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Abstract

For diagonal cubic surfaces, we give an upper bound for E. Peyre’s Tama-
gawa type number in terms of the coefficients of the defining equation.

1 Introduction

1.1. –––– A conjecture, due to Yu. I. Manin, asserts that the number of Q-ratio-
nal points of anticanonical height <B on a Fano variety S is asymptotically equal to
τB logrkPic(S)−1 B, for B → ∞. Further, the coefficient τ ∈ R is conjectured to be
the Tamagawa-type number τ(S) introduced by E. Peyre in [Pe]. In the particular
case of a cubic surface, the anticanonical height is the same as the naive height.

1.2. E. Peyre’s constant. –––– E. Peyre’s Tamagawa-type number is defined
in [PT, Definition 2.4] as

τ(S) := α(S)·β(S) · lim
s→1

(s − 1)tL(s, χPic(SQ)) · τH

(

S(AQ)Br
)

for t = rk Pic(S).
Here, the factor β(S) is simply defined as

β(S) := #H1
(

Gal(Q/Q), Pic(SQ)
)

.

α(S) is given as follows [Pe, Définition 2.4]. Let Λeff(S) ⊂ Pic(S)⊗Z R be the cone
generated by the effective divisors. Identify Pic(S) ⊗Z R with Rt via a mapping
induced by an isomorphism Pic(S)

∼=−→ Zt. Consider the dual cone Λ∨
eff(S) ⊂ (Rt)∨.

Then,

α(S) := t · vol { x ∈ Λ∨
eff | 〈x,−K〉 ≤ 1 } .

Key words and phrases. Diagonal cubic surface, Diophantine equation, E. Peyre’s Tamagawa-
type number
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L( · , χPic(SQ)) denotes the Artin L-function of the Gal(Q/Q)-representation
Pic(SQ)⊗ZC which contains the trivial representation t times as a direct summand.
Therefore, L(s, χPic(SQ)) = ζ(s)t · L(s, χP ) and

lim
s→1

(s − 1)tL(s, χPic(SQ)) = L(1, χP )

where ζ denotes the Riemann zeta function and P is a representation which does
not contain trivial components. [Mu, Corollary 11.5 and Corollary 11.4] show that
L(s, χP ) has neither a pole nor a zero at s = 1.

Finally, τH is the Tamagawa measure on the set S(AQ) of adelic points on S and
S(AQ)Br ⊆ S(AQ) denotes the part which is not affected by the Brauer-Manin ob-
struction.

1.3. –––– As S is projective, we have

S(AQ) =
∏

ν∈Val(Q)

S(Qν).

τH is defined to be a product measure τH :=
∏

ν∈Val(Q) τν .

For a prime number p, the local measure τp is given as follows. Let a ∈ S(Z/pkZ)
and put U

(k)
a := { x ∈ S(Qp) | x ≡ a (mod pk) }. Then,

τp(U
(k)
a ) := det(1−p−1 Frobp | Pic(SQ)Ip)· lim

m→∞

#{ y ∈ S(Z/pmZ) | y ≡ a (mod pk) }
pm dimS

.

Here, Pic(SQ)Ip denotes the fixed module under the inertia group.
τ∞ is described in [Pe, Lemme 5.4.7]. In the case of a hypersurface of degree d

in Pn, defined by the equation f = 0, this yields

τ∞(U) =
n + 1 − d

2

∫

CU
|x0|, ... ,|xn|≤1

ωLeray

for U ⊂ S(R). Here, ωLeray is the Leray measure on the cone CS(R) associated to
the equation f = 0. Note that for a cubic surface, one has n + 1 − d = 1.

The Leray measure is related to the usual hypersurface measure by the for-
mula ωLeray = 1

‖ grad f‖ ωhyp. Observe, 1
‖ grad f‖ is an integrable function on the whole

of CS(R) since deg f ≤ n.

1.4. The main result. –––– For diagonal cubic surfaces, there is an estimate
for τ(S) in terms of the coefficients of the defining equation. More precisely, we will
prove the following theorem.
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Theorem. Let a = (a0, . . . , a3) ∈ (Z\{0})4 be a vector. Denote by Sa the cubic
surface in P3Q given by a0x

3
0 + . . . + a3x

3
3 = 0. Then, for each ε > 0 there exists a

constant C(ε) > 0 such that

1

τ(Sa)
≥ C(ε) · Hnaive

(

1
a0

: . . . : 1
a3

)
1
3
−ε

.

Corollary (Fundamental finiteness). For each T > 0, there are only finitely many
diagonal cubic surfaces Sa : a0x

3
0 + . . . + a3x

3
3 = 0 in P3Q such that τ(V a) > T .

1.5. Application: The height of the smallest point. –––– We denote by
m(S) the smallest naive height of a Q-rational point on S, or ∞ if there are noQ-rational points. The main result implies that there is an estimate for m(S) in
terms of τ(S).

Corollary (An inefficient search bound). There exists a monotonically decreasing
function F : (0,∞) → [0,∞), the search bound, satisfying the following condition.

Let Sa be the cubic surface given by the equation a0x
3
0 + . . . + a3x

3
3 = 0. As-

sume Sa(Q) 6= ∅. Then, Sa admits a Q-rational point of height ≤F (τ(Sa)).

Proof. One may simply put F (t) := max
τ(Sa)≥t
Sa(Q) 6=∅

min
P∈Sa(Q)

Hnaive(P ). �

In other words, we have m(Sa) ≤ F (τ(Sa)) as soon as Sa(Q) 6= ∅.

1.6. Remark. –––– For diagonal quartic threefolds, these results were known be-
fore [EJ]. The case of the classical cubic surfaces is, however, more complicated.

The reason is that quartic threefolds are of geometric Picard rank one. There-
fore, the factors α and β are always the same and could essentially be ignored. Fur-
ther, the L-factor is equal to 1 as the Gal(Q/Q)-representation considered is trivial.
In the situation of diagonal cubic surfaces, all these factors need to be considered.

