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Abstract. We construct explicit examples of K3 surfaces over Q which
are of degree 2 and geometric Picard rank 1. We construct, particularly,
examples of the form w

2 = detM where M is a (3 × 3)-matrix of ternary
quadratic forms.

1 Introduction

A K3 surface is a simply connected, projective algebraic surface with trivial
canonical class. If S ⊂ Pn is a K3 surface then its degree is automatically even.
For every even number d > 0, there exists a K3 surface S ⊂ Pn of degree d.

Examples 1. A K3 surface of degree two is a double cover of P2, ramified in a
smooth sextic. K3 surfaces of degree four are smooth quartics in P3. A K3 surface
of degree six is a smooth complete intersection of a quadric and a cubic in P4.
And, finally, K3 surfaces of degree eight are smooth complete intersections of
three quadrics in P5.

The Picard group of a K3 surface is isomorphic to Zn where n may range from 1
to 20. It is generally known that a generic K3 surface overC is of Picard rank one.
This does, however, not yet imply that there exists a K3 surface over Q the
geometric Picard rank of which is equal to one. The point is, genericity means
that there are countably many exceptional subvarieties in moduli space.

It seems that the first explicit examples of K3 surfaces of geometric Pi-
card rank one have been constructed as late as in 2005 [vL]. All these examples
are of degree four.

The goal of this article is to provide explicit examples of K3 surfaces over Q
which are of geometric Picard rank one and degree two.

⋆ The computer part of this work was executed on the Sun Fire V20z Servers of the
Gauß Laboratory for Scientific Computing at the Göttingen Mathematisches Insti-
tut. Both authors are grateful to Prof. Y. Tschinkel for the permission to use these
machines as well as to the system administrators for their support.



For that, let first S be a K3 surface over a finite field Fq. Then, we have the
first Chern class homomorphism

c1 : Pic(SFq
) −→ H2

ét(SFq
,Ql(1))

into l-adic cohomology at our disposal. There is a natural operation of the Frobe-
nius on H2

ét(SFq
,Ql(1)). All eigenvalues are of absolute value 1. The Frobenius

operation on the Picard group is compatible with the operation on cohomology.
Every divisor is defined over a finite extension of the ground field. Con-

sequently, on the subspace Pic(SFq
)⊗ZQl →֒ H2

ét(SFq
,Ql(1)), all eigenvalues

are roots of unity. Those correspond to eigenvalues of the Frobenius operation
on H2

ét(SFq
,Ql) which are of the form qζ for ζ a root of unity.

We may therefore estimate the rank of the Picard group Pic(SFq
) from above

by counting how many eigenvalues are of this particular form. It is conjectured
that this estimate is always sharp but we avoid to make use of this.

Estimates from below may be obtained by explicitly constructing divi-
sors. Under certain circumstances, it is possible, that way, to determine
rkPic(SFq

), exactly.

Our general strategy is to use reduction modulo p. We apply the inequality

rkPic(SQ) ≤ rkPic(SFp
)

which is true for every smooth variety S overQ and every prime p of good reduc-
tion [Fu, Example 20.3.6, 19.3.1.iii) and iv))]. Having constructed an example
with rkPic(SF3

) = rkPic(SF5
) = 2, we use the same technique as in [vL] to

deduce rkPic(SQ) = 1.

Remark 2. Let S be a K3 surface over Q of degree two and geometric Picard
rank one. Then, S cannot be isomorphic, not even over Q, to a K3 surface
S′ ⊂ P3 of degree 4.

Indeed, Pic(SQ) = Z·〈L 〉 and deg S = 2 mean that the intersection form
on Pic(SQ) is given by 〈L ⊗n, L ⊗m〉 := 2nm. The self-intersection numbers of
divisors on SQ are of the form 2n2 which is always different from 4.

2 Lower bounds for the Picard rank

In order to estimate the rank of the Picard group from below, we need to ex-
plicitly construct divisors. Calculating discriminants, it is possible to show that
the corresponding divisor classes are linearly independent.

Notation 3. Let k be an algebraically closed field of characteristic 6= 2. In the
projective plane P2

k, let a smooth curve B of degree 6 be given by f6(x, y, z) = 0.
Then, w2 = f6(x, y, z) defines a K3 surface S in a weighted projective space.
We have a double cover π : S → P2 ramified at π−1(B).

