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Introduction. It is a long standing problem whether every rational integer
n 6≡ 4, 5 (mod 9) may be written as a sum of three integral cubes. According to
the web page http://cr.yp.to/threecubes.html of Daniel Bernstein, the first
attacks by computer were carried out as early as in 1955.

Nevertheless, for example for n = 3, there is still no solution known different
from the obvious (1, 1, 1), (4, 4,−5), (4,−5, 4), and (−5, 4, 4). For n = 30, the first
solution was found by N. Elkies and his coworkers in 2000 [El]. It is interesting
to note that, in 1992, D. R. Heath-Brown [HB] had made some prevision on the
density of the solutions for n = 30 without knowing any solution, explicitly.

During the years, a number of algorithms have been developed in order to at-
tack that problem. The historically first one which has a complexity of O(N1+ε)
for a search bound of N is the method of R. Heath-Brown [HLR]. The best
algorithm presently known is Elkies’ method described in [El].

Elkies’ method. This is an algorithm which is geometric in nature. The idea
is to cover the curve Y = 3

√
1 − X3, X ∈ [0, 1/ 3

√
2], by very small parallelograms

which we call flagstones. The algorithm finds all rational points of the particular
form (x/z, y/z) which are contained in one of the flagstones for z ∈ N up to a
given bound N .

For each flagstone, this is equivalent to the detection of all points of the
standard lattice Z3 which are contained in a certain pyramid. The problem is
that, viewed in the standard coordinates, this pyramid has an enormous height
in comparison with the two other dimensions. So to say, it has an extremely
sharp apex. Searching naively for lattice points in such a pyramid would be
highly inefficient.

The idea to overcome this difficulty is to work in coordinates more adapted
to this pyramid. Then, the drawback is that the base { (1, 0, 0), (0, 1, 0), (0, 0, 1) }
of the standard lattice gets far from being reduced in whatever sense. One needs
to apply lattice basis reduction. Having done that, searching for lattice points
within the pyramid is essentially equivalent to a search for small points of the lat-
tice. For that, one may use the well-known algorithm of Fincke-Pohst [FP].
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The size of the flagstones is somewhat arbitrary. Smaller flagstones mean
that more time is required for lattice basis reductions. Larger ones lead to more
time spent on the algorithm of Fincke-Pohst. The optimum depends on details
of the implementation.

Implementation. Our implementation of Elkies’ method is written in C

and C++. We took care that only initialization parts of the code were written
in C++ or made use of the multi precision floats of GMP.

The time-critical parts were written in plain C making some use of the instruc-
tion asm. It turned out that, for most of the computations, 128-bit fixed-point
arithmetic was sufficiently precise. We realized the 128-bit fixed-point numbers
as arrays consisting of two long ints. The arithmetic of the fixed-point numbers
was implemented in such a way that all loops (of length two) were manually un-
rolled.

For lattice basis reduction, we implemented a version of LLL for three-di-
mensional lattices. It turned out that adjacent flagstones lead to similar re-
duced bases. That is why an enormous optimization could be achieved by do-
ing LLL incrementally. We start the LLL computation for the next flagstone with
a reduced basis of the previous one and not with a naive basis.

Another substantial improvement was realized in the Fincke-Pohst part.
Here, one has to compute many adjacent values of the same cubic polynomial in
three variables. An implementation of a difference scheme reduced most of these
computations to a few additions of values obtained before.

Some details. We searched systematically for solutions of x3 + y3 + z3 = n
where the positive integer n < 1000 is neither a cube nor twice a cube and
|x|, |y|, |z| < 1014. The length of the flagstones was chosen dynamically. It was
around 8.4 · 10−12 near x = 0 and around 6.6 · 10−14 near x = 1/ 3

√
2. The area

of the flagstones was essentially constant at a value near 1.7 · 10−40. This led to
a total number of a bit more than 1013 flagstones to deal with.

We chose the widths of the flagstones such that all points in a horizon-
tal distance of <10−30 from the curve are contained in one of the flagstones.
This should make sure that all solutions of heights between 1011 and 1014 are
certainly found. Indeed, if we arrange variables such that |x| ≤ |y| ≤ |z| then
the point (|x/z|, |y/z|) is in a horizontal distance from the curve of, in first order
approximation, ds

1/3

ds
|s=(1−X3) · n/|z|3. The derivative is always less than 0.53

since X := |x/z| < 1/ 3
√

2.

The whole search took around ten months of CPU time. Only 14% of that
time was spent on lattice basis reductions. The lion’s share was spent searching
for small lattice points, i.e. on our implementation of the algorithm of Fincke-
Pohst.

Results. In comparison with the list, dating back to 2001 and published on
http://cr.yp.to/threecubes.html, 3 520 new solutions have been found.

Among them, there are solutions for n = 52, 156, 318, 366, 420, 564, 758,
789, 894, and 948. For each of these numbers, no solution was known in 2001.



For example, our computations show

52 = 60 702 901 3173 + 23 961 292 4543 − 61 922 712 8653

= 1 232 911 859 6633 + 343 101 441 4613− 1 241 705 896 6263.

For 13 values of n, for which exactly one solution was known in 2001, we found a
second one. Among those, there is n = 30. The second solution for n = 30 looks
like this,

30 = 3 982 933 876 6813 − 636 600 549 5153− 3 977 505 554 5463.

A second and a third solution for n = 75 are as follows,

75 = 2 576 191 140 7603 + 1 217 343 443 2183− 2 663 786 047 4933

= 59 897 299 698 3553 − 47 258 398 396 0913− 47 819 328 945 5093.

A complete list of all 14 288 solutions we know for n < 1 000, n being nei-
ther a cube nor twice a cube, is available from the second author’s web page
http://www.uni-math.gwdg.de/jahnel as the file threecubes 20070419.txt.
It was formed merging together the new solutions, D. Bernstein’s lists from 1999
and 2001, and a list of small solutions found by a naive search.

Unfortunately, we still do not know any solution for n = 33 or n = 42. To say
it more generally, the question whether x3 + y3 + z3 = n has an integral solution
remains open for 14 numbers below 1 000. These numbers are 33, 42, 74, 114,
165, 390, 579, 627, 633, 732, 795, 906, 921, and 975.
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