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Abstract

We describe a method to compute the Brauer-Manin obstruction for
smooth cubic surfaces over Q such that Br(S)/Br(Q) is of order two or four.
This covers the vast majority of the cases when this group is non-zero. Our ap-
proach is to associate a Brauer class with every Galois invariant double-six.
We show that all order two Brauer classes may be obtained in this way.
We also recover Sir P. Swinnerton-Dyer’s result that Br(S)/Br(Q) may take
only five values.

1 Introduction

1.1. –––– For cubic surfaces, weak approximation and even the Hasse principle
are not always fulfilled. The first example of a cubic surface violating the Hasse
principle was constructed by Sir P. Swinnerton-Dyer [SD1]. A series of examples
generalizing that of Swinnerton-Dyer is due to L. J. Mordell [Mo]. An example of a
different sort was given by J.W. S. Cassels and M. J.T. Guy [CG].

A way to explain these examples in a unified manner was provided by
Yu. I. Manin in his book [Ma]. This is what today is called the Brauer-Manin ob-
struction. Manin’s idea is that a non-trivial Brauer class may be responsible for the
failure of weak approximation. We will recall the Brauer-Manin obstruction in some
detail in section 2.

An important point is that only the factor group Br(S)/ Br(Q) of the
Grothendieck-Brauer group of the cubic surface S is relevant. That is isomor-
phic to the Galois cohomology group H1(Gal(Q/Q), Pic(SQ)). A theorem of Sir
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P. Swinnerton-Dyer [SD2] states that, for this group, there are only five possibil-
ities. It may be isomorphic to 0, Z/2Z, Z/2Z × Z/2Z, Z/3Z, or Z/3Z × Z/3Z.
We observed that, today, Swinnerton-Dyer’s theorem from 1993 may easily be es-
tablished by a script in GAP.

The effect of the Brauer-Manin obstruction has been studied by several au-
thors. For example, for diagonal cubic surfaces, the computations were car-
ried out by J.-L. Colliot-Thélène and his coworkers in [CKS]. In this case,
Br(S)/ Br(Q) = Z/3Z. The same applies to the examples of Mordell or Cassels-Guy
which were explained by the Brauer-Manin obstruction in [Ma].

1.2. –––– It seems that, for the cases that H1(Gal(Q/Q), Pic(SQ)) ∼= Z/2Z
or Z/2Z × Z/2Z, no computations have been done up to now. The goal of the
present paper is to fill this gap.

Our starting point is a somewhat surprising observation. It turns out that
H1(Gal(Q/Q), Pic(SQ)) is of order two or four only in cases when, on S, there is a
Galois invariant double-six. This reduces the possibilities for the action of Gal(Q/Q)
on the 27 lines. In general, the automorphism group of the configuration of the
27 lines is the Weyl group W (E6) [Ma, Theorem 23.9]. Among the 350 conjugacy
classes of subgroups in W (E6), exactly 158 stabilize a double-six.

In a previous paper [EJ2], we described a method, to construct smooth cubic
surfaces with a Galois invariant double-six. Our method is based on the hexahedral
form of L. Cremona and Th. Reye and an explicit Galois descent. It is able to
produce examples for each of the 158 conjugacy classes.

Among them, however, there are 56 which even stabilize a sixer. Those may
be constructed by blowing up six points in P2 and, thus, certainly fulfill
weak approximation. There are 26 further conjugacy classes which lead to
H1(Gal(Q/Q), Pic(SQ)) = 0.

1.3. –––– In this article, we compute the Brauer-Manin obstruction for each of
the 76 cases such that H1(Gal(Q/Q), Pic(SQ)) ∼= Z/2Z or Z/2Z×Z/2Z. We start
with two “model cases” for the Brauer groups Z/2Z and Z/2Z× Z/2Z. These are
the maximal subgroup U1 ⊂ W (E6) stabilizing a double-six and the maximal sub-
group U3 ⊂ W (E6) stabilizing a triple of azygetic double sixes [Ko].

In both cases, we compute the Brauer group explicitly. This means, we produce
representatives which we describe as Azumaya algebras. We then show that every
subgroup H ⊂ W (E6) which leads to a Brauer group of order four is actually
contained in U3. Recall that every subgroup H ⊂ W (E6) leading to a Brauer group
of order two is contained in U1. Finally, we prove the main result that the restriction
map is bijective in each of the cases.

1.4. –––– The article is concluded by examples showing the effect of the Brauer-
Manin obstruction. It turns out that, unlike the situation described in [CKS] where a

2



Brauer class of order three typically excludes two thirds of the adelic points, various
fractions are possible.

2 The Brauer-Manin obstruction – Generalities

2.1. –––– For cubic surfaces, all known counterexamples to the Hasse principle
or weak approximation are explained by the following observation.

2.2. Definition. –––– Let X be a projective variety over Q and Br(X) its
Grothendieck-Brauer group. Then, we will call

evν : Br(X)×X(Qν) −→ Q/Z , (α, ξ) 7→ invν(α|ξ)

the local evaluation map. Here, invν : Br(Qν) → Q/Z (and inv∞ : Br(R) → 1
2
Z/Z)

denote the canonical isomorphisms.

2.3. Observation (Manin). —– Let π : X → Spec(Q) be a projective variety
over Q. Choose an element α ∈ Br(X). Then, every Q-rational point x ∈ X(Q)
gives rise to an adelic point (xν)ν ∈ X(AQ) satisfying the condition

∑

ν∈Val(Q)

evν(α, xν) = 0 .

2.4. Remarks. –––– i) It is obvious that altering α ∈ Br(X) by some Brauer class
π∗ρ for ρ ∈ Br(Q) does not change the obstruction defined by α. Consequently, it
is only the factor group Br(X)/π∗Br(Q) which is relevant for the Brauer-Manin ob-
struction.

ii) The local evaluation map evν : Br(X) × X(Qν) → Q/Z is continuous in the
second variable.

iii) Further, for every projective variety X over Q and every α ∈ Br(X), there exists
a finite set S ⊂ Val(Q) such that ev(α, ξ) = 0 for every ν 6∈ S and ξ ∈ X(Qν).

These facts imply that the Brauer-Manin obstruction, if present, is an obstruction
to the principle of weak approximation.

2.5. Lemma. –––– Let π : S → SpecQ be a non-singular cubic surface. Then,
there is a canonical isomorphism

δ : H1(Gal(Q/Q), Pic(SQ)) −→ Br(S)/π∗Br(Q)
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making the diagram

H1(Gal(Q/Q), Pic(SQ)) δ //

d
²²

Br(S)/π∗Br(Q)

res

²²

H2(Gal(Q/Q),Q(S)∗/Q∗
)

H2(Gal(Q/Q),Q(S)∗)/π∗Br(Q)
inf // Br(Q(S))/π∗Br(Q)

commute. Here, d is induced by the short exact sequence

0 → Q(S)∗/Q∗ → Div(SQ) → Pic(SQ) → 0

and the other morphisms are the canonical ones.

Proof. The equality at the lower left corner comes from the fact [Ta, section 11.4]
that H3(Gal(Q/Q),Q∗

) = 0. The main assertion is [Ma, Lemma 43.1.1]. ¤

2.6. Remark. –––– The group H1(Gal(Q/Q), Pic(SQ)) is always finite. Hence,
by Remark 2.4.iii), we know that only finitely many primes are relevant for the
Brauer-Manin obstruction.