Construction 4. i) One possible construction with respect to our aims is to
start with a branch curve “f6 = 0” which allows a tritangent line G. The pull-back
of G to the K3 surface S is a divisor splitting into two irreducible components.
The corresponding divisor classes are linearly independent.



ii) A second possibility is to use a conic which is tangent to the branch sextic in
six points.

Both constructions yield a lower bound of 2 for the rank of the Picard group.

Tritangent. Assume, the line G is a tritangent to the sextic given by f6 = 0.
This means, the restriction of f6 to G ∼= P1 is a section of O(6), the divisor of
which is divisible by 2 in Div(G). As G is of genus 0, this implies f6|G is the
square of a section f ∈ Γ (G, O(3)). The form f6 may, therefore, be written as
f6 = f̃2+lq5 for l a linear form defining G, f̃ a cubic form lifting f , and a quintic
form q5.

Consequently, the restriction of π to π−1(G) is given by an equation of the
form w2 = f2(s, t). Hence, we have π∗(G) = D1 + D2 where D1 and D2 are the
two irreducible divisors given by w = ±f(s, t). Both curves are isomorphic to G.
In particular, they are projective lines.

The adjunction formula shows −2 = D1(D1 + K) = D2
1. Analogously, one

sees D2
2 = −2. Finally, we have G2 = 1. It follows that (D1 + D2)

2 = 2 which
yields D1D2 = 3. Thus, for the discriminant, we find

Disc〈D1, D2〉 =

∣∣∣∣
−2 3

3 −2

∣∣∣∣ = −5 6= 0

guaranteeing rk Pic(S ) ≥ 2.

Remark 5. We note explicitly that this argument works without modification if
two or all three points of tangency coincide.

Conic tangent in six points. If C is a conic tangent to the branch curve
“f6 = 0” in six points then, for the same reasons as above, we have
π∗(C) = C1 + C2 where C1 and C2 are irreducible divisors. Again, C1 and C2

are isomorphic to C and, therefore, of genus 0. This shows C2
1 = C2

1 = −2.
We have another divisor at our disposal, the pull-back D := π∗(G) of a line

in P2
k. G2 = 1 implies that D2 = 2. Further, we have GC = 2 which implies

D(C1 + C2) = 4 and DC1 = 2. For the discriminant, we obtain

Disc〈C1, D〉 =

∣∣∣∣
−2 2

2 2

∣∣∣∣ = −8 6= 0.

Consequently, rkPic(S ) ≥ 2 in this case, too.

Remark 6. There is no further refinement of 〈C1, D〉 to lattice in Pic(S) of
discriminant (−2). Indeed, the self-intersection number of a curve on a K3 surface
is always even. Hence, the discriminant of an arbitrary rank two lattice in Pic(S)
is of the shape | 2a c

c 2b
| = 4ab − c2 for a, b ∈ Z. The quadratic form on the right

hand side does not represent integers which are 1 or 2 modulo 4.
The discriminant of the lattice spanned by C1 and C2 turns out to be

Disc〈C1, C2〉 = |−2 6
6−2 | = −32 6= 0 which would be completely sufficient for

our purposes.



Remark 7. Further tritangents or further conics which are tangent in six points
lead to even larger Picard groups.

Detection of tritangents. The property of a line of being a tritangent may
easily be written down as an algebraic condition. Therefore, tritangents may be
searched for, in practice, by investigating a Gröbner base.

More precisely, a general line in P2 can be described by a parametrization

ga,b : t 7→ [1 : t : (a + bt)] .

ga,b is a (possibly degenerate) tritangent of the sextic given by f6 = 0 if and
only if f6 ◦ ga,b is a perfect square in Fq[t]. This means,

f6(ga,b(t)) = (c0 + c1t + c2t
2 + c3t

3)2

is an equation which encodes the tritangent property of ga,b. Comparing coef-
ficients, this yields a system of seven equations in c0, c1, c2, and c3 which is
solvable if and only if ga,b is a tritangent.

The latter may be understood as well as a system of equations in a, b, c0, c1,
c2, and c3 encoding the existence of a tritangent of the form above. Correspond-
ing to this system of equations, there is an ideal I ⊆ Fq[a, b, c0, c1, c2, c3] given
explicitly by seven generators.

The remaining one-dimensional family of lines may be treated analogously
using the parametrizations ga : t 7→ [1 : a : t] and g : t 7→ [0 : 1 : t]. Similarly, this
leads to ideals I ′ ⊆ Fq[a, c0, c1, c2, c3] and I ′′ ⊆ Fq[c0, c1, c2, c3].

