify rkPic(X) ≤ rkPic(Xp) − 2, one would have to ensure that
rkZ(im δ) ≥ 2. This, however, is impossible as long as only p-adic approximations
of finitely many values δ(L ) are known.

Observe that there are methods known to show rkPic(X) ≤ rkPic(Xp1) − 2 and
rkPic(X) ≤ rkPic(Xp2)− 2 when one works with two primes [EJ3].
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