3 One double-six

3.1. Lemma. –––– Let S be a non-singular cubic surface over Q. Suppose that,
under the operation of Gal(Q/Q), the 27 lines on S decompose into orbits one of
which is of size 15. Then, the complementary twelve lines form a double-six.

Proof. The Galois group Gal(Q/Q) operates via a certain subgroup G ⊆ W (E6).
Our assumption implies that 5|#G. I.e., G contains the 5-Sylow subgroup of W (E6).

The operation of this is easily described in the blown-up model. The cyclic
group 〈(12345)〉 ⊂ S6 acts on the indices. The two lines E0 and G0 are stationary
while the others form five orbits of size five each. These are E := {E1, . . . , E5},
G := {G1, . . . , G5}, F0 := {F01, . . . , F05}, F1 := {F12, F23, F34, F45, F15}, and, finally,
F2 := {F13, F24, F35, F14, F25}.

The intersection matrix of the five latter orbits turns out to be



−5 20 5 10 10
20 −5 5 10 10
5 5 −5 15 15

10 10 15 5 5
10 10 15 5 5




.
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We assert that a size 15 orbit must be formed by F0, F1, and F2.
Indeed, three orbits of size five may be put together to form an orbit only if, for

the corresponding divisors, D(D+D′+D′′) = D′(D+D′+D′′) = D′′(D+D′+D′′).
This excludes all combinations, except for E∪G∪F1, (E∪G∪F2, and F0∪F1∪F2).
The set E∪G∪F1 contains, however, only two fivers of skew lines, namely E and G.
As the lines in F1 are missing, this is a contradiction. ¤

3.2. Remark. –––– U1, the largest subgroup of W (E6) stabilizing a double-six is
isomorphic to S6 × Z/2Z of order 1440.

3.3. Notation. –––– Let S be a non-singular cubic surface. Assume that twelve
of the 27 lines on S form a double-six which is Gal(Q/Q)-invariant. Choose such
a double-six. Then, there are two kinds of tritangent planes. We have 15 tri-
tangent planes which meet S only within the 15 complementary lines. The other
30 tritangent planes contain one of the 15 lines and two from the double-six.

We write F30 for a product over the linear forms defining the 30 tritan-
gent planes and F15 for a product over the linear forms defining the 15 others.
Note that F30/F

2
15 ∈ Q(S).

3.4. Theorem. –––– Let π : S → SpecQ be a non-singular cubic surface such
that the 27 lines have orbit structure [12, 15] under the operation of Gal(Q/Q).

i) Then, Br(S)/π∗Br(Q) = Z/2Z.

ii) For 0 6= c ∈ Br(S)/π∗Br(Q), a representative c of res(c) ∈ Br(Q(S))/π∗Br(Q)
is given as follows.

Consider the quadratic number field Q(
√

D) splitting the double-six into two sixers.
Then, apply to the class

(F30/F
2
15) ∈ Ĥ0(Gal(Q(

√
D)/Q),Q(

√
D)(S)∗) = Q(S)∗/NQ(

√
D)(S)∗

the periodicity isomorphism to H2 and the inflation map.

Proof. First step. Inflation.

We have the isomorphism δ : H1(Gal(Q/Q), Pic(SQ)) → Br(S)/π∗Br(Q) and will
work with the group on the left.

An element of the group Gal(Q/Q) may either flip the two sixers forming the
twelve lines or not. Therefore, there is an index two subgroup stabilizing the sixers.
This group corresponds to the quadratic number field Q(

√
D). By Fact 3.5 be-

low, we know H1(Gal(Q/Q(
√

D)), Pic(SQ)) = 0. The inflation-restriction-sequence
yields that

inf : H1(Gal(Q(
√

D)/Q), Pic(SQ)Gal(Q/Q(
√

D))) −→ H1(Gal(Q/Q), Pic(SQ))

is an isomorphism.
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Second step. Divisors.

The orbit structure of the 27 lines under the operation of Gal(Q/Q(
√

D)) is [6, 6, 15].
Indeed, when going over to an index two subgroup an orbit of odd size must not split.
Denote by E, G, and F the divisors formed by summing over the first, second, and
third orbit, respectively. E, G, and F clearly define elements in Pic(SQ)Gal(Q/Q(

√
D)).

Write P for the subgroup generated by these three divisors.
P is of finite index in Pic(SQ)Gal(Q/Q(

√
D)). Indeed, every element of Pic(SQ) is

an integral linear combination of the divisors given by the 27 lines. Therefore, every
element in Pic(SQ)Gal(Q/Q(

√
D)) is a Q-linear combination of E, G, and F and the

denominators are at most six or 15.
We claim that the index of P is a divisor of 15. In fact, we have the relation

5E + 5G− 4F ∼ 0. Further, the discriminant of the lattice spanned by E and F is∣∣∣∣
−6 30
30 75

∣∣∣∣ = −1350 = (−6)·152 .

Consequently, P is of odd index in Pic(SQ)Gal(Q/Q(
√

D)). This implies that the nat-
ural homomorphism

H1(Gal(Q(
√

D)/Q), P ) −→ H1(Gal(Q(
√

D)/Q), Pic(SQ)Gal(Q/Q(
√

D)))

is a bijection.

Third step. The fundamental class.

As Gal(Q(
√

D)/Q) is a cyclic group of order two, we have

H2(Gal(Q(
√

D)/Q),Z) ∼= Z/2Z .

Write u for the non-zero element. Then, the periodicity isomorphism is given by

∪ u : Ĥ−1(Gal(Q(
√

D)/Q), P ) −→ H1(Gal(Q(
√

D)/Q), P ) .

Observe that, for a cyclic group of order two, this isomorphism is canonical as there
is no ambiguity in the choice of u.

Fourth step. Computing Ĥ−1.

We have P = S/S0 for S := ZE⊕ZG⊕ZF and S0 the group of the principal divisors

contained in S. The relation Ĥ−1(Gal(Q(
√

D)/Q), S) = 0 follows immediately from
the definition. Hence, the short exact sequence

0 → S0 → S → P → 0

yields

Ĥ−1(Gal(Q(
√

D)/Q), P ) =

= ker(Ĥ0(Gal(Q(
√

D)/Q), S0) → Ĥ0(Gal(Q(
√

D)/Q), S))

= ker(S
Gal(Q(

√
D)/Q)

0 /NS0 → SGal(Q(
√

D)/Q)/NS)

= (S
Gal(Q(

√
D)/Q)

0 ∩NS)/NS0 .
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Here, the norm map acts by the rule N : aE + bG+ cF 7→ (a+ b)E +(a+ b)G+2cF .
Hence, NS = 〈E +G, 2F 〉. Principal divisors are characterized by the property that
all intersection numbers are zero. A direct calculation shows

S
Gal(Q(

√
D)/Q)

0 ∩NS = 〈5E + 5G− 4F 〉 .

The generator is the norm of any divisor of the form aE + (5 − a)G − 2F .
None of these is principal. Indeed, the intersection number with E is equal
to −6a + 30(5 − a) − 60 = −36a + 90 and this terms does not vanish for a ∈ Z.
Assertion i) is proven.

Fifth step. The representative.