Thus, there is a simple method to find out whether the sextic given by f6 = 0
has a tritangent or not.

Algorithm 8 (Given a sextic form f6 over Fq, this algorithm decides whether
the curve given by f6 = 0 has a tritangent).

i) Compute a Gröbner base for the ideal I ⊆ Fq[a, b, c0, c1, c2, c3], described
above.

ii) Compute a Gröbner base for the ideal I ′ ⊆ Fq[a, c0, c1, c2, c3].

iii) Compute a Gröbner base for the ideal I ′′ ⊆ Fq[c0, c1, c2, c3].

iv) If it turns out that actually all three ideals are equal to the unit ideal then
output that the curve given has no tritangent. Otherwise, output that a tritan-
gent was detected.

Remark 9. There are a few obvious refinements.

i) For example, given the Gröbner bases, it is easy to calculate the
lengths of the quotient rings Fq[a, b, c0, c1, c2, c3]/I, Fq[a, c0, c1, c2, c3]/I ′, andFq[c0, c1, c2, c3]/I ′′. Each of them is twice the number of the corresponding tri-
tangents.

ii) Usually, from the Gröbner bases, the tritangents may be read off, directly.



Remark 10. We ran Algorithm 8 using Magma. The time required to compute a
Gröbner base as needed over a finite field is usually a few seconds.

Remark 11. The existence of a tritangent is a codimension one condition.
Over small ground fields, one occasionally finds tritangents on randomly cho-
sen examples.

Searching for conics tangent in six points. A non-degenerate conic in P2

allows a parametrization of the form

c : t 7→ [(c0 + c1t + c2t
2) : (d0 + d1t + d2t

2) : (e0 + e1t + e2t
2)] .

With the sextic given by f6 = 0, all intersection multiplicities are even if and only
if f6 ◦c is a perfect square in Fq[t]. This may easily be checked by factoring f6 ◦c.

Algorithm 12 (Given a sextic form f6 over Fq, this algorithm decides whether
the curve given by f6 = 0 allows a conic defined over Fq which is tangent in
six points).

i) In a precomputation, generate a list of parametrizations, one for each of the
q2(q3 − 1) non-degenerate conics defined over Fq.

ii) Run through the list. For each parametrization, factorize the univariate poly-
nomial f6 ◦ c into irreducible factors. If it turns out to be a perfect square then
output that a conic which is tangent in six points has been found.

Remarks 13. a) For very small q, this algorithm is extremely efficient. We need
it only for q = 3 and 5.

b) A general method, analogous to the one for tritangents, to find conics defined
over Fq does not succeed. The required Gröbner base computation becomes
too large.

3 An upper bound for the geometric Picard rank

In this section, we consider a K3 surface S over a finite field Fp. A method
to understand the operation of the Frobenius φ on the l-adic cohomology
H2

ét(SFp
,Ql)

∼= Q22

l works as follows.

The Lefschetz trace formula. Count the points on S over Fpd and apply the
Lefschetz trace formula [Mi] to compute the trace of the Frobenius φF

pd
= φd.

In our situation, this yields

Tr(φd) = #S (Fpd) − p2d − 1 .

We have Tr(φd) = λd
1 + · · · + λd

22 =: σd(λ1, . . . , λ22) when we denote the eigen-
values of φ by λ1, . . . , λ22. Newton’s identity [Ze]

sk(λ1, . . . , λ22) =
1

k

k−1∑

r=0

(−1)k+r+1σk−r(λ1, . . . , λ22)sr(λ1, . . . , λ22)



shows that, doing this for d = 1, . . . , k, one obtains enough information to de-
termine the coefficient (−1)ksk of t22−k of the characteristic polynomial fp of φ.

Remark 14. Observe that we also have the functional equation

(∗) p22fp(t) = ±t22fp(p
2/t)

at our disposal. It may be used to convert the coefficient of ti into the one
of t22−i.

Algorithms for counting points. The number #S (Fq) of points may be
determined as the sum

∑

[x:y:z]∈P2(Fq)

[
1 + χ

(
f6(x, y, z)

)]
.

Here, χ is the quadratic character of F∗
q . The sum is well-defined since f6(x, y, z)

is uniquely determined up to a sixth-power residue. To count the points naively,
one would need q2 + q + 1 evaluations of f6 and χ.

Here, an obvious possibility for optimization arises. We may use symmetry:
If f6 is defined over Fp then the summands for [x : y : z] and φ([x : y : z])
are equal.

