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THE DIOPHANTINE EQUATION x4 + 2y4 = z4 + 4w4

ANDREAS-STEPHAN ELSENHANS AND JÖRG JAHNEL

Abstract. We show that, within the hypercube |x|, |y|, |z|, |w| ≤ 2.5 ·106, the
Diophantine equation x4 +2y4 = z4 +4w4 admits essentially one and only one

nontrivial solution, namely (±1 484 801,±1 203 120,±1 169 407,±1 157 520).
The investigation is based on a systematic search by computer.

1. Introduction

1.1. An algebraic curve C of genus g > 1 admits at most a finite number of
Q-rational points. On the other hand, for genus one curves, #C(Q) may be zero,
finite nonzero, or infinite. For genus zero curves, one automatically has #C(Q) = ∞
as soon as C(Q) �= ∅.

1.2. In higher dimensions, there is a conjecture, due to S. Lang, stating that if
X is a variety of general type over a number field, then all but finitely many of
its rational points are contained in the union of closed subvarieties which are not
of general type. On the other hand, abelian varieties (as well as, e.g., elliptic and
bielliptic surfaces) behave like genus one curves, i.e., #X(Q) may be zero, finite
nonzero, or infinite. Finally, rational and ruled varieties comport in the same way
as curves of genus zero in this respect.

This list does not yet exhaust the classification of algebraic surfaces, to say noth-
ing of dimension three or higher. In particular, the following problem is still open.

Problem 1.3. Does there exist a K3 surface S over Q which has a finite nonzero
number of Q-rational points, i.e., such that 0 < #S(Q) < ∞?

Remark 1.4. This question was posed by Sir P. Swinnerton-Dyer as Problem/
Question 6.a) in the problem session to the workshop [PT]. We are not able to
give an answer to it.
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1.5. One possible candidate for a K3 surface with the property 0 < #S(Q) < ∞
is given by the following

Problem. Find a third point on the projective surface S ⊂ P3 defined by

x4 + 2y4 = z4 + 4w4.

Remarks 1.6. i) Problem 1.5 is also due to Sir P. Swinnerton-Dyer [PT, Problem/
Question 6.c)]. It was raised, in particular, during his talk [S-D, at the very end of
the article] at the Göttingen Mathematisches Institut on June 2, 2004.

ii) x4 +2y4 = z4 +4w4 is a homogeneous quartic equation. It, therefore, defines
a K3 surface S in P3. As trivial solutions of the equation, we consider those
corresponding to the Q-rational points (1:0 :1 :0) and (1:0 :−1:0).

iii) Our main result is the following theorem which contains an answer to Prob-
lem 1.5.

Theorem 1.7. The diagonal quartic surface S in P3 defined by

(∗) x4 + 2y4 = z4 + 4w4

admits precisely ten Q-rational points which allow integral coordinates within the
hypercube |x|, |y|, |z|, |w| < 2.5 · 106. These are (±1 : 0 : ±1 : 0) and (±1 484 801 :
±1 203 120:±1 169 407:±1 157 520).

Remark 1.8. This result clearly does not exclude the possibility that #S(Q) is
actually finite. It might indicate, however, that a proof for that property is deeper
than one originally hoped for.

2. Congruences

2.1. It seems natural to first try to understand the congruences

(+) x4 + 2y4 ≡ z4 + 4w4 (mod p)

modulo a prime number p. For p = 2 and 5, one finds that all primitive solutions
in Z satisfy

a) x and z are odd,
b) y and w are even,
c) y is divisible by 5.
For other primes, it follows from the Weil conjectures, proven by P. Deligne [De],

that the number of solutions to the congruence (+) is

#CS(Fp) = 1 + (p − 1)(p2 + p + 1 + E) = p3 + E(p − 1),

where E is an error-term which may be estimated by |E| ≤ 21p.
Indeed, consider the projective variety S over Q defined by (∗). It has good

reduction at every prime p �= 2. Therefore, [De, Théorème (8.1)] may be applied to
the reduction Sp. This yields #Sp(Fp) = p2 + p + 1 + E and |E| ≤ 21p. We note
that dimH2(S, R) = 22 for every complex surface S of type K3 [Bv, p. 98].

2.2. Another question of interest is to count the numbers of solutions to the con-
gruences x4 + 2y4 ≡ c (mod p) and z4 + 4w4 ≡ c (mod p) for a certain c ∈ Z.