2 Estimates for Peyre’s constant

Consider a general diagonal cubic surface S(a0,...,a3) ⊂ P3Q given by

a0x
3
0 + . . . + a3x

3
3 = 0 .

Our goal is to establish the estimate for τ (a0,...,a3) := τ(S(a0,...,a3)) formulated in
Theorem 1.4. For this, in the subsections below, we will give an individual estimate
for each of the factors occurring in the definition of τ(S(a0,...,a3)).
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2.1 Estimates for α and β

2.1. –––– Recall that on a smooth cubic surface S over an algebraically closed
field, there are exactly 27 lines. For the Picard group, which is isomorphic to Z7,
the classes of these lines form a system of generators.

2.2. Notation. –––– i) The set L of the 27 lines is equipped with the intersection
product 〈 , 〉 : L ×L → {−1, 0, 1}. The pair (L , 〈 , 〉) is the same for all smooth
cubic surfaces. It is well known [Ma, Theorem 23.9.ii] that the group of permutations
of L respecting 〈 , 〉 is isomorphic to W (E6). We fix such an isomorphism.

Denote by F ⊂ Div(S ) the group generated by the 27 lines and by F0 ⊂ F the
subgroup of principal divisors. Then, F is equipped with an operation of W (E6)
such that F0 is a W (E6)-submodule. We have Pic(S ) ∼= F/F0.

ii) If S is a smooth cubic surface over Q then Gal(Q/Q) operates canonically on
the set LS of the 27 lines on SQ. Fix a bijection iS : LS

∼=−→ L respecting the
intersection pairing. This induces a group homomorphism ιS : Gal(Q/Q) → W (E6).
We denote its image by G ⊂ W (E6).

2.3. Lemma. –––– There is a constant c such that, for all smooth cubic surfaces S
over Q,

1 ≤ β(S) ≤ c .

Proof. By definition, β(S) = #H1
(

Gal(Q/Q), Pic(SQ)
)

. Using the notation just
introduced, we may write H1

(

Gal(Q/Q), Pic(SQ)
)

= H1(G, F/F0).
Note that this cohomology group is always finite. Indeed, since G is a finite

group and F/F0 is a finite Z[G]-module, the description via the standard complex
shows it is finitely generated. Further, it is annihilated by #G.

H1(G, F/F0) depends only on the subgroup G ⊂ W (E6) occurring. For that,
there are finitely many possibilities. This implies the claim. �

2.4. Remark. –––– A more precise consideration [Ma, Proposition 31.3] yields
a canonical isomorphism H1

(

Gal(Q/Q), Pic(SQ)
) ∼= Hom

(

(NF ∩ F0)/NF0,Q/Z).
Here, N is the norm map under the operation of G.

As an application of this, one may inspect the 350 conjugacy classes of subgroups
of W (E6) using GAP. The calculations show that the lemma is actually true for c = 9.

2.5. Lemma. –––– There are positive constants c1 and c2 such that, for all smooth
cubic surfaces S over Q satisfying S(AQ) 6= ∅,

c1 ≤ α(S) ≤ c2.

Proof. Again, we claim that α(S) is completely determined by the group
G ⊂ W (E6). Thus, suppose that we do not have the full information available
about what surface S is but are given the group G only.
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The assumption S(AQ) 6= ∅ makes sure that Pic(S) ∼= Pic(SQ)G [KT, Re-
mark 3.2.ii)]. We may therefore write Pic(S) ∼= (F/F0)

G. The effective cone
Λeff(S) ⊂ Pic(S)⊗ZC ∼= (F/F0)

G ⊗ZC is generated by the symmetrizations of
the classes ℓ1, . . . , ℓ27 of the 27 lines in F . In particular, it is determined by G, com-
pletely. Further, we have K = −1

9
(ℓ1 + . . . + ℓ27). These data are sufficient to

compute α(S) according to its very definition. �

2.6. Remark. –––– Here, we do not know the optimal values of c1 and c2 in
explicit form. α(S) has not yet been computed in all cases.

2.2 An estimate for the L-factor

2.2.1. –––– In the case of the diagonal cubic surface S(a0,...,a3) ⊂ P3Q, given
by a0x

3
0 + . . . + a3x

3
3 = 0 for a0, . . . , a3 ∈ Z\{0}, the 27 lines on S(a0,...,a3) may

easily be written down explicitly. Indeed, for each pair (i, j) ∈ (Z/3Z)2, the system

3
√

a0 x0 + ζ i
3

3
√

a1 x1 = 0
3
√

a2 x2 + ζj
3

3
√

a3 x3 = 0

of equations defines a line on S(a0,...,a3). Decomposing the index set {0, . . . , 3} dif-
ferently into two subsets of two elements each yields all the lines. In particular, we
see that the 27 lines may be defined over K = Q(ζ3,

3
√

a1/a0,
3
√

a2/a0,
3
√

a3/a0

)

.

2.2.2. –––– This is an abelian extension of Q(ζ3). Therefore, the irreducible
representations of Gal(K/Q) are at most two-dimensional. Besides the trivial rep-
resentation, there is the non-trivial Dirichlet character λ of Q(ζ3)/Q. The two-
dimensional irreducible representations are actually representations of a factor group
of the form Gal

(Q(ζ3,
3
√

ae0
0 · . . . · ae3

3 )/Q) ∼= S3 for e0, . . . , e3 ∈ {0, 1, 2}.

2.2.3. Lemma. –––– Let a and b be integers different from zero. Then,

∣

∣Disc
(Q(ζ3,

3
√

ab2)/Q)∣∣ ≤ 39a4b4.

Proof. We have, at first,

∣

∣Disc
(Q(ζ3,

3
√

ab2)/Q)∣∣ ≤ ∣

∣Disc
(Q(ζ3)/Q)∣∣3 · Disc

(Q(
3
√

ab2)/Q)2
= 27 · Disc

(Q(
3
√

ab2)/Q)2.
Further, by [Mc, Chapter 2, Exercise 41], we know

∣

∣Disc
(Q(

3
√

ab2)/Q)∣∣ ≤ 33a2b2.
This shows

∣

∣Disc
(Q(ζ3,

3
√

ab2)/Q)∣∣ ≤ 39a4b4. �
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2.2.4. Proposition. –––– For each ε > 0, there exist positive constants c1 and c2

such that

c1 · |a0 · . . . · a3|−ε < lim
s→1

(s − 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

)

< c2 · |a0 · . . . · a3|ε

for all (a0, . . . , a3) ∈ (Z\{0})4. Here, t = rk Pic(S).