We actually constructed a non-zero element c′ ∈ H1(Gal(Q/Q), Pic(SQ)). The cal-
culations given above show that

d(c′) = (F30/F
2
15) ∪ u .

Indeed, it is easy to see that div(F30/F
2
15) = 5E + 5G − 4F . The assertion now

follows from the commutative diagram given in Lemma 2.5. ¤

3.5. Fact. –––– Let S be a non-singular cubic surface over a field K obtained by
blowing up P2

K in six K-rational points which form a Galois invariant set.

Then, H1(Gal(K/K), Pic(SK)) = 0.

Proof. According to Shapiro’s lemma, we may replace Gal(K/K) by a finite quo-
tient G. We have Pic(SK) = ZH ⊕ ZE1 ⊕ . . .⊕ ZE6 for H the hyperplane section
of P2 and E1, . . . , E6 the exceptional divisors. Therefore, as a G-module,

Pic(SK) = Z⊕ Z[G/H1]⊕ . . .⊕ Z[G/Hl]

for l the number of Galois orbits and certain subgroups H1, . . . , Hl. Clearly, we
have H1(G,Z) = Hom(G,Z) = 0.

On the other hand, for any subgroup H, the G-module Z[G/H] is equipped with
a non-degenerate pairing. Hence, Z[G/H] ∼= Hom(Z[G/H],Z) and

H1(G,Z[G/H]) ∼= H1(G, Hom(Z[G/H],Z))
∼= Ĥ0(G, Hom(Z[G/H],Q/Z))
∼= Hom

(
Ĥ−1(G,Z[G/H]),Q/Z

)

by the duality theorem for cohomology of finite groups [CE, Chap. XII, Corol-
lary 6.5]. Finally, Ĥ−1(G,Z[G/H]) vanishes as is seen immediately from the defini-
tion. ¤
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4 Triples of azygetic double-sixes

4.1. Definition. –––– Let π : S → SpecQ be a smooth cubic surface and D be a
Galois invariant double-six. This induces a group homomorphism Gal(Q/Q) → U1,
given by the operation on the 27 lines.

i) Then, the image of the non-zero element under the natural homomorphism

Z/2Z ∼= H1(U1, Pic(SQ)) −→ H1(Gal(Q/Q), Pic(SQ))
δ−→ Br(S)/π∗Br(Q)

is called the Brauer class associated with the double-six D . We denote it by cl(D).

ii) This defines a map

cl : N
Gal(Q/Q)
S −→ Br(S)/π∗Br(Q)

from the set of all Galois invariant double-sixes.

4.2. –––– Two double-sixes may have either four or six lines in common. In the
former case, the two are called syzygetic, in the latter azygetic. A pair of azygetic
double-sixes is built as follows.

(
E0 E1 E2 E3 E4 E5

G0 G1 G2 G3 G4 G5

)
,

(
E0 E1 E2 F45 F35 F34

F12 F02 F01 G3 G4 G5

)
.

The twelve lines which appear only once form a third double-six
(

F12 F02 F01 E3 E4 E5

G0 G1 G2 F45 F35 F34

)

azygetic to the other two.

4.3. –––– The largest group U3 stabilizing a triple of azygetic double-
sixes is isomorphic to (S3 × S3) n Z/2Z of order 72. The induced or-
bit structure is [6, 6, 6, 9]. The orbits themselves are, in the notation above,
{E0, E1, E2, G3, G4, G5}, {G0, G1, G2, E3, E4, E5}, {F01, F02, F12, F34, F35, F45}, and
{F03, F04, F05, F13, F14, F15, F23, F24, F25}.

The quadratic extension Q(
√

D) splitting one of the three double-sixes into two
sixers automatically splits the others, too. The operation of Gal(Q/Q(

√
D)) yields

the orbits {E0, E1, E2}, {E3, E4, E5}, {G0, G1, G2}, {G3, G4, G5}, {F01, F02, F12},
{F34, F35, F45}, and {F03, F04, F05, F13, F14, F15, F23, F24, F25}.

4.4. Theorem. –––– Let π : S → SpecQ be a non-singular cubic surface. As-
sume that Gal(Q/Q) stabilizes a triple {D1,D2,D3} of azygetic double-sixes and
that the 27 lines have orbit structure [6, 6, 6, 9].

i) Then, Br(S)/π∗Br(Q) = Z/2Z× Z/2Z.
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ii) The three non-zero elements are cl(D1), cl(D2), and cl(D3).

Proof. First step. Inflation.

We will follow the same strategy as in the proof of Theorem 3.4. In particular, we
will work with the group H1(Gal(Q(

√
D)/Q), Pic(SQ)Gal(Q/Q(

√
D))).

Second step. Divisors.

The orbit structure of the 27 lines under the operation of Gal(Q/Q(
√

D))
is [3, 3, 3, 3, 3, 3, 9]. For the lines and double-sixes, we use the notation introduced
in 4.2. Further, denote by

E(1), E(2), G(1), G(2), F (1), F (2), F (3)

the divisors formed by summing over the orbits. These clearly define elements in
Pic(SQ)Gal(Q/Q(

√
D)). We write P for the subgroup generated by these seven divisors.

Every element of Pic(SQ) is an integral linear combination of the divisors given
by the 27 lines. Therefore, every element in Pic(SQ)Gal(Q/Q(

√
D)) is a Q-linear combi-

nation of E(1), E(2), G(1), G(2), F (1), F (2), and F (3) and the denominators are divisors
of nine. Consequently, P is of odd index in Pic(SQ)Gal(Q/Q(

√
D)). This implies that

the natural homomorphism

H1(Gal(Q(
√

D)/Q), P ) −→ H1(Gal(Q(
√

D)/Q), Pic(SQ)Gal(Q/Q(
√

D)))

is a bijection.

Third step. The fundamental class.

Again, we write u for the non-zero element in H2(Gal(Q(
√

D)/Q),Z) ∼= Z/2Z.
Then, the periodicity isomorphism is given by

∪ u : Ĥ−1(Gal(Q(
√

D)/Q), P ) −→ H1(Gal(Q(
√

D)/Q), P ) .

Fourth step. Computing Ĥ−1.

We have P = S/S0 for S := ZE(1)⊕ZE(2)⊕ZG(1)⊕ZG(2)⊕ZF (1)⊕ZF (2)⊕ZF (3)

and S0 the group of the principal divisors contained in S. To simplify formulas, we
will use the notation D(1) := E(1)+G(2), D(2) := E(2)+G(1), and D(3) := F (1)+F (2).

The relation Ĥ−1(Gal(Q(
√

D)/Q), S) = 0 follows immediately from the defini-
tion. Hence, the short exact sequence 0 → S0 → S → P → 0 yields, as above,

Ĥ−1(Gal(Q(
√

D)/Q), P ) = (S
Gal(Q(

√
D)/Q)

0 ∩NS)/NS0 .

Here, the norm map acts by the rule

N : a1E
(1) + a2E

(2) + b1G
(1) + b2G

(2) + c1F
(1) + c2F

(2) + c3F
(3)

7→ (a1 + b2)D
(1) + (a2 + b1)D

(2) + (c1 + c2)D
(3) + 2c3F

(3) .
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Hence, NS = 〈D(1), D(2), D(3), 2F (3)〉. Principal divisors are characterized by the
property that all intersection numbers are zero. A direct calculation shows

S
Gal(Q(

√
D)/Q)

0 ∩NS

= {d1D
(1) + d2D

(2) + d3D
(3) + 2eF (3) | d1 + d2 + d3 + 3e = 0}

= 〈D(1) −D(2), D(1) −D(3), D(1) + D(2) + D(3) − 2F (3)〉 .