This means to count the Fp-rational points on the affine plane curves Cl
c and Cr

c

defined over Fp by x4 + 2y4 = c and z4 + 4w4 = c, respectively. If p � c and p �= 2,
then these are smooth curves of genus three.



THE DIOPHANTINE EQUATION x4 + 2y4 = z4 + 4w4 937

By the work of André Weil [We, Corollaire 3 du Théorème 13], the numbers of
Fp-rational points on their projectivizations are given by

#Cl
c(Fp) = p + 1 + El and #Cr

c(Fp) = p + 1 + Er,

where the error-terms can be bounded by |El|, |Er| ≤ 6
√

p. There may be up to
four Fp-rational points on the infinite line. For our purposes, it suffices to note that
both congruences admit a number of solutions which is close to p.

The case p|c, p �= 2, is slightly different, since it corresponds to the case of a
reducible curve. The congruence x4 + ky4 ≡ 0 (mod p) admits only the trivial
solution if (−k) is not a biquadratic residue modulo p. Otherwise, it has exactly
1 + (p − 1) gcd(p − 1, 4) solutions.

Finally, if p = 2, then #Cl
0(F2) = #Cl

1(F2) = #Cr
0(F2) = #Cr

1(F2) = 2.

Remark 2.3. The number of solutions to the congruence (+) is

#CS(Fp) =
∑
c∈Fp

#Cl
c(Fp) · #Cr

c (Fp).

Hence, the formulas just mentioned yield an elementary estimate for that count.
They show once more that the dominating term is p3. The estimate for the error
is, however, less sharp than the one obtained via the more sophisticated methods
in 2.1.

3. Naive methods

3.1. The most naive method to search for solutions of (∗) is probably the following:
Start with the set

{(x, y, z, w) ∈ Z | 0 ≤ x, y, z, w ≤ N},
and test the equation for every quadruple.

Obviously this method requires about N4 steps. It can be accelerated using the
congruence conditions for primitive solutions noted above.

3.2. A somewhat better method is to start with the set

{x4 + 2y4 − 4w4 | x, y, w ∈ Z, 0 ≤ x, y, w ≤ N}
and to search for fourth powers. This set has about N3 elements, and the algorithm
takes about N3 steps. Again, it can be sped up by the above congruence conditions
for primitive solutions. We used this approach for a trial run with N = 104.

An interesting aspect of this algorithm is the optimization by further congru-
ences. Suppose x and y are fixed. Then about one-half or three-quarter of the
values for w are not solutions to the congruence modulo a new prime. Following
in this way, one can find more congruences for w and the size of the set may be
reduced by a constant factor.

4. Our final algorithm

4.1. The basic idea.

4.1.1. We need to compute the intersection of two sets

{x4 + 2y4 | x, y ∈ Z, 0 ≤ x, y ≤ N} ∩ {z4 + 4w4 | z, w ∈ Z, 0 ≤ z, w ≤ N} .

Both have about N2 elements.
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It is a standard problem in Computer Science to find the intersection of two sets
which both fit into memory. Using the congruence conditions modulo 2 and 5, one
can reduce the size of the first set by a factor of 20 and the size of the second set
by a factor of 4.

4.2. Some details.

4.2.1. The two sets described above are too big, at least for our computers and
for interesting values of N . Therefore, we introduce a prime number pp which we
call the page prime.

We define the sets

Lc := {x4 + 2y4 | x, y ∈ Z, 0 ≤ x, y ≤ N, x4 + 2y4 ≡ c (mod pp)}

and

Rc := {z4 + 4w4 | z, w ∈ Z, 0 ≤ z, w ≤ N, z4 + 4w4 ≡ c (mod pp)}.

This means that the intersection problem is divided into pp pieces and that the sets
Lc and Rc fit into the computer’s memory if pp is big enough. We worked with
N = 2.5 · 106 and chose pp = 30 011.

For every value of c, our program computes Lc and stores this set in a hash table.
Then, it determines the elements of Rc and looks them up in the table. Assum-
ing uniform hashing, the expected running-time of this algorithm is O(N2).