Proof. The Galois representation Pic(S
(a0,...,a3)Q )⊗ZC contains the trivial represen-

tation t times as a direct summand. Therefore,

L
(

s, χ
Pic(S

(a0,...,a3)Q )

)

= ζ(s)t · L(s, χP )

where ζ denotes the Riemann zeta function and P is a representation which does
not contain trivial components. All we need to show is

c1 · |a0 · . . . · a3|−ε < L(1, χP ) < c2 · |a0 · . . . · a3|ε.
L( · , χP ) is the product [Ne, Chapter VII, Theorem (10.4).ii)] of not more than
six factors of the form L( · , λ) for λ the non-trivial Dirichlet character of Q(ζ3)/Q
and at most three factors which are Artin-L-functions L( · , νK) for two-dimensional
irreducible representations.

Here, K = Q(ζ3,
3
√

ae0
0 · . . . · ae3

3 ) for certain e0, . . . , e3 ∈ {0, 1, 2}. As L(1, λ)
does not depend on a0, . . . , a3, at all, it will suffice to show

c1(ε) · |a0 · . . . · a3|−ε < L(1, νK) < c2(ε) · |a0 · . . . · a3|ε

for each ε > 0.
νK is the only irreducible two-dimensional character of Gal(K/Q) ∼= S3. For that

reason, by virtue of [Ne, Chapter VII, Corollary (10.5)], we have

ζK(s) = ζQ(s) · L(s, λ) · L(s, νK)2

= ζQ(ζ3)(s) · L(s, νK)2

for a complex variable s. It, therefore, suffices in our particular situation to estimate
the residue ress=1 ζK(s) of the Dedekind zeta function of K.

An estimate from above has been given by C. L. Siegel. In view of the analytic
class number formula, his [Si, Satz 1] gives

res
s=1

ζK(s) < C[log Disc(K/Q)]5

≤ C[log(39a4
0a

4
1a

4
2a

4
3)]

5

= C[4 log |a0 · . . . · a3| + 9 log 3]5

for a certain constant C. The final term is less than c2(ε)·|a0·. . .·a3|ε for every ε > 0.
On the other hand, H. M. Stark [St, formula (1)] shows

res
s=1

ζK(s) > C(ε)·Disc(K/Q)−ε/4

for every ε > 0 which implies res
s=1

ζK(s) > c1(ε)·|a0 · . . . · a3|−ε. �
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2.3 An estimate for the factors at the finite places

2.3.1. Notation. –––– i) For a prime number p and an integer x 6= 0, we
put x(p) := pνp(x). Note x(p) = 1/‖x‖p for the normalized p-adic valuation.

ii) For integers x1, . . . , xn, not all equal to zero, we write

gcdp(x1, . . . , xn) := [gcd(x1, . . . , xn)](p).

Observe, if x1, . . . , xn 6= 0 then we have gcdp(x1, . . . , xn) = gcd(x
(p)
1 , . . . , x

(p)
n ).

iii) By putting ν(x) := min
ξ∈Zp

x=(ξ mod pr)

ν(ξ), we carry the p-adic valuation from Zp over
to Z/prZ.

Note that any 0 6= x ∈ Z/prZ has the form x = ε·pν(x) where ε ∈ (Z/prZ)∗ is a unit.
Clearly, ε is unique only in the case ν(x) = 0.

2.3.2. Definition. –––– For (a0, . . . , a3) ∈ Z4, r ∈ N, and ν0, . . . , ν3 ≤ r, put

N (r)
ν0,...,ν3;a0,...,a3

:= { (x0, . . . , x3) ∈ (Z/prZ)4 |
ν(x0) = ν0, . . . ,ν(x3) = ν3; a0x

3
0 + . . . + a3x

3
3 = 0 ∈ Z/prZ } .

For the particular case ν0 = . . . = ν3 = 0, we will write Z
(r)
a0,...,a3 := N

(r)
0,...,0;a0,...,a3

. I.e.,

Z(r)
a0,...,a3

= { (x0, . . . , x3) ∈ [(Z/prZ)∗]4 | a0x
3
0 + . . . + a3x

3
3 = 0 ∈ Z/prZ } .

We will use the notation z
(r)
a0,...,a3 := #Z

(r)
a0,...,a3 .

2.3.3. Sublemma. –––– If pk|a0, . . . , a3 and r > k then we have

z(r)
a0,...,a3

= p4k · z(r−k)

a0/pk,...,a3/pk .

Proof. Since a0x
3
0 + . . .+a3x

3
3 = pk(a0/p

k ·x3
0 + . . .+a3/p

k ·x3
3), there is a surjection

ι : Z(r)
a0,...,a3

−→ Z
(r−k)

a0/pk,...,a3/pk ,

given by (x0, . . . , x3) 7→
(

(x0 mod pr−k), . . . , (x3 mod pr−k)
)

. The kernel of the ho-
momorphism of modules underlying ι is (pr−kZ/prZ)4. �

2.3.4. Lemma. –––– Assume gcdp(a0, . . . , a4) = pk. Then, there is an estimate

z(r)
a0,...,a4

≤ 3p3r+k.

Proof. Suppose first that k = 0. This means, one of the coefficients is prime to p.
Without restriction, assume p ∤ a0.

For any (x1, x2, x3) ∈ (Z/prZ)3, there appears an equation of the form a0x
3
0 = c.

It cannot have more than three solutions in (Z/prZ)∗. Indeed, for p odd, this follows
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directly from the fact that (Z/prZ)∗ is a cyclic group. On the other hand, in the
case p = 2, we have (Z/2rZ)∗ ∼= Z/2r−2Z×Z/2Z. Again, there are only up to three
solutions possible.