Algorithm 15 (Point counting).

i) Precompute a list which contains exactly one representative for each Galois or-
bit of Fq. Equip each member y with an additional marker sy indicating the size
of its orbit.

ii) Let [0 : y : z] run through all Fq-rational points on the projective line and
add up the values of [1 + χ

(
f6(0, y, z)

)
] to a sum Z.

iii) In an iterated loop, let y run through the precomputed list and z through
the whole of Fq. Add up Z and all values of sy ·[1 + χ

(
f6(1, y, z)

)
].

Remark 16. Over Fpd , we save a factor of about d as, on the affine chart “x 6= 0”,
we put in for y only values from a fundamental domain of the Frobenius.

A second possibility for optimization is to use decoupling: Suppose, f6 is decou-
pled, i.e., it contains only monomials of the form xiy6−i or xiz6−i. Then, on the
affine chart “x 6= 0”, the form f6 may be written as f6(1, y, z) = g(y) + h(z).
If f6 is defined over Fp then we still may use symmetry. The ranges of g and h
are invariant under the operation of Frobenius. There is an algorithm as follows.

Algorithm 17 (Point counting – decoupled situation).

i) For the function g, generate a list A of its values. For each u ∈ A, store the
number nA(u) indicating how many times it is adopted by g.

ii) For the function h, generate a list B of its values. For each v ∈ B, store the
number nB(v) indicating how many times it is adopted by h.



iii) Modify the table for g. For each orbit F = {u1, . . . , ue} of the Frobenius,
delete all elements except one, say u1. Multiply nA(u1) by #F .

iv) Tabulate the quadratic character χ.

v) Let [0 : y : z] run through all Fq-rational points on the projective line and
add up the values of [1 + χ

(
f6(0, y, z)

)
] to a sum Z.

vi) Use the table for χ and the tables built up in steps i) through iii) to compute
the sum ∑

u∈A

∑

v∈B

χ(u + v)·nA(u)·nB(v).

vii) Add q2 + Z to the number obtained.

Remarks 18. i) The tables for g and h may be built up in O(q log q) steps.

ii) Statistically, after steps i) and ii) the sizes of A and B are approximately
(1−1/e)·q = (1−1/e)·pd. Step iii) reduces the size of A almost to (1−1/e)·pd/d.
After all the preparations, we therefore expect about (1 − 1/e)2 ·q2/d additions
to be executed in step vi).

The advantage of a decoupled situation is, therefore, not only that evaluations of
the polynomial f6 in Fpd get replaced by additions. Furthermore, the expected
number of additions is only about 40% of the number of evaluations of f6 required
by Algorithm 15.

Remark 19. We implemented the point counting algorithms in C. The optimiza-
tion realized in Algorithm 15 allows to determine the number of F310 -rational
points on S within half an hour on an AMD Opteron processor.

In a decoupled situation, the number of F59-rational points may be counted
within two hours by Algorithm 17. In a few cases, we determined the numbers
of points over F510 . This took around two days. Using Algorithm 15, the same
counts would have taken around one day or 25 days, respectively.

This shows, using the methods above, we may effectively compute the traces
of φF

pd
= φd for d = 1, . . . , 9, (10).

Remark 20. In Algorithm 17, the sum calculated in step vi) is nothing but∑
w∈Fq

χ(w)·(nA∗nB)(w). It might be on option to compute the convolu-
tion nA ∗ nB using FFT. We expect that, concerning running times, this might
lead to a certain gain. On the other hand, such an algorithm would require a lot
more space than Algorithm 17.

This possible use of FFT could be of interest from a theoretical point of view.
It is well-known that, in most applications, FFT is used on large cyclic groups.
Here, however, the group is (Fpd , +) ∼= (Z/pZ)d for p very small.

An upper bound for rk Pic(SFp
) having counted till d = 10.

We know that fp, the characteristic polynomial of the Frobenius, has a zero
at p since the pull-back of a line in P2 is a divisor defined over Fp. Suppose, we
determined Tr(φd) for d = 1, . . . , 10. Then, we may use the following algorithm.



Algorithm 21 (Upper bound for rkPic(SFp
)).

i) First, assume the minus sign in the functional equation (∗). Then, fp automat-
ically has coefficient 0 at t11. Therefore, the numbers of points counted suffice
in this case to determine fp, completely.

ii) Then, assume that, on the other hand, the plus sign is present in (∗). In this
case, the data collected immediately allow to compute all coefficients of fp, except
that at t11. Use the known zero at p to determine that final coefficient.

iii) Use the numerical test, provided by Algorithm 23 below, to decide which
sign is actually present.

iv) Factor fp(pt) into irreducible polynomials. Check which of the factors are
cyclotomic polynomials, add their degrees, and output that sum as an upper
bound for rkPic(SFp

). If step iii) had failed then work with both candidates
for fp and output the maximum.