Remark 4.2.2. An important further aspect of this approach is that the problem
may be attacked in parallel on several machines. The calculations for one particular
value of c are independent of the analogous calculations for another one. Thus, it
is possible, say, to let c run from 0 to (pp − 1)/2 on one machine and, at the same
time, from (pp + 1)/2 to (pp − 1) on another.

4.3. Some more details.

4.3.1. The page prime. For each value of c, it is necessary to find the solutions of the
congruences x4 +2y4 ≡ c (mod pp) and z4 +4w4 ≡ c (mod pp) in an efficient man-
ner. We do this in a rather naive way by letting y (w) run from 0 to pp−1. For each
value of y (w), we compute x4 (z4). Then, we extract the fourth root modulo pp.

Note that the page prime fulfills pp ≡ 3 (mod 4). Hence, the fourth roots of
unity modulo p are just ±1 and, therefore, a fourth root modulo pp, if it exists, is
unique up to sign. This makes the algorithm easier to implement.

Actually, we do not execute any modular powering operation or even computa-
tion of fourth roots in the lion’s share of the running time. For more efficiency, all
fourth powers and all fourth roots modulo pp are computed and stored in an array
during an initialization step. Thus, the main speed limitation to find all solutions
to a congruence modulo pp is, in fact, the time it takes to look up values stored in
the machine’s main memory.
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4.3.2. Hashing. We do not compute Lc and Rc directly, because this would require
the use of multiprecision integers within the inner loop. Instead, we choose two
other primes, the hash prime ph and the control prime pc, which fit into the 32-bit
registers of our computers. All computations are done modulo ph and pc.

More precisely, for each pair (x, y) considered, the expression
(
(x4+2y4) mod ph

)
defines its position in the hash table. In other words, we hash pairs (x, y), whereas
(x, y) 
→

(
(x4+2y4)mod ph

)
plays the role of the hash function. For each pair (x, y),

we write two entries into the hash table, namely the value of
(
(x4+2y4)mod pc

)
and the value of y.

In the main computation, we worked with the numbers ph = 25 000 009 for the
hash prime and pc = 400 000 009 for the control prime.

Note that, when working with a particular value of c, there are around pp pairs
((x mod pp), (y mod pp)) which fulfill the required congruence

x4 + 2y4 ≡ c (mod pp).

Therefore, approximately

pp ·
(

N/2
pp

· N/10
pp

)
=

N2

20pp

values will be written into the table. For our choices,

N2

20pp
≈ 10 412 849,

which means that the hash table will become approximately 41.7% filled.
As for many other rules, there is an exception to this one. If c = 0, then ap-

proximately 1 + (pp − 1) gcd(pp − 1, 4) pairs ((x mod pp), (y mod pp)) may satisfy
the congruence

x4 + 2y4 ≡ 0 (mod pp).

As pp ≡ 3 (mod 4), this is not more than 2pp − 1, and the hash table will be filled
by not more than about 83.3%.

In order to resolve collisions within the hash table, we use an open addressing
method. We are not particularly afraid of clustering and choose linear probing. We
feel free to use open addressing as, thanks to the Weil conjectures, we have a priori
estimates available for the load factor.

4.3.3. Miscellanea. The program makes frequent use of fourth powers modulo ph

and pc. Again, we compute these data in the initialization part of our program and
store them in arrays, once and for all.

Test versions of the program were written in Delphi. The final version was
written in C. It took about 130 hours of CPU time on a 3.00 GHz Pentium 4
processor with 512 kByte cache memory. The main computation was executed in
parallel on two machines during the very first days of December 2004.
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4.4. Post-processing. Instead of looking for solutions of x4 + 2y4 = z4 + 4w4,
our algorithm searches, in fact, for solutions to the corresponding simultaneous
congruences modulo pp and pc which, in addition, fulfill that

(
(x4 + 2y4) mod ph

)
and

(
(z4 + 4w4) mod ph

)
are “almost equal”.

To this modified problem, we found approximately 3800 solutions such that
(y, w) �= (0, 0). These congruence solutions were checked by an exact computation
using O. Forster’s [Fo] Pascal-style multi-precision interpreter language ARIBAS.

Among the congruence solutions, exact equality occurs only once. This solution
is as follows.
==> 1484801**4 + 2 * 1203120**4.
-: 90509_10498_47564_80468_99201

==> 1169407**4 + 4 * 1157520**4.
-: 90509_10498_47564_80468_99201
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