The general case may now easily be deduced from Sublemma 2.3.3. Indeed, if
k < r then

z(r)
a0,...,a3

= p4k · z(r−k)

a0/pk,...,a3/pk ≤ p4k · 3p3(r−k) = 3p3r+k.

On the other hand, if k ≥ r then the assertion is completely trivial since

z(r)
a0,...,a3

= #Z(r)
a0,...,a3

< p4r ≤ p3r+k < 3p3r+k. �

2.3.5. Remark. –––– The proof shows that in the case p ≡ 2 (mod 3) one could
reduce the coefficient to 1. Unfortunately, this observation does not lead to a sub-
stantial improvement of our final result.

2.3.6. Lemma. –––– Let r ∈ N and ν0, . . . , ν3 ≤ r. Then,

#N (r)
ν0,...,ν3;a0,...,a3

=
z

(r)

p3ν0a0, ... ,p3ν3a3
· ϕ(pr−ν0) · . . . · ϕ(pr−ν3)

ϕ(pr)4
.

Proof. As p3ν0a0x
3
0 + . . . + p3ν3a3x

3
3 = a0(p

ν0x0)
3 + . . . + a3(p

ν3x3)
3, we have a sur-

jection
π : Z

(r)

p3ν0a0,...,p3ν3a3
−→ N (r)

ν0,...,ν3;a0,...,a3
,

given by (x0, . . . , x3) 7→ (pν0x0, . . . , p
ν3x3).

For i = 0, . . . , 3, consider the mapping ι : Z/prZ → Z/prZ, x 7→ pνix. If νi = r
then ι is the zero map. All ϕ(pr) = (p − 1)pr−1 units are mapped to zero. Other-
wise, observe that ι is pνi : 1 on its image. Further, ν(ι(x)) = νi if and only if x is
a unit. By consequence, π is (K(ν0) · . . . ·K(ν3)) : 1 when we put K(ν) := pν for ν < r
and K(r) := (p−1)pr−1. Summarizing, we could have written K(ν) := ϕ(pr)/ϕ(pr−ν).
The assertion follows. �

2.3.7. Corollary. –––– Let (a0, . . . , a3) ∈ (Z\{0})4. Then, for the local factor
τp

(

S(a0,...,a3)(Qp)
)

, one has

τp

(

S(a0,...,a3)(Qp)
)

= det
(

1 − p−1 Frobp | Pic(SQ)Ip
)

· lim
r→∞

r
∑

ν0,...,ν3=0

z
(r)

p3ν0a0, ... ,p3ν3a3
· ϕ(pr−ν0) · . . . · ϕ(pr−ν3)

p3r · ϕ(pr)4
.

Proof. [PT, Corollary 3.5] implies that

τp

(

S(a0,...,a3)(Qp)
)

= det
(

1 − p−1 Frobp | Pic(SQ)Ip
)

· lim
r→∞

r
∑

ν0,...,ν3=0

#N
(r)
ν0,...,ν3;a0,...,a3

p3r
.

Lemma 2.3.6 yields the assertion. �
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2.3.8. Proposition. –––– Let (a0, . . . , a3) ∈ (Z\{0})4. Then, for each ε such
that 0 < ε < 1

3
, one has

τp

(

S(a0,...,a3)(Qp)
)

≤
(

1 +
1

p

)7

· 3
( 1

1 − 1
p1−3ε

)( 1

1 − 1
pε

)3

·
(

a
(p)
0 a

(p)
1 a

(p)
2

)
1−ε
3
(

a
(p)
3

)ε
.

Proof. We use the formula from Corollary 2.3.7. The eigenvalues of the Frobenius
on Pic(SQ)Ip are all roots of unity. Therefore, the first factor is at most (1 + 1/p)7.
Further, by Lemma 2.3.4,

z
(r)

p3ν0a0, ... ,p3ν3a3
/p3r ≤ 3 gcdp(p

3ν0a0, . . . , p3ν3a3)

= 3 gcd
(

p3ν0a
(p)
0 , . . . , p3ν3a

(p)
3

)

.

Writing ki := νp(ai) = νp(a
(p)
i ), we see

z
(r)

p3ν0a0, ... ,p3ν3a3
/p3r ≤ 3 gcd(p3ν0+k0, . . . , p3ν3+k3)

= 3pmin{3ν0+k0, ... ,3ν3+k3}.

We estimate the minimum by a weighted arithmetic mean with weights 1−ε
3

, 1−ε
3

,
1−ε
3

, and ε,

min{3ν0 + k0, . . . , 3ν3 + k3} ≤ 1 − ε

3
· (3ν0 + k0) +

1 − ε

3
· (3ν1 + k1)

+
1 − ε

3
· (3ν2 + k2) + ε(3ν3 + k3)

= (1 − ε)(ν0 + ν1 + ν2) + 3εν3

+
1 − ε

3
(k0 + k1 + k2) + εk3 .

This shows

z
(r)

p3ν0a0, ... ,p3ν3a3
/p3r ≤ 3p(1−ε)(ν0+ν1+ν2)+3εν3+ 1−ε

3
(k0+k1+k2)+εk3

= 3p(1−ε)(ν0+ν1+ν2)+3εν3 ·
(

a
(p)
0 a

(p)
1 a

(p)
2

)
1−ε
3
(

a
(p)
3

)ε
.

We may therefore write

τp

(

S(a0,...,a3)(Qp)
)

≤
(

1 +
1

p

)7

· 3
(

a
(p)
0 a

(p)
1 a

(p)
2

)
1−ε
3
(

a
(p)
3

)ε

· lim
r→∞

r
∑

ν0,...,ν3=0

p(1−ε)(ν0+ν1+ν2)+3εν3 · ϕ(pr−ν0) · . . . · ϕ(pr−ν3)

ϕ(pr)4
.