Verifying rkPic(SFp
) = 2 having counted till d = 9, only.

Assume, S is a K3 surface over Fp given by Construction 4.i) or ii). We, there-
fore, know that the rank of the Picard group is at least equal to 2. We assume
that the divisor constructed by pull-back splits already over Fp. This ensures
p is a double zero of fp.

Suppose, we determined Tr(φd) for d = 1, . . . , 9. Then, there is the follow-
ing algorithm.

Algorithm 22 (Verifying rkPic(SFp
) = 2).

i) First, assume the minus sign in the functional equation (∗). This forces
another zero of fp at (−p). The data collected are then sufficient to deter-
mine fp, completely. Algorithm 23 below may indicate a contradiction. Oth-
erwise, output FAIL and terminate prematurely. (In this case, we could still find
an upper bound for rkPic(SFp

) which is, however, at least equal to 4.)

ii) As we have the plus sign in (∗), the data immediately suffice to compute
all coefficients of fp, with the exception of those at t10, t11, and t12. The func-
tional equation yields a linear relation for the three remaining coefficients of fp.
From the known double zero at p, one computes another linear condition.

iii) Let n run through all natural numbers such that ϕ(n) ≤ 20. (The largest
such n is 66.)

Assume, in addition, that there is another zero of the form pζn. This yields
further linear relations. Inspecting this system of linear equations, one either
achieves a contradiction or determines all three remaining coefficients. In the
latter case, Algorithm 23 may indicate a contradiction. Otherwise, output FAIL
and terminate prematurely.

iv) Output that rkPic(SFp
) = 2.



Algorithm 23 (A numerical test – Given a polynomial f , this test may prove
that f is not the characteristic polynomial of the Frobenius).

i) Given f ∈ Z[t] of degree 22, calculate all its zeroes as complex floating
point numbers.

ii) If at least one of them is of an absolute value clearly different from p then
output that f can not be the characteristic polynomial of the Frobenius for any
K3 surface over Fp. Otherwise, output FAIL.

Remark 24. Consequently, the equality rkPic(SFp
) = 2 may be effectively prov-

able having determined Tr(φd) for d = 1, . . . , 9, only. This is of importance since
point counting over F510 is not that fast, even in a decoupled situation.

Possible values of the upper bound. This approach will always yield an
even number for the upper bound of the geometric Picard rank. Indeed, the
bound we use is

rkPic(SFp
) ≤ dim(H2

ét(SFp
,Ql)) − #{ zeroes of fp not of the form ζnp } .

The relevant zeroes come in pairs of complex conjugate numbers. Hence, for a
K3 surface the bound is always even.

Remark 25. There is a famous conjecture due to John Tate [Ta] which implies
that the canonical injection c1 : Pic(SFp

) → H2
ét(SFp

,Ql(1)) maps actually onto

the sum of all eigenspaces for the eigenvalues which are roots of unity. To-
gether with the conjecture of J.-P. Serre claiming that the Frobenius operation
on étale cohomology is always semisimple, this would imply that the bound
above is actually sharp.

It is a somewhat surprising consequence of the Tate conjecture that the
Picard rank of a K3 surface over Fp is always even. For us, this is bad news.
The obvious strategy to prove rkPic(SQ) = 1 for a K3 surface S over Q would
be to verify rkPic(SFp

) = 1 for a suitable place p of good reduction. The Tate
conjecture, however, indicates that there is no hope for such an approach.

4 Proving rk Pic(SQ) = 1

Using the methods described above, on one hand, we can construct even upper
bounds for the Picard rank. On the other hand, we can generate lower bounds
by explicitly stating divisors. In an optimal situation, this may establish an
equality rkPic(SFp

) = 2.
How is it possible that way to reach Picard rank 1 for a surface S defined

over Q? For this, a technique due to R. van Luijk [vL, Remark 2] is helpful.

Lemma 26. Assume that we are given a K3 surface S (3) over F3 and a K3 sur-

face S (5) over F5 which are both of geometric Picard rank 2. Suppose further

that the discriminants of the intersection forms on Pic(S
(3)F3

) and Pic(S
(5)F5

) are

essentially different, i.e., their quotient is not a perfect square in Q.