It is easy to see that E(1) + G(1) + F (1) − F (3) is a principal divisor. Hence,

D(1) + D(2) + D(3) − 2F (3) ∈ NS0 .

Further, NS0 contains all principal divisors which are divisible by 2. As it turns out
that these two sorts of elements generate the whole of NS0, assertion i) follows.

Fifth step. The representatives.

We actually constructed non-zero elements c1, c2, c3 ∈ H1(Gal(Q/Q), Pic(SQ)), rep-
resented by D(1) −D(2), D(1) −D(3), D(2) −D(3) ∈ S

Gal(Q(
√

D)/Q)
0 ∩NS. The first

representative is equivalent to

3(D(1)−D(2)) + 2(D(1)+D(2)+D(3)−2F (3)) + 6(D(2)−D(3)) = div(F30/F
2
15) .

Hence, d(c1) = (F30/F
2
15)∪u. The corresponding Brauer class is cl

(
(E0...E5

G0...G5
)
)
. For the

two other classes, the situation is analogous. ¤

4.5. Remark. –––– In the [6, 6, 6, 9]-case, the 45 tritangent planes decompose into
five orbits.

• [Ei, Gj, Fij] for i, j ∈ {0, 1, 2} or i, j ∈ {3, 4, 5}, i 6= j. (twelve planes)

• [Ei, Gj, Fij] for i ∈ {0, 1, 2} and j ∈ {3, 4, 5}. (nine planes)

• [Ei, Gj, Fij] for i ∈ {3, 4, 5} and j ∈ {0, 1, 2}. (nine planes)

• [Fi0i1 , Fi2i3 , Fi4i5 ] for {i0, i1, i2, i3, i4, i5} = {0, 1, 2, 3, 4, 5},
i0, i1 ∈ {0, 1, 2}, and i2, i3 ∈ {3, 4, 5}. (nine planes)

• [Fi0i1 , Fi2i3 , Fi4i5 ] for {i0, i2, i4} = {0, 1, 2} and {i1, i3, i5} = {3, 4, 5}. (six planes)

The three forms of type F30 are obtained by multiplying the linear forms defining the
orbit of size twelve together with those for two of the orbits of size nine. Actually, the
size twelve orbit is irrelevant. Up to a scalar factor, it is the square of a sextic form.

4.6. Remark. –––– Triples of azygetic double-sixes have been studied by the clas-
sical algebraic geometers. See, for example, [Ko, §6]. A result from the 19th century
states that there are exactly 120 triples of azygetic double-sixes on a smooth cu-
bic surface. Actually, the automorphism group W (E6) acts transitively on them.
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5 The general case of a Galois group stabilizing

a double-six

5.1. –––– To explicitly compute H1(G, Pic(SQ)) as an abstract abelian group,
one may use Manin’s formula [Ma, Proposition 31.3]. This means the following.

Pic(SQ) is generated by the 27 lines. The group of all permutations of the
27 lines respecting the intersection pairing is isomorphic to the Weyl group W (E6)
of order 51 840. The group G operates on the 27 lines via a finite quotient G/H
which is isomorphic to a subgroup of W (E6). Then,

H1(G, Pic(SQ)) ∼= Hom(ND ∩D0/ND0,Q/Z) .

Here, D is the free abelian group generated by the 27 lines and D0 is the subgroup
of all principal divisors. N : D → D denotes the norm map as a G/H-module.

5.2. –––– Using Manin’s formula, we computed H1(G, Pic(SQ)) for each of the
350 conjugacy classes of subgroups of W (E6). The computations in GAP took ap-
proximately 28 seconds of CPU time. Thereby, we recovered the following result of
Sir P. Swinnerton-Dyer [SD2]. (See also P. K. Corn [Co].)

5.3. Theorem (Swinnerton-Dyer). —– Let S be a non-singular cubic surface
over Q. Then, H1(Gal(Q/Q), Pic(SQ)) may take only five values, 0, Z/2Z,
Z/2Z× Z/2Z, Z/3Z, and Z/3Z× Z/3Z. ¤

5.4. Remark. –––– One has H1(G, Pic(SQ)) = 0 in 257 of the 350 cases.

5.5. –––– More importantly, we make the following observation.

Proposition. Let S be a non-singular cubic surface over Q.

i) If H1(Gal(Q/Q), Pic(SQ)) = Z/2Z then, on S, there is a Galois invariant double-
six.

ii) If H1(Gal(Q/Q), Pic(SQ)) = Z/2Z× Z/2Z then, on S, there is a triple of azy-

getic double-sixes stabilized by Gal(Q/Q).

Proof. This is seen by a case-by-case study using GAP. ¤

5.6. Remarks. –––– i) On the other hand, if there is a Galois invariant double-six
on S then H1(Gal(Q/Q), Pic(SQ)) is either 0, or Z/2Z or Z/2Z× Z/2Z.

ii) Proposition 5.5 immediately provokes the question whether the cohomology
classes are always “the same” as in the [12, 15]- and [6, 6, 6, 9]-cases. I.e., of the
type cl(D) for certain Galois invariant double-sixes. Somewhat surprisingly, this is
indeed the case.
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5.7. Lemma. –––– Let S be a non-singular cubic surface over an algebraically
closed field, H a group of automorphisms of the configuration of the 27 lines, and
H ′ ⊆ H any subgroup. Each of the criteria below is sufficient for

res : H1(H, Pic(S )) → H1(H ′, Pic(S ))

being an injection.

i) H and H ′ generate the same orbit structure.

ii) H ′ is of odd index in H and H1(H, Pic(S )) is a 2-group.

iii) H ′ is a normal subgroup in H and rk Pic(S )H = rk Pic(S )H′
.

Proof. i) This follows immediately from the formula of Manin [Ma, Proposi-
tion 31.3].

ii) Here, cores ◦ res : H1(H, Pic(S )) → H1(H, Pic(S )) is the multiplication by an
odd number, hence the identity.

iii) The assumption ensures that H/H ′ operates trivially on Pic(S )H′
.

Hence, H1
(
H/H ′, Pic(S )H′)

= 0. The inflation-restriction sequence

0 → H1
(
H/H ′, Pic(S )H′) → H1(H, Pic(S )) → H1(H ′, Pic(S ))

yields the assertion. ¤

5.8. Proposition. –––– Let S be a non-singular cubic surface over an alge-
braically closed field, U1 the group of automorphisms of the configuration of the
27 lines stabilizing a double-six and U3 the group stabilizing a triple of azygetic
double-sixes.

a) Let H ⊆ U1 be such that H1(H, Pic(S )) = Z/2Z. Then, the restriction

res : H1(U1, Pic(S )) −→ H1(H, Pic(S ))

is a bijection.

b) Let H ⊆ U3 be a subgroup such that H1(H, Pic(S )) = Z/2Z×Z/2Z. Then, the
restriction

res : H1(U3, Pic(S )) −→ H1(H, Pic(S ))

is a bijection.