Here, the term under the limit is precisely the product of three copies of the fi-
nite sum

r
∑

ν=0

p(1−ε)ν · ϕ(pr−ν)

ϕ(pr)
=

r−1
∑

ν=0

1

(pε)ν
+

p

p − 1

1

(pε)r
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and one copy of the finite sum

r
∑

ν=0

p3εν · ϕ(pr−ν)

ϕ(pr)
=

r−1
∑

ν=0

1

(p1−3ε)ν
+

p

p − 1

1

(p1−3ε)r
.

For r → ∞, geometric series do appear while the additional summands tend to zero.
�

2.3.9. Remark. –––– Unfortunately, the constants

C(ε)
p :=

(

1 +
1

p

)7

· 3
( 1

1 − 1
p1−3ε

)( 1

1 − 1
pε

)3

have the property that the product
∏

p C
(ε)
p diverges. On the other hand, we have

at least that C
(ε)
p is bounded for p → ∞, say C

(ε)
p ≤ C(ε).

2.3.10. Lemma. –––– Let C > 1 be any constant. Then, for each ε > 0, one has

∏

p prime
p|x

C ≤ c · xε

for a suitable constant c (depending on ε).

Proof. This follows directly from [Na, Theorem 7.2] together with [Na, Section 7.1,
Exercise 7]. �

2.3.11. Proposition. –––– For each ε such that 0 < ε < 1
3
, there exists a con-

stant c such that

∏

p prime

τp

(

S(a0,...,a3)(Qp)
)

≤ c · |a0 · . . . · a3|
1
3
− ε

8 ·
∏

p prime

min
i=0,...,3

‖ai‖
1
3
−ε

p

for all (a0, . . . , a3) ∈ (Z\{0})4.

Proof. The product over all primes of good reduction is bounded by virtue of
Sublemma 2.3.12 below. It, therefore, remains to show that

∏

p prime
p|3a0...a3

τp

(

S(a0,...,a3)(Qp)
)

≤ c · |a0 · . . . · a3|
1
3
− ε

8 ·
∏

p prime

min
i=0,...,3

‖ai‖
1
3
−ε

p .

For this, by Proposition 2.3.8, we have at first

τp

(

S(a0,...,a3)(Qp)
)

≤ C(ε)
p ·

(

a
(p)
0 a

(p)
1 a

(p)
2

)
1
3
− ε

4 · (a(p)
3 )

3
4
ε

= C(ε)
p ·

(

a
(p)
0 a

(p)
1 a

(p)
2 a

(p)
3

)
1
3
− ε

4 · (a(p)
3 )−

1
3
+ε.
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Here, the indices 0, . . . , 3 are interchangeable. Hence, it is even allowed to write

τp

(

S(a0,...,a3)(Qp)
)

≤ C(ε)
p ·

(

a
(p)
0 a

(p)
1 a

(p)
2 a

(p)
3

)
1
3
− ε

4 ·
(

max
i

a
(p)
i

)− 1
3
+ε

= C(ε)
p ·

(

a
(p)
0 a

(p)
1 a

(p)
2 a

(p)
3

)
1
3
− ε

4 · min
i

‖ai‖
1
3
−ε

p .

Now, we multiply over all prime divisors of a0 · . . . · a3. Thereby, on the right hand
side, we may twice write the product over all primes since the two rightmost factors
are equal to one for p ∤ 3a0 · . . . · a3, anyway.

∏

p prime
p|3a0...a3

τp

(

S(a0,...,a3)(Qp)
)

≤
∏

p prime
p|3a0...a3

C(ε)
p ·

∏

pprime

(

a
(p)
0 a

(p)
1 a

(p)
2 a

(p)
3

)
1
3
− ε

4 ·
∏

p prime

min
i=0,...,3

‖ai‖
1
3
−ε

p

=
∏

p prime
p|3a0...a3

C(ε)
p · |a0 · . . . · a3|

1
3
− ε

4 ·
∏

pprime

min
i=0,...,3

‖ai‖
1
3
−ε

p

when we observe that
∏

p a(p) = |a|. Further, we have C
(ε)
p ≤ C(ε) and, by

Lemma 2.3.10,
∏

p prime
p|3a0...a3

C(ε) ≤ c · |3a0 · . . . · a3|
ε
8 .

We finally estimate 3
ε
8 by a constant. The assertion follows. �

2.3.12. Sublemma. –––– There are two positive constants c1 and c2 such that,
for all a0, . . . , a3 ∈ Z\{0},

c1 <
∏

p prime
p∤3a0·····a3

τp

(

S(a0,...,a3)(Qp)
)

< c2 .

Proof. For a prime p of good reduction, Hensel’s Lemma implies

τp

(

S(a0,...,a3)(Qp)
)

= det
(

1 − p−1 Frobp | Pic(SQ)
)

· #S(a0,...,a3)(Fp)

p2
.

Further, for the number of points on a non-singular cubic surface over a finite field,
the Lefschetz trace formula can be made completely explicit [Ma, Theorem 27.1].
It shows #S(a0,...,a3)(Fp) = p2 + p · tr

(

Frobp | Pic(SQ)
)

+ 1.
Denoting the eigenvalues of the Frobenius on Pic(SQ) by λ1, . . . , λ7, we find

τp

(

S(a0,...,a3)(Qp)
)

= (1 − λ1p
−1)(1 − λ2p

−1) · . . . · (1 − λ7p
−1)

· [1 + (λ1 + · · · + λ7)p
−1 + p−2]

= (1 − σ1p
−1 + σ2p

−2 ∓ . . . − σ7p
−7)(1 + σ1p

−1 + p−2)

= 1 + (1 − σ2
1 + σ2)p

−2 − (σ1 − σ1σ2 + σ3)p
−3 ±

± . . . − (σ5 − σ1σ6 + σ7)p
−7 + (σ6 − σ1σ7)p

−8 − σ7p
−9

11



where σi denote the elementary symmetric functions in λ1, . . . , λ7.
We know |λi| = 1 for all i. Estimating very roughly, we have |σj| ≤ (7

j
) ≤ 7j

and see

1 − 99p−2 − 7·99p−3 − . . . − 77 ·99p−9 ≤ τp

(

S(a0,...,a3)(Qp)
)

≤
≤ 1 + 99p−2 + 7·99p−3 +. . .+ 77 ·99p−9 .