Then, every K3 surface S over Q such that its reduction at 3 is isomor-

phic to S (3) and its reduction at 5 is isomorphic to S (5) is of geometric Pi-

card rank one.

Proof. The reduction maps ιp : Pic(SQ) → Pic(SFp
) = Pic(S

(p)Fp

) are injec-
tive [Fu, Example 20.3.6]. Observe here, Pic(SQ) is equal to the group of divisors
on SQ modulo numerical equivalence.

This immediately leads to the bound rkPic(SQ) ≤ 2. Assume, by contra-
diction, that equality holds. Then, the reductions of Pic(SQ) are sublattices of
maximal rank in both, Pic(SF3

) = Pic(S
(3)F3

) and Pic(SF5
) = Pic(S

(5)F5
).

The intersection product is compatible with reduction. Therefore, the
quotients Disc Pic(SQ)/ DiscPic(S

(3)F3
) and Disc Pic(SQ)/ DiscPic(S

(5)F5
) are

perfect squares. This is a contradiction to the assumption. �

Remark 27. Suppose that S (3) and S (5) are K3 surfaces of degree two given
by explicit branch sextics in P2. Then, using the Chinese Remainder Theorem,
they can easily be combined to a K3 surface S over Q.

Assume rkPic(S
(3)F3

) = 2 and rkPic(S
(5)F5

) = 2. If one of the two branch
sextics allows a conic tangent in six points and the other a tritangent then the
discriminants of the intersection forms on Pic(S

(3)F3
) and Pic(S

(5)F5
) are essen-

tially different as shown in section 2.

5 An example

Examples 28. We consider two particular K3 surfaces.

i) By X 0, we denote the surface over F3 given by the equation

w2 = (y3 − x2y)2

+ (x2 + y2 + z2)(2x3y + x3z + 2x2yz + x2z2 + 2xy3 + 2y4 + z4) .

ii) Further, let Y 0 be the K3 surface over F5 given by

w2 = x5y+x4y2 +2x3y3 +x2y4 +xy5 +4y6 +2x5z +2x4z2 +4x3z3 +2xz5 +4z6 .

Theorem 29. Let S be any K3 surface over Q such that its reduction mod-

ulo 3 is isomorphic to X
0 and its reduction modulo 5 is isomorphic to Y

0.

Then, rkPic(SQ) = 1.

Proof. We follow the strategy described in Remark 27. For the branch locus
of X 0, the conic given by x2 + y2 + z2 = 0 is tangent in six points. The branch
locus of Y0 has a tritangent given by z − 2y = 0. It meets the branch locus at
[1 : 0 : 0], [1 : 3 : 1], and [0 : 1 : 2].

It remains necessary to show that rkPic(X 0F3
) ≤ 2 and rkPic(Y 0F5

) ≤ 2.
To verify the first assertion, we ran Algorithm 21 together with Algorithm 15 for
counting the points. For the second assertion, we applied Algorithm 22 and Algo-
rithm 17. Note that, for Y 0, the sextic form on the right hand side is decoupled.

�



Corollary 30. Let S be the K3 surface given by

w2 = 11x5y+7x5z+x4y2+5x4yz+7x4z2+7x3y3+10x3y2z+5x3yz2+4x3z3

+ 6x2y4+5x2y3z+10x2y2z2+5x2yz3+5x2z4+11xy5+5xy3z2+12xz5

+ 9y6 + 5y4z2 + 10y2z4 + 4z6 .

i) Then, rkPic(SQ) = 1.

ii) Further, S(Q) 6= ∅. [2 ; 0 : 0 : 1] and [3 ; 0 : 1 : 0] are examples of Q-rational

points on S.

Remark 31. a) For the K3 surface X 0, the assumption of the negative sign leads
to zeroes the absolute values of which range (without scaling) from 2.598 to 3.464.
Thus, the sign in the functional equation is positive. For the decomposition of
the characteristic polynomial fp of the Frobenius, we find (after scaling to zeroes
of absolute value 1)

(t − 1)2(3t20 + 2t19 + 2t18 + 2t17 + t16 − 2t13 − 2t12 − t11 − 2t10

− t9 − 2t8 − 2t7 + t4 + 2t3 + 2t2 + 2t + 3)/3

with an irreducible polynomial of degree 20.