Proof. The proof has a computer part. We use the machine to verify that the
criteria formulated in Lemma 5.7 suffice to establish the result in all cases.

b) Here, the subgroup (A3×A3)nZ/2Z of order 18, as well as the two intermediate
groups of order 36 produce the same orbit structure [6, 6, 6, 9]. It turns out that
every subgroup H which leads to Z/2Z × Z/2Z is a subgroup of odd (1, 3, or 9)
index in one of those.

12



a) By Lemma 5.7.ii), we may test this on the 2-Sylow subgroups of H and U1. U
(2)
1 is

a group of order 32 such that the Picard rank is equal to two. It turns out that,
for 2-groups H ′ such that H1(H ′, Pic(S )) = Z/2Z, the Picard rank may be only
two or three.

There is a maximal 2-group such that the Picard rank is three. This is a group of
order 16 generating the orbit structure [1, 1, 1, 4, 4, 4, 4, 4, 4]. To prove the assertion
for this group, one first observes that it is of index three in a group of order 48
with orbit structure [3, 12, 12]. This group, in turn, is of index two in the maximal
group with that orbit structure. That one, being of order 96, is the maximal group
stabilizing a double-six and a tritangent plane containing three complementary lines.
It is of index 15 in U1. ¤

5.9. Corollary. –––– Let H ′ ⊆ H ⊆ U1 be arbitrary. Then, for the restriction
map res : H1(H, Pic(S )) −→ H1(H ′, Pic(S )), there are the following limitations.

i) If H1(H, Pic(S )) = 0 then H1(H ′, Pic(S )) = 0.

ii) If H1(H, Pic(S )) ∼= Z/2Z and H1(H ′, Pic(S )) 6= 0 then res is an injection.

iii) If H1(H, Pic(S )) ∼= Z/2Z×Z/2Z then H1(H ′, Pic(S )) ∼= Z/2Z×Z/2Z or 0.
In the former case, res is a bijection. The latter is possible only when H ′ stabilizes
a sixer.

Proof. We know from Remark 5.6.i) that both groups may be only 0, Z/2Z, or
Z/2Z× Z/2Z.

i) If H1(H ′, Pic(S )) were isomorphic to Z/2Z or Z/2Z×Z/2Z then the restriction
from U1, respectively U3, to H ′ would be the zero map.

ii) is immediate from the computations above.

iii) If H1(H ′, Pic(S )) ∼= Z/2Z then, by composition, we could produce the zero
map on Z/2Z. The final assertion is an experimental observation. ¤

5.10. Remark (Pairs of syzygetic double-sixes). —– U2, the largest group sta-
bilizing two syzygetic double-sixes is of order 96. In view of Proposition 5.5.ii),
this ensures that H1(U2, Pic(S )) ∼= Z/2Z or 0. Actually, it is isomorphic to Z/2Z.
Corollary 5.9.ii) implies that the Brauer classes associated with the two double-
sixes coincide. Both are equal to the non-zero element.

Actually, the group U2 leads to an orbit structure [1, 4, 6, 8, 8]. It is easy to
compute H1(U2, Pic(S )) directly using the same methods as in the proof of Theo-
rem 4.4.

5.11. Theorem. –––– Let π : S → SpecQ be an arbitrary smooth cubic surface.

a) Then, the map

cl : N
Gal(Q/Q)
S → Br(S)/π∗Br(Q)

has the following properties.
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i) If D1,D2 are syzygetic double-sixes then cl(D1) = cl(D2).

ii) If D1,D2 are azygetic then cl(D1)+cl(D2)+cl(D3) = 0 for D3 the third double-six
of the corresponding triple.

b) If Br(S)/π∗Br(Q) 6= 0 then

i) cl(D) 6= 0 for every Galois invariant double-six. Further, im cl contains exactly
the elements of order two.

ii) Two double-sixes D1, D2 are syzygetic if and only if cl(D1) = cl(D2) and azygetic
if and only if cl(D1) 6= cl(D2). ¤

6 Explicit Brauer-Manin obstruction

6.1. –––– Let S be a non-singular cubic surface with a Galois invariant
double-six D . This determines a class c := cl(D) ∈ Br(S)/π∗Br(Q). Choose a
representative c ∈ Br(S) and the corresponding rational function F30/F

2
15 ∈ Q(S).

Finally, let Q(
√

D) be the quadratic extension splitting the double-six into two six-
ers.

6.2. Fact. –––– The quaternion algebra over Q(S) corresponding to c is

Q := Q(S){X,Y }/(XY + YX, X2 −D, Y 2 − F30/F
2
15) .

6.3. Remark. –––– It is well known that a class in Br(S) is uniquely determined
by its restriction to Br(Q(S)). The corresponding quaternion algebra over the whole
of S may be described as follows.

Let x ∈ S. We know that div(F30/F
2
15) is the norm of a divisor on SQ(

√
D). That is

necessarily locally principal. I.e., we have a rational function fx = ax + bx

√
D such

that div(Nfx) = div(F30/F
2
15) on a Zariski neighbourhood of x. Over the maximal

such neighbourhood Ux, we define a quaternion algebra by

Qx := OUx{X, Yx}/(XYx + YxX, X2 −D,Y 2
x − F30

F 2
15Nfx

) .

In particular, in a neighbourhood Uη of the generic point, we have the quaternion
algebra Qη := OUη{X,Y }/(XY + YX,X2 −D, Y 2 − F30/F

2
15).

Over Uη ∩ Ux, there is the isomorphism ιη,x : Qη|Uη∩Ux → Qx|Uη∩Ux , given by

X 7→ X, Y 7→ (ax + bxX)Yx .

For two points x, y ∈ S, the isomorphism ιη,y ◦ ι−1
η,x : Qx|Uη∩Ux∩Uy → Qy|Uη∩Ux∩Uy

extends to Ux ∩ Uy.
Hence, the quaternion algebras Qx may be glued together along these isomor-

phisms. This yields a quaternion algebra Q over S.
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6.4. Corollary. –––– Let π : S → SpecQ be a non-singular cubic surface with a
Galois invariant double-six D . Further, let p be a prime number and c ∈ Br(S) a
representative of the class cl(D) ∈ Br(S)/π∗Br(Q).

Then, the local evaluation map evp(c, . ) : S(Qp) → Q/Z is given as follows.

i) Let x ∈ S(Qp). Choose a rational function fx such that div(Nfx) = div(F30/F
2
15).

Then,

evp(c, x) =

{
0 if F30

F 2
15Nfx

(x) ∈ Q∗
p is in the image of N : Qp(

√
D) −→ Qp ,

1
2

otherwise.

Here, F30/F
2
15 ∈ Q(S) is the rational function corresponding to the representative c.

Q(
√

D) is the quadratic field splitting the double-six into two sixers.

ii) If x is not contained in any of the 27 lines then fx ≡ 1 is allowed.

Proof. Assertion i) immediately follows from the above. For ii), recall that
div(F30/F

2
15) is a linear combination of the 27 lines. ¤

6.5. –––– As already noticed in Remark 2.6, the local evaluation map carries in-
formation only at finitely many primes. To exclude a particular prime, the following
elementary criteria are highly practical.

6.6. Lemma (The local H1-criterion). —– Let S be a non-singular cubic sur-
face over Q. Suppose that, for the decomposition group Gp

∼= Gal(Qp/Qp) at a
prime number p,

H1(Gp, Pic(SQ)) = 0 .