I.e., 1 − 99p−2 1
1−7/p

< τp

(

S(a0,...,a3)(Qp)
)

< 1 + 99p−2 1
1−7/p

. The infinite product
over all 1 − 99p−2 1

1−7/p
(respectively 1 + 99p−2 1

1−7/p
) is convergent.

The left hand side is positive for p > 13. For the small primes remaining, we need
a better lower bound. For this, note that a cubic surface over a finite field Fp always
has at least one Fp-rational point. This yields τp

(

S(a0,...,a3)(Qp)
)

≥ (1−1/p)7/p2 > 0.
�

2.4 An estimate for the factor at the infinite place

2.4.1. Fact. –––– Let U ⊂ Rn+1 be an open subset and X ⊂ U be a hypersurface
defined by the equation f = 0. Assume that ∂f

∂x0
6= 0 outside a zero set of X.

Then, on X, ωLeray is given by the differential form

1

| ∂f
∂x0

|
dx1 ∧ ... ∧ dxn .

Proof. Let x ∈ X be a point such that ∂f
∂x0

(x) 6= 0. The theorem on implicit
functions yields an open neighbourhood O of x and a function g : O → R such that
f(g(x1, ..., xn), x1, ..., xn) = 0. This means, near x, X is given by the parametrization
i : (x1, ..., xn) 7→ (g(x1, ..., xn), x1, ..., xn). We immediately see ∂g/∂xi = − ∂f

∂xi
/ ∂f

∂x0
.

The hypersurface measure on the image of i is classically given by

ωhyp =
[

√

1 + (∂g/∂x1)2 + ... + (∂g/∂xn)2 dx1 ∧ ... ∧ dxn

]

which may be rewritten in the form ωhyp =
[ | grad f |

| ∂f
∂x0

| dx1 ∧ ... ∧ dxn

]

. Recall that the
Leray measure is defined by ωLeray = 1

| grad f | ωhyp. �

2.4.2. Corollary. –––– Let a0, . . . , a3 ∈ R\{0}. Then,

ω
CS(a0,...,a3)(R)
Leray =

[

1

3|a0|x2
0

dx1 ∧ dx2 ∧ dx3

]

.

Proof. We apply Fact 2.4.1 to U = R4 and f(x0, . . . , x3) := a0x
3
0 + . . . + a3x

3
3.

Note that {(x0, . . . , x3) ∈ CS(a0,...,a3)(R) | x0 = 0} is a zero set according to the
Leray measure as it is for the hypersurface measure. �
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2.4.3. Lemma. –––– Let a0, . . . , a3 ∈ R\{0}. Then,

τ∞
(

S(a0,...,a3)(R)
)

=
1

2 3
√

|a0 · . . . · a3|

∫

CS(1,...,1)(R)
|x0|≤ 3

√
|a0|, ... ,|x3|≤ 3

√
|a3|

ω
CS(1,...,1)(R)
Leray .

Proof. According to the definition of τ∞
(

S(a0,...,a3)(R)
)

and the corollary above, we
need to show

1

6 |a0|

∫

CS(a0,...,a3)(R)
|x0|≤1, ... ,|x3|≤1

1

x2
0

dx1 ∧ dx2 ∧ dx3 =
1

6 3
√

|a0 · . . . · a3|

∫

CS(1,...,1)(R)
|X0|≤ 3

√
|a0|, ... ,|X3|≤ 3

√
|a3|

1

X2
0

dX1 ∧ dX2 ∧ dX3 .

For that, consider the linear mapping l : CS(a0,...,a3)(R) → CS(1,...,1)(R) given by
(x0, . . . , x3) 7→ ( 3

√

a0x0, . . . ,
3
√

a3x3). Then,

l∗
( 1

X2
0

dX1 ∧ dX2 ∧ dX3

)

=
3
√

a1a2a3

a
2/3
0

1

x2
0

dx1 ∧ dx2 ∧ dx3.

This immediately yields the assertion when we take into consideration that orienta-
tions are chosen in such a way that both integrals are positive. �

2.4.4. Proposition. –––– For real numbers 0 < b0 ≤ b1 ≤ b2 ≤ b3, we have
∫

CS(1,...,1)(R)

|x0|≤b0, ... ,|x3|≤b3

ω
CS(1,...,1)(R)
Leray ≤

(

64 +
64

3
log 3 +

1

3
3
√

3 ω2

)

b0 + 64b0 log
b1

b0

where ω2 is the two-dimensional hypersurface measure of the l3-unit sphere

S2 := { (x1, x2, x3) ∈ R3 | |x1|3 + |x2|3 + |x3|3 = 1 } .

Proof. First step. We cover the domain of integration by 25 sets as follows. We put
R0 := [−b0, b0]

4 ∩ CS(1,...,1)(R). Further, for each σ ∈ S4, we set

Rσ := { (x0, . . . , x3) ∈ R4 | |xσ(0)| ≤ · · · ≤ |xσ(3)|, |xi| ≤ bi, and b0 ≤ |xσ(3)| }
∩ CS(1,...,1)(R) .

Second step. One has
∫

Rσ
ω

CS(1,...,1)(R)
Leray ≤

∫

Rid
ω

CS(1,...,1)(R)
Leray for every σ ∈ S4.

Consider the map iσ : R4 → R4 given by (x0, . . . , x3) 7→ (xσ(0), . . . , xσ(3)).
Since CS(1,...,1)(R) is defined by a symmetric cubic form, it is invariant under iσ.
We claim that

iσ(Rσ) ⊆ Rid .

13



Indeed, let (x0, . . . , x3) ∈ Rσ. Then, iσ(x0, . . . , x3) = (xσ(0), . . . , xσ(3)) has
the properties |xσ(0)| ≤ . . . ≤ |xσ(3)| and b0 ≤ |xσ(3)|. In order to show
iσ(x0, . . . , x3) ∈ Rid, all we need to verify is |xσ(i)| ≤ bi for i = 0, . . . , 3.