b) For the K3 surface Y 0, the assumption of the negative sign leads to zeroes the
absolute values of which range (without scaling) from 3.908 to 6.398. The sign in
the functional equation is therefore positive. For the decomposition of the scaled
characteristic polynomial of the Frobenius, we find

(t − 1)2(5t20 − 5t19 − 5t18 + 10t17 − 2t16 − 3t15 + 4t14 − 2t13 − 2t12 + t11

+ 3t10 + t9 − 2t8 − 2t7 + 4t6 − 3t5 − 2t4 + 10t3 − 5t2 − 5t + 5)/5 .

c) For X 0 and Y 0, the sextics appearing on the right hand side are smooth.
This was checked by a Gröbner base computation. The numbers of points and
the traces of the Frobenius we determined are reproduced in table 1.

6 An example in determinantal form

Lemma 32. Let M be a matrix of the particular shape

M :=




l2 q 0
c a b
d 0 a


 .

Here, l is supposed to be an arbitrary linear form. a, b, c, d, and q are arbitrary

quadratic forms, q being non-degenerate and not a multiple of a.

Then, q(x, y, z) = 0 defines a smooth conic meeting the sextic given by

det(M(x, y, z)) = 0 only with even multiplicities.

Proof. This may be seen by observing the congruence

det(M) ≡ l2a2 (mod q) . �



Examples 33. i) Let X be the K3 surface over F3 given by w2 = f6(x, y, z) for

f6(x, y, z) = det




l2 q 0
c a b
d 0 a


 =





x6+2x5y+2x5z+2x4y2+x4yz+x4z2+x3y2z

+2x3yz2+2x3z3+x2y4+x2y3z+2x2yz3+xy5+xy4z

+xy3z2+xyz4+xz5+2y6+2y5z+2y4z2+y3z3+yz5 .

Here, we put

q = x2 + y2 + z2, l = 2x + y + z ,

a = x2 + xy + 2z2, b = xy + y2 + yz + 2z2,

c = xy + 2xz + z2, d = 2xy + 2xz + 2y2 + 2z2.

Then, the conic given by q = 0 meets the ramification locus such that all inter-
section multiplicities are even.

ii) Let Y be the K3 surface over F5 given by w2 = f6(x, y, z) for

f6(x, y, z) = det




0 2x2 + 2xy + 4y2 4x2 + 2xz
4x2 + 2xz + 4z2 0 x2 + 2xy + 4y2

2x2 + xy + 4y2 x2 + 2z2 0




= 4x5y + x4y2 + 2x3y3 + 2x2y4 + 4y6 + x5z + 2x4z2 + xz5 .

There appears a degenerate tritangent G given by x = 0. It meets the branch sex-
tic at [0 : 0 : 1] with intersection multiplicity 6. The divisor π∗(G) splits already
over F5.

Remark 34. Over F5, we intended to construct examples of K3 surfaces of the
form w2 = det(M(x, y, z)) where M(x, y, z) is a (3 × 3)-matrix the entries of
which are quadratic forms.

In order to be able to execute investigations over F5 in a reason-
able amount of time, we needed a decoupled right hand side. This means,
f6 := det(M(x, y, z)) must not contain monomials containing both y and z.
In determinantal form, this may easily be achieved by choosing M of the partic-
ular structure

M(x, y, z) :=




0 q1(x, y) r1(x, z)
r2(x, z) 0 q2(x, y)
q3(x, y) r3(x, z) 0


 .

Then, the determinant has the form detM = q1q2q3 + r1r2r3.

Note that, in r1, the monomial z2 is missing. This causes that, in f6, the
coefficient of z6 is equal to zero. Therefore, the line given by x = 0 meets the
sextic “detM(x, y, z) = 0” in only one point.

Theorem 35. Let S be any K3 surface over Q such that its reduction mod-

ulo 3 is isomorphic to X and its reduction modulo 5 is isomorphic to Y .

Then, rkPic(SQ) = 1.



Proof. It remains necessary to show that rkPic(XF3
) ≤ 2 and rkPic(YF5

) ≤ 2.
To verify the first assertion, we ran Algorithm 21 together with Algorithm 15 for
counting the points. For the second assertion, we applied Algorithm 22 and Al-
gorithm 17. Note that, for Y , the sextic form on the right hand side is decoupled.