Then, for every α ∈ Br(S), the value of evp(α, x) is independent of x ∈ S(Qp).

Proof. The local evaluation map evp factors via Br(S ×SpecQ SpecQp). By [Ma,
Lemma 43.1.1], we have that

Br(S ×SpecQ SpecQp)/ Br(Qp) ∼= H1(Gal(Qp/Qp), Pic(SQp
)) .

Together with the assumption, this yields Br(S ×SpecQ SpecQp) = Br(Qp) = Q/Z.
The assertion follows. ¤

6.7. Remark. –––– Recall from Remark 5.4 that we have H1(G, Pic(SQ)) = 0 for
257 of the 350 possible conjugacy classes of subgroups.

6.8. Corollary. –––– Let π : S → SpecQ be a non-singular cubic surface with a
Galois invariant double-six D . Further, let c ∈ Br(S) be a representative of the
class cl(D) ∈ Br(S)/π∗Br(Q).

If a prime number p splits in the quadratic number field Q(
√

D) splitting the two
sixers then the value of evp(c, x) is independent of x ∈ S(Qp).

Proof. This criterion is, of course, an immediate consequence of Corollary 6.4.
In view of Fact 3.5, it is also a particular case of the local H1-criterion. ¤
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6.9. Proposition. –––– Let π : S → SpecQ be a non-singular cubic surface with
a Galois invariant double-six D . Further, let c ∈ Br(S) be a representative of the
class cl(D) ∈ Br(S)/π∗Br(Q).

Then, for a prime number p such that

• the field extension Q(
√

D)/Q splitting the double-six is unramified at p,

• the reduction Sp is geometrically irreducible and no Qp-rational point on S reduces
to a singularity of Sp,

the value of evp(c, x) is independent of x ∈ S(Qp).

Proof. If p splits in the quadratic extension Q(
√

D) then the assertion is true, triv-
ially. Thus, we may assume that p remains prime in Q(

√
D). The requirement that

z ∈ Q∗
p is a norm from Qp(

√
D) then simply means that νp(z) is even.

Further, we may restrict our considerations to points x ∈ S(Qp) which are
not contained in any of the 27 lines on S. Indeed, the local evaluation map is
p-adically continuous and the complement of the 27 lines is dense in S(Qp) according
to Hensel’s lemma. In particular, we may work with F30/F

2
15 itself.

By assumption, we have a model S of S over Zp such that the special fiber
of S ×SpecZp Spec OQp(

√
D) is irreducible. We delete its singularities to obtain a

model S , smooth over OQp(
√

D). According to the last assumption, every x ∈ S(Qp)
determines a unique extension x ∈ S (OQp(

√
D)).

It will suffice to construct a Zariski neighbourhood of x such that evp(c, . )
is constant. We have, on the geometric generic fiber,

div(F30/F
2
15) = 5E + 5G− 4F .

Here, the divisors E := E1 + . . . + E6, G := G1 + . . . + G6, and F := F12 + . . . + F56

are Gal(Q/Q(
√

D))-invariant, and, therefore, defined over S×SpecQp SpecQp(
√

D).
S is a regular model of that variety. Hence, every divisor on S is locally principal.
This yields, in a Zariski neighbourhood Ux,

F30/F
2
15 = Cpke5g5/f 4

for e, g, and f rational functions corresponding to the divisors E, G, and F , respec-
tively, k ∈ Z, and a certain C ∈ Γ(Ux,O∗

Ux
). Note that we get by with one power

of p since the special fiber is irreducible.
The scheme S is acted upon by the conjugation σ ∈ Gal(Q(

√
D)/Q). Restrict-

ing to an open subscheme, if necessary, we may assume that Ux is invariant under σ.
The two sixers are interchanged by σ. Consequently,

σ(e) = cplg, σ(f) = c′pl′f

for l, l′ ∈ Z and regular functions c, c′, invertible on Ux. This yields

F30/F
2
15 = Cc′2C−5pk+2l′−5lN(e5/f 2) .
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For x0 ∈ S(Qp) specializing to Ux, we therefore see

νp

(
(F30/F

2
15)(x0)

) ≡ k + l (mod 2) .

In particular, the local evaluation map evp(c, . ) : S(Qp) → Q/Z is constant on the
set of all points specializing to Ux. As the point x ∈ S(Qp) defining the open sub-
set Ux is arbitrary and the special fiber Sp is irreducible, this implies the assertion.

¤

6.10. Remark. –––– Assuming resolution of singularities in unequal character-
istic, there is a proper model S of S being a regular scheme. Then, for p a
prime unramified in Q(

√
D), the evaluation evp(c, x) depends only on the com-

ponent of S ×SpecZ SpecFp2 , the point x specializes to. If p is ramified and p 6= 2
then we have at least that evp(c, x) is determined by the reduction of x modulo p.

7 Explicit Galois descent

7.1. –––– Recall that in [EJ2], we described a method to construct non-singular
cubic surfaces over Q with a Galois invariant double-six. The idea was to start with
cubic surfaces in hexahedral form. For these, we developed an explicit version of
Galois descent.

7.2. –––– More concretely, given a starting polynomial f ∈ Q[T ] of degree six
without multiple zeroes, we construct a cubic surface S(a0,...,a5) over Q such that

S(a0,...,a5) ×SpecQ SpecQ

is isomorphic to the surface S(a0,...,a5) in P5 given by

X3
0 + X3

1 + X3
2 + X3

3 + X3
4 + X3

5 = 0 ,

X0 + X1 + X2 + X3 + X4 + X5 = 0 ,

a0X0 + a1X1 + a2X2 + a3X3 + a4X4 + a5X5 = 0 .

Here, a0, . . . , a5 ∈ Q are the zeroes of f .
The operation of an element σ ∈ Gal(Q/Q) on S(a0,...,a5) ×SpecQ SpecQ goes

over into the automorphism πσ ◦tσ : S(a0,...,a5) → S(a0,...,a5) . Here, πσ permutes the
coordinates according to the rule aπσ(i) = σ(ai) while tσ is the naive operation of σ
on S(a0,...,a5) as a morphism of schemes twisted by σ.

7.3. Remarks. –––– i) More details on the theory are given in [EJ2, Theo-
rem 6.6].
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ii) On S(a0,...,a5), there are the 15 obvious lines given by

Xi0 + Xi1 = Xi2 + Xi3 = Xi4 + Xi5 = 0

for {i0, i1, i2, i3, i4, i5} = {0, 1, 2, 3, 4, 5}. They clearly form a Galois invariant set.
The complement is a double-six. Correspondingly, there are the 15 obvious tritan-
gent planes given by Xi + Xj = 0 for i 6= j.

There are formulas for the 30 non-obvious tritangent planes, too [EJ2, Proposi-
tion 7.1.ii)]. What is important is that they are defined over Q(a0, . . . , a5,

√
d4) for

d4(a0, . . . , a5) := σ2
2 − 4σ4 + σ1(2σ3 − 3

2
σ1σ2 + 5

16
σ3

1)

the Coble quartic. Here, σi is the i-th elementary symmetric function in a0, . . . , a5.