For this, we use that the bi are sorted. We have |xσ(3)| ≤ bσ(3) ≤ b3. Further,
|xσ(2)| ≤ bσ(2) and |xσ(2)| ≤ |xσ(3)| ≤ bσ(3) one of which is at most equal to b2.
Similarly, |xσ(1)| ≤ bσ(1), |xσ(1)| ≤ |xσ(2)| ≤ bσ(2), and |xσ(1)| ≤ |xσ(3)| ≤ bσ(3), the
smallest of which is not larger than b1. Finally, |xσ(0)| ≤ bσ(0), |xσ(0)| ≤ |xσ(1)| ≤ bσ(1),
|xσ(0)| ≤ |xσ(2)| ≤ bσ(2), and |xσ(0)| ≤ |xσ(3)| ≤ bσ(3). This shows |xσ(0)| ≤ b0.

Since x3
0 + . . . + x3

3 is a symmetric form, the Leray measure on CS(1,...,1)(R) is
invariant under the canonical operation of S4 on CS(1,...,1)(R) ⊂ R4. Therefore, we
have (iσ)∗ω

CS(1,...,1)(R)
Leray = ω

CS(1,...,1)(R)
Leray for each σ ∈ S4.

Altogether,

∫

Rσ

ω
CS(1,...,1)(R)
Leray ≤

∫

i−1
σ (Rid)

ω
CS(1,...,1)(R)
Leray =

∫

Rid

(iσ)∗ ω
CS(1,...,1)(R)
Leray =

∫

Rid

ω
CS(1,...,1)(R)
Leray .

Third step. We have
∫

R0
ω

CS(1,...,1)(R)
Leray ≤ 1

3
3
√

3ω2b0.

By virtue of Corollary 2.4.2, we have

∫

R0

ω
CS(1,...,1)(R)
Leray =

1

3

∫

R0

1

x2
3

dx0 ∧ dx1 ∧ dx2

=
1

3

∫∫∫

π(R0)

1

(x3
0 + x3

1 + x3
2)

2/3
dx0 dx1 dx2

where π : CS(1,...,1)(R) → R3, (x0, x1, x2, x3) 7→ (x0, x1, x2), denotes the projection
to the first three coordinates.

We enlarge the domain of integration to

R′ := { (x1, x2, x3) ∈ R3 | |x0|3 + |x1|3 + |x2|3 ≤ 3b3
0 } .

Then, by homogeneity, we see

∫∫∫

R′

1

(x3
0 + x3

1 + x3
2)

2/3
dx0 dx1 dx2 = ω2 ·

3√3b0
∫

0

1

r2
· r2 dr = ω2 · 3

√
3b0 .

Fourth step. We have
∫

Rid
ω

CS(1,...,1)(R)
Leray ≤ (8

3
+ 8

9
log 3)b0 + 8

3
b0 log b1

b0
.

Observe |x3| =
∣

∣

3
√

x3
0 + x3

1 + x3
2

∣

∣ ≤ 3
√

|x0|3 + |x1|3 + |x2|3. For (x0, . . . , x3) ∈ Rid,
this implies |x3| ≤ 3

√
3 |x2| and |x2| ≥ b0/

3
√

3. We find
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∫

Rid

ω
CS(1,...,1)(R)
Leray =

1

3

∫

Rid

1

x2
3

dx0 ∧ dx1 ∧ dx2

≤ 1

3

∫

Rid

1

x2
2

dx0 ∧ dx1 ∧ dx2

<
1

3

b0
∫

−b0

∫

|x1|∈[|x0|,b1]

∫

|x2|≥b0/3√3
|x2|≥|x1|

1

x2
2

dx2 dx1 dx0

≤ 1

3

b0
∫

−b0

∫

|x1|∈[|x0|,b1]

2

max{b0/
3
√

3, |x1|}
dx1 dx0

≤ 2

3







b0
∫

−b0

∫

|x1|∈[|x0|,b0/3√3]

3
√

3

b0
dx1 dx0 +

b0
∫

−b0

∫

|x1|∈[b0/3√3,b1]

1

|x1|
dx1 dx0







≤ 2

3
· 4b2

0
3
√

3
·

3
√

3

b0

+
2

3

b0
∫

−b0

2 log
3
√

3b1

b0

dx0

=
8

3
b0 +

8

3
b0 log

3
√

3b1

b0

=
(8

3
+

8

9
log 3

)

b0 +
8

3
b0 log

b1

b0
. �

2.4.5. Corollary. –––– For every ε > 0, there exists a constant c such that

τ∞
(

S(a0,...,a3)(R)
)

≤ c · |a0 · . . . · a3|−
1
3
+ε · min

i=0,...,3
‖ai‖

1
3∞

for each (a0, . . . , a3) ∈ (Z\{0})4.

Proof. We assume without restriction that |a0| ≤ . . . ≤ |a3|. Then, Lemma 2.4.3
and Proposition 2.4.4 together show that, for certain explicit positive constants c1

and c2,

τ∞
(

S(a0,...,a3)(R)
)

≤ |a0 · . . . · a3|−
1
3 ·
(

c1|a0|
1
3 + c2|a0|

1
3 log 3

√

|a1|
|a0|

)

= |a0 · . . . · a3|−
1
3 · |a0|

1
3

(

c1 +
1

3
c2 log

|a1|
|a0|

)

≤ |a0 · . . . · a3|−
1
3 · min

i=0,...,3
‖ai‖

1
3∞ ·
(

c1 +
1

3
c2 log |a0 · . . . · a3|

)

.

There is a constant c such that c1 + 1
3
c2 log |a0 · . . . · a3| ≤ c|a0 · . . . · a3|ε for ev-

ery (a0, . . . , a3) ∈ (Z\{0})4. �
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2.5 The Tamagawa number

2.5.1. Proposition. –––– For every ε > 0, there exists a constant C > 0
such that

1

τ (a0,...,a3)
≥ C ·

Hnaive

(

1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|ε

for each (a0, . . . , a3) ∈ (Z\{0})4.