�

Corollary 36. Let S be the K3 surface given by

w2 = det
0

B

@

10x2+10xy+10xz+10y2+5yz+10z2 7x2+12xy+4y2+70z2 9x2+12xz

9x2+10xy+2xz+4z2 10x2+10xy+5z2 6x2+7xy+4y2+10yz+5z2

12x2+11xy+5xz+14y2+5z2 6x2+12z2 10x2+10xy+5z2

1

C

A

= −80x6 + 194x5y − 424x5z + 941x4y2 − 125x4yz − 863x4z2

+ 3222x3y3 + 520x3y2z − 1735x3yz2 + 1040x3z3

+ 3292x2y4 + 1180x2y3z + 8370x2y2z2 + 8510x2yz3 + 210x2z4

+ 1240xy5 + 2200xy4z + 10900xy3z2 + 7320xy2z3 + 2170xyz4 + 976xz5

+ 224y6 + 560y5z + 3800y4z2 + 8560y3z3 + 4890y2z4 + 2125yz5 .

i) Then, rkPic(SQ) = 1.

ii) Further, S(Q) 6= ∅. For example, [0 ; 0 : 0 : 1] ∈ S(Q).

Remark 37. a) For X , the assumption of the negative sign leads to zeroes the
absolute values of which range (without scaling) from 2.609 to 3.450. Thus, we
have the positive sign in the functional equation. The decomposition of the
characteristic polynomial (after scaling to zeroes of absolute value 1) is

(t−1)2(3t20 + t18−2t17− t15 + t13− t12 +3t11 +3t9− t8 + t7− t5−2t3 + t2 +3)/3

with an irreducible degree 20 polynomial. Therefore, the geometric Picard rank
is equal to 2.

b) For Y , the assumption of the negative sign leads to zeroes the absolute values
of which range (without scaling) from 4.350 to 5.748. The sign in the functional
equation is therefore positive. The decomposition of the scaled characteristic
polynomial is

(t − 1)2(5t20 + 5t19 − 2t18 − 2t17 + 2t16 − 2t15 − 3t14 − 2t12 + 3t10

− 2t8 − 3t6 − 2t5 + 2t4 − 2t3 − 2t2 + 5t + 5)/5 .

Consequently, the geometric Picard rank is equal to 2.

c) We list the numbers of points and the traces of the Frobenius we determined
in table 1.

Details on the experiments. i) Choosing l, a, b, c, d, and q randomly, we
had generated a sample of 30 examples over F3. For each of them, by inspecting
the ideal of the singular locus, we had checked that the branch sextic is smooth.
Further, they had passed the tests described in section 2 to exclude the existence
of a tritangent or a second conic tangent in six points.



For exactly five of the 30 examples, we found an upper bound of two for the
geometric Picard rank. Example 33.i) reproduces one of them. The running time
was around 30 minutes per example.

ii) We had randomly generated a series of 30 examples over F5 in which the
branch locus is smooth and does neither allow a conic tangent in six points nor
further tritangents.

For each of them, we determined the numbers of points over the fields F5d

for d ≤ 9. The method described in section 3 above showed rkPic(SF5
) = 2 for

two of the examples. For these, we further determined the numbers of points
over F510 . Example 33.ii) is one of the two.

The code was running for two hours per example which were almost completely
needed for point counting. The time required to identify and factorize the charac-
teristic polynomials of the Frobenii was negligible. The point counting over F510

took around two days of CPU time per example.

iii) The numbers of points counted and the traces of the Frobenius computed in
the examples are listed in the table below.

Table 1. Numbers of points and traces of the Frobenius

X
0

Y
0

X Y

d #X
0(F

3d ) Tr(φd) #Y
0(F

5d ) Tr(φd) #X (F
3d ) Tr(φd) #Y (F

5d ) Tr(φd)

1 14 4 41 15 16 6 31 5
2 92 10 751 125 94 12 721 95

3 758 28 15 626 0 838 108 15 751 125
4 6 752 190 392 251 1 625 6 742 180 391 701 1 075

5 59 834 784 9 759 376 -6 250 59 671 621 9 781 251 15 625
6 532 820 1 378 244 134 376 -6 250 533 818 2 376 244 155 751 15 125

7 4 796 120 13 150 6 103 312 501 -203 125 4 781 674 -1 296 6 103 878 126 362 500
8 43 068 728 22 006 152 589 156 251 1 265 625 43 081 390 34 668 152 589 507 501 1 616 875

9 387 421 463 973 3 814 704 296 876 7 031 250 387 322 075 -98 415 3 814 693 734 376 -3 531 250
10 3 487 077 812 293 410 95 367 474 609 376 42 968 750 3 486 694 249 -90 153 95 367 469 575 001 37 934 375
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