Further, an element σ ∈ Gal(Q/Q) flips the double-six if and only if it defines the
conjugation of Q(

√
D) for D := d4 ·∆, the second factor denoting the discriminant

of a0, . . . , a5 [EJ2, Proposition 7.4].

iii) The smooth manifold S(R) has two connected components if and only if exactly
four of the a0, . . . , a5 are real and d4(a0, . . . , a5) > 0. Otherwise, S(R) is connected
[EJ2, Corollary 8.4].

iv) The descent variety S(a0,...,a5) may easily be computed completely explicitly.
In fact, [EJ2, Algorithm 6.7] yields a quaternary cubic form with 20 rational co-
efficients.

7.4. –––– Using the criteria provided in section 6, we have the following strategy
to compute the Brauer-Manin obstruction on S(a0,...,a5).

Strategy (to explicitly compute the Brauer-Manin obstruction on S(a0,...,a5)).

i) Compute D := d4(a0, . . . , a5)·∆(a0, . . . , a5). Determine the list L1 of all primes at
which Q(

√
D) is ramified.

ii) By a Gröbner basis calculation, determine all the primes outside L1 at which
S(a0,...,a5) has bad reduction. Write them into a list L2.

iii) From L2, delete all primes which split in Q(
√

D). Further, erase all those primes
from L2 for which the singular points on the reduction modulo p are not defined
over Fp or do not lift to S(a0,...,a5) ×SpecZ SpecZ/pkZ for k large.

iv) Put L := L1 ∪ L2. If D < 0 and S(a0,...,a5)(R) is not connected then the infinite
place has to be added to this list of critical primes.

v) Delete all the primes from L for which the local H1-criterion works successfully.

vi) For the primes p that remained in L, the form F30 has to be evaluated. For that,
cover S(Qp) by finitely many open subsets which are sufficiently small to ensure
that the first p-adic digit of F30 does not change. If p = 2 then the first three digits
have to be taken into account.
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In the case that we have a Galois invariant triple of azygetic double-sixes, the last
step has to be executed three times, once for each of the corresponding forms of
type F30.

8 Application: Manin’s conjecture

8.1. –––– Recall that a conjecture, due to Yu. I. Manin, asserts that the number
of Q-rational points of anticanonical height ≤B on a Fano variety S is asymptot-
ically equal to τB logrkPic(S)−1 B, for B → ∞. Further, the coefficient τ ∈ R is
conjectured to be the Tamagawa-type number τ(S) introduced by E. Peyre in [Pe].
In the particular case of a cubic surface, the anticanonical height is the same as the
naive height.

8.2. –––– E. Peyre’s Tamagawa-type number is defined in [PT, Definition 2.4] as

τ(S) := α(S)·β(S) · lim
s→1

(s− 1)tL(s, χPic(SQ)) · τH

(
S(AQ)Br

)

for t = rk Pic(S).
Here, the factor β(S) is simply defined as β(S) := #H1

(
Gal(Q/Q), Pic(SQ)

)
.

α(S) is given as follows [Pe, Définition 2.4]. Let Λeff(S) ⊂ Pic(S)⊗Z R be the cone
generated by the effective divisors. Identify Pic(S) ⊗Z R with Rt via a mapping
induced by an isomorphism Pic(S)

∼=−→ Zt. Consider the dual cone Λ∨eff(S) ⊂ (Rt)∨.
Then, α(S) := t · vol { x ∈ Λ∨eff | 〈x,−K〉 ≤ 1 }.

L( · , χPic(SQ)) denotes the Artin L-function of the Gal(Q/Q)-representation
Pic(SQ)⊗ZC which contains the trivial representation t times as a direct summand.
Therefore, L(s, χPic(SQ)) = ζ(s)t · L(s, χP ) and

lim
s→1

(s− 1)tL(s, χPic(SQ)) = L(1, χP )

where ζ denotes the Riemann zeta function and P is a representation which does
not contain trivial components. [Mu, Corollary 11.5 and Corollary 11.4] show that
L(s, χP ) has neither a pole nor a zero at s = 1.

Finally, τH is the Tamagawa measure on the set S(AQ) of adelic points on S and
S(AQ)Br ⊆ S(AQ) denotes the part which is not affected by the Brauer-Manin ob-
struction.

8.3. –––– As S is projective, we have S(AQ) =
∏

ν∈Val(Q) S(Qν). Then, the
Tamagawa measure τH is defined to be the product measure τH :=

∏
ν∈Val(Q) τν .

Here, for a prime number p, the local measure τp on S(Qp) is given as follows.
Let a ∈ S(Z/pkZ) and put U

(k)
a := {x ∈ S(Qp) | x ≡ a (mod pk) }. Then,

τp(U
(k)
a ) := det(1−p−1 Frobp | Pic(SQ)Ip)· lim

m→∞
#{ y ∈ S(Z/pmZ) | y ≡ a (mod pk) }

pm dim S
.

Pic(SQ)Ip denotes the fixed module under the inertia group.
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τ∞ is described in [Pe, Lemme 5.4.7]. In the case of a cubic surface, defined by
the equation f = 0, this yields

τ∞(U) =
1

2

∫

CU
|x0|, ... ,|x3|≤1

ωLeray

for U ⊂ S(R). Here, ωLeray is the Leray measure on the cone CS(R). It is related
to the usual hypersurface measure by the formula ωLeray = 1

‖ grad f‖ ωhyp.

8.4. –––– Using [EJ2, Algorithm 6.7], we constructed many examples of smooth
cubic surfaces over Q with a Galois invariant double-six. For each of them, one may
apply Strategy 7.4 to compute the effect of the Brauer-Manin obstruction. Then, the
method described in [EJ1] applies for the computation of Peyre’s constant.

From the ample supply, the examples below were chosen in the hope that they
indicate the main phenomena. The Brauer-Manin obstruction may work at many
primes simultaneously but examples where few primes are involved are the most in-
teresting. We show that the fraction of the Tamagawa measure excluded by the
obstruction can vary greatly. We also show that there may be an obstruction at the
infinite prime.

8.5. Example. –––– The polynomial

f := T 6 − 390T 4 − 10 180T 3 + 10 800T 2 + 2 164 296T + 13 361 180 ∈ Q[T ]

yields the cubic surface S given by the equation

−x2z − x2w − 3xy2 + xz2 + 14xzw + 8xw2 − 2y3 − 11y2z

+ y2w + 4yz2 + 4yzw + 10yw2 + 4z3 − 11z2w + 9zw2 − 6w3 = 0 .

S has bad reduction at 2, 3, 5, 11, and 9 265 613 761. The Galois group operat-
ing on the 27 lines is S6 acting in such a way that the orbit structure is [12, 15].
Therefore, we have H1(Gal(Q/Q), Pic(SQ)) ∼= Z/2Z. The quadratic field splitting
the double-six is Q(

√
10).

The primes 3 and 9 265 613 761 split in Q(
√

10). The local H1-criterion excludes
the prime 5. Further, it turns out that the local evaluation map at 11 is constant.
Hence, the Brauer-Manin obstruction works only at the prime 2. From the whole
of S(Q2) which is of measure 4 only a subset of measure 9

4
is allowed.

Using this, for Peyre’s constant, we find τ(S) ≈ 1.7005. There are actually 6641
Q-rational points of height at most 4000 in comparison with a prediction of 6802.