Proof. We may assume that ε is small, say ε < 2
3
. Then, immediately from the

definition of τ (a0,...,a3), we have

τ (a0,...,a3)

= α(S(a0,...,a3))·β(S(a0,...,a3)) · lim
s→1

(s − 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

)

· τH

(

S(a0,...,a3)(AQ)Br
)

≤ α(S(a0,...,a3))·β(S(a0,...,a3)) · lim
s→1

(s − 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

)

· τH

(

S(a0,...,a3)(AQ)
)

= α(S(a0,...,a3))·β(S(a0,...,a3)) · lim
s→1

(s − 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

)

·
∏

ν∈Val(Q)

τν

(

S(a0,...,a3)(Qν)
)

.

Let us collect estimates for the factors. First, by Proposition 2.2.4, we have

lim
s→1

(s − 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

)

< c1 · |a0 · . . . · a3|
ε
16

for a certain constant c1. Further, Proposition 2.3.11 yields

∏

p prime

τp

(

S(a0,...,a3)(Qp)
)

≤ c2 · |a0 · . . . · a3|
1
3
− ε

16 ·
∏

p prime

min
i=0,...,3

‖ai‖
1
3
− ε

2
p .

Finally, Corollary 2.4.5 shows

τ∞
(

S(a0,...,a3)(R)
)

≤ c · |a0 · . . . · a3|−
1
3
+ ε

2 · min
i=0,...,3

‖ai‖
1
3∞.

We assert that the three inequalities together imply the following estimate for Peyre’s
constant τ (a0,...,a3) = τ(S(a0,...,a3)),

τ (a0,...,a3) ≤ c3 · |a0 · . . . · a3|
ε
2 ·

∏

p prime

min
i=0,...,3

‖ai‖
1
3
p · min

i=0,...,3
‖ai‖

1
3∞ ·

∏

p prime

[

min
i=0,...,3

‖ai‖p

]− ε
2
.

Indeed, this is trivial in the case τ (a0,...,a3) = 0. Otherwise, S(a0,...,a3) has an
adelic point. Lemmas 2.5 and 2.3 show that we may estimate the factors α and β
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by constants. By consequence,

1

τ (a0,...,a3)
≥ 1

c3
·

∏

p prime

[

min
i=0,...,3

‖ai‖p

]− 1
3 ·
[

min
i=0,...,3

‖ai‖∞
]− 1

3

|a0 · . . . · a3|
ε
2 · ∏

p prime

[

min
i=0,...,3

‖ai‖p

]− ε
2

=
1

c3

·

∏

p prime

max
i=0,...,3

∥

∥

∥

1
ai

∥

∥

∥

1
3

p
· max

i=0,...,3

∥

∥

∥

1
ai

∥

∥

∥

1
3

∞

|a0 · . . . · a3|
ε
2 · ∏

p prime

[

max
i=0,...,3

a
(p)
i

]
ε
2

=
1

c3
·

Hnaive

(

1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|
ε
2 · ∏

p prime

[

max
i=0,...,3

a
(p)
i

]
ε
2

.

It is obvious that max
i=0,...,3

a
(p)
i ≤ |a(p)

0 · . . . · a(p)
3 | and

∏

p prime

|a(p)
0 · . . . · a(p)

3 | = |a0 · . . . · a3|.
This shows

1

τ (a0,...,a3)
≥ 1

c3

·
Hnaive

(

1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|
ε
2 · |a0 · . . . · a3|

ε
2

=
1

c3
·
Hnaive

(

1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|ε
. �

2.5.2. Lemma. –––– Let (a0 : . . . : a3) ∈ P3(Q) be any point such that
a0 6= 0, . . . , a3 6= 0. Then,

Hnaive(a0 : . . . : a3) ≤ Hnaive(
1
a0

: . . . : 1
a3

)3 .

Proof. First, observe that (a0 : . . . : a3) 7→
(

1
a0

: . . . : 1
a3

)

is a well-
defined map. Hence, we may assume without restriction that a0, . . . , a3 ∈ Z and
gcd(a0, . . . , a3) = 1. This yields Hnaive(a0 : . . . : a3) = max

i=0,...,3
|ai|.

On the other hand, ( 1
a0

: . . . : 1
a3

) = (a1a2a3 : . . . : a0a1a2). Consequently,

Hnaive

(

1
a0

: . . . : 1
a3

)

≤ [ max
i=0,...,3

|ai|]3 = Hnaive(a0 : . . . : a3)
3 .

From this, the asserted inequality emerges when the roles of ai and 1
ai

are inter-
changed. �

2.5.3. Corollary. –––– Let a0, . . . , a3 ∈ Z such that gcd(a0, . . . , a3) = 1. Then,

|a0 · . . . · a3| ≤ Hnaive

(

1
a0

: . . . : 1
a3

)12
.

Proof. Observe that |a0 · . . . · a3| ≤ max
i=0,...,3

|ai|4 = Hnaive(a0 : . . . : a3)
4 and apply

Lemma 2.5.2. �
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2.5.4. Theorem. –––– For each ε > 0, there exists a constant C(ε) > 0 such that,
for all (a0, . . . , a3) ∈ (Z\{0})4,

1

τ (a0,...,a3)
≥ C(ε) · Hnaive

(

1
a0

: . . . : 1
a3

)
1
3
−ε

.

Proof. We may assume that gcd(a0, . . . , a3) = 1. Then, by Proposition 2.5.1,

1

τ (a0,...,a3)
≥ C(ε) ·

Hnaive

(

1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|
ε
12

.

Corollary 2.5.3 yields |a0 · . . . · a3|
ε
12 ≤ Hnaive

(

1
a0

: . . . : 1
a3

)ε
. �

2.5.5. Corollary (Fundamental finiteness). —– For each T > 0, there are only
finitely many diagonal cubic surfaces S(a0,...,a3) : a0x

3
0 + . . . + a3x

3
3 = 0 in P3Q such

that τ (a0,...,a3) > T .

Proof. This is an immediate consequence of the comparison to the naive height
established in Theorem 2.5.4. �
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