8.6. Example. –––– The polynomial

f := T 6 + 60T 4 − 40T 3 − 900T 2 + 15 072T − 27 860 ∈ Q[T ]
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yields the cubic surface S given by the equation

5x3 − 9x2y + x2z + 6x2w + 3xy2 + xyz + 6xyw − 2xz2

− 4xzw − y3 − 3y2z + 2yz2 + 2yzw + 4z3 + 2z2w + 2zw2 = 0 .

S has bad reduction at 2, 3, 5, and 73. The Galois group operating on the 27 lines
is A6 × Z/2Z and the orbit structure is [12, 15]. The quadratic field Q(

√
2) splits

the double-six.
The prime 73 splits in Q(

√
2). Further, the local H1-criterion excludes the

prime 5. Hence, the Brauer-Manin obstruction works only at the primes 2 and 3.
At 2, the local evaluation map decomposes S(Q2) into two sets of measures 1 and 1

2
,

respectively. At 3, the corresponding measures are 70
81

and 28
81

. An easy calculation
shows τH(S(AQ)Br) = 4

7
τH(S(AQ)).

Using this, for Peyre’s constant, we find τ(S) ≈ 5.0879. Up to a search bound
of 4000, there are actually 19 302 Q-rational points in comparison with a prediction
of 20 352.

8.7. Example. –––– The polynomial f := T (T 5−5T −2) ∈ Q[T ] yields the cubic
surface S given by the equation

2x3 + x2y − 4x2z − x2w + 2xy2 + 2xyz + 2xyw − 2xz2 − 4xzw

− 2xw2 + 2y2z − y2w + yz2 + 2yzw − 5yw2 − 3z2w + 6zw2 + 9w3 = 0 .

S has bad reduction at 2, 3, and 5. Further, S(R) consists of two connected compo-
nents. The Galois group operating on the 27 lines is isomorphic to S5 × Z/2Z and
the orbit structure is [12, 15]. Q(

√−15) is the field splitting the double-six.
The prime 2 splits in Q(

√−15). Further, the local H1-criterion excludes the
prime 5. Hence, the Brauer-Manin obstruction works only at 3 and the infinite prime.
At 3, the local evaluation map decomposes S(Q2) into two sets of measures 2

3
and 4

9
,

respectively. At the infinite prime, the corresponding measures are approximately
1.9179 and 1.1673. An easy calculation shows τH(S(AQ)Br) ≈ 0.5243·τH(S(AQ)).

Using this, for Peyre’s constant, we find τ(S) ≈ 3.7217. Up to a search bound
of 4000, there are actually 14 249 Q-rational points in comparison with a prediction
of 14 887.

8.8. Example. –––– The polynomial

f := T (T 5 − 60T 3 − 90T 2 + 675T + 810) ∈ Q[T ]

yields the cubic surface S given by the equation

3x3 + 2x2z + xy2 − 2xyz − 2xyw − xzw + 2xw2 − yzw − yw2 − z3 + z2w = 0 .
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S has bad reduction at 2, 3, and 5. The Galois group operating on the 27 lines is
isomorphic to S5 and the orbit structure is [12, 15]. The quadratic field Q(

√−3)
splits the double-six.

The local H1-criterion excludes the prime 5. Further, the local evaluation maps
turn out to be constant on S(Q2) and S(R). At the real prime, the reason is simply
that S(R) is connected. Consequently, the Brauer-Manin obstruction works only at
the prime 3. From the whole of S(Q3) measuring 2

3
a subset of measure 4

9
is allowed.

Using this, for Peyre’s constant, we find τ(S) ≈ 2.2647. Up to a search bound
of 4000, there are actually 8886 Q-rational points in comparison with a prediction
of 9059.

8.9. Example. –––– The polynomial f := T (T 5 + 20T + 16) ∈ Q[T ] yields the
cubic surface S given by the equation

−3x3 − 7x2y − 4x2z + 5x2w + 4xy2 + 10xyz − 4xyw − 2xz2

+ 2xzw + xw2 − 4y2z + yz2 − 4yzw − 16yw2 + z2w − 5zw2 = 0 .

S has bad reduction at 2 and 5. The Galois group operating on the 27 lines is
isomorphic to A5×Z/2Z. The orbit structure is [12, 15]. The quadratic fieldQ(

√−5)
splits the double-six.

The local H1-criterion excludes the prime 5. At the infinite prime, the local
evaluation map is constant since S(R) is connected. Hence, the Brauer-Manin ob-
struction works only at the prime 2. It allows a subset of measure 17

16
out of S(Q2)

measuring 5
4
.

Using this, for Peyre’s constant, we find τ(S) ≈ 2.4545. Up to a search bound
of 4000, there are actually 9736 Q-rational points in comparison with a prediction
of 9818.

8.10. Example. –––– The polynomial

f := T 6 − 456T 4 − 904T 3 + 102 609T 2 + 1 041 060T + 2 935 300 ∈ Q[T ]

yields the cubic surface S given by the equation

−2x3 + 3x2z + 9x2w − 4xy2 − 8xyz − 10xzw + 4xw2 − 4y3 − 3y2z

− 4y2w − 2yz2 − 2yzw + 8yw2 − z3 + z2w − 6zw2 − 2w3 = 0 .

S has bad reduction at 2, 3, 5, 31, and 11 071. The Galois group operating on
the 27 lines is isomorphic to (S3 × S3) n Z/2Z of order 72. The orbit structure
is [6, 6, 6, 9]. There is a triple of Galois invariant double-sixes. Therefore, we
have that H1(Gal(Q/Q), Pic(SQ)) ∼= Z/2Z× Z/2Z. The quadratic field splitting
the double-sixes is Q(

√
2).
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The primes 31 and 11 071 split in Q(
√

2). Further, the local evaluation maps
turn out to be constant on S(Q3). Consequently, the Brauer-Manin obstruction
works only at the primes 2 and 5.

The local evaluation maps decompose S(Q2) into four sets of measures 7
16

, 5
16

,
1
4
, and 1

4
, respectively. At the prime 5, the corresponding measures are 516

625
, 0, 96

625
,

and 0. Observe, for one of the three non-zero Brauer classes, the local evaluation
map is constant on S(Q5).

A simple calculation shows that τH(S(AQ)Br) = 111
340

τH(S(AQ)). Using this, for
Peyre’s constant, we find τ(S) ≈ 1.8532. Up to a search bound of 4000, there are
actually 6994 Q-rational points in comparison with a prediction of 7413.

References

[CE] Cartan, H. and Eilenberg, S.: Homological Algebra, Princeton Univ. Press,
Princeton 1956

[CG] Cassels, J. W. S. and Guy, M. J. T.: On the Hasse principle for cubic surfaces,
Mathematika 13 (1966), 111–120

[CKS] Colliot-Thélène, J.-L., Kanevsky, D., and Sansuc, J.-J.: Arithmétique des sur-
faces cubiques diagonales, in: Diophantine approximation and transcendence
theory (Bonn 1985), Lecture Notes in Math. 1290, Springer, Berlin 1987,
1–108

[Co] Corn, P.K.: Del Pezzo surfaces and the Brauer-Manin obstruction, Ph.D.
thesis, Harvard 2005

[EJ1] Elsenhans, A.-S. and Jahnel, J.: Experiments with general cubic surfaces, to
appear in: The Manin Festschrift

[EJ2] Elsenhans, A.-S. and Jahnel, J.: Cubic surfaces with a Galois invariant
double-six, Preprint
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