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Abstract

For diagonal cubic surfaces, we study the behaviour of the height of the
smallest rational point versus the Tamagawa type number introduced by
E. Peyre.

1 Introduction

1.1. –––– Let S ⊆ PnQ be a Fano variety defined over Q. If S(Qν) 6= ∅ for
every ν ∈ Val(Q) then it is natural to ask whether S(Q) 6= ∅ (Hasse’s principle).
Further, it would be desirable to have an a-priori upper bound for the height of
the smallest Q-rational point on S as this would allow to effectively decide whether
S(Q) 6= ∅ or not.

When S is a conic, Legendre’s theorem on zeroes of ternary quadratic forms
proves the Hasse principle and, moreover, yields an effective bound for the small-
est point. For quadrics of arbitrary dimension, the same is true by an observation due
to J. W. S. Cassels [Ca]. Further, there is a theorem of C. L. Siegel [Si, Satz 1] which
provides a generalization to hypersurfaces defined by norm equations. For more gen-
eral Fano varieties, no theoretical upper bound is known for the smallest height of aQ-rational point. Some of these varieties fail the Hasse principle.

In this note, we present some theoretical and experimental results concerning
the smallest height of a Q-rational point on diagonal cubic surfaces in P3Q.

1.2. –––– A conjecture, due to Yu. I. Manin, asserts that the number of Q-ratio-
nal points of anticanonical height <B on a Fano variety S is asymptotically equal
to τB logrkPic(S)−1 B, for B → ∞.

Key words and phrases. Diagonal cubic surface, Diophantine equation, smallest solution, naive
height, E. Peyre’s Tamagawa-type number
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In the particular case of a cubic surface, the anticanonical height is the same as
the naive height. Further, the coefficient τ ∈ R equals the Tamagawa-type num-
ber τ(S) introduced by E. Peyre in [Pe]. Thus, one expects at least ∼τ(S)B points
of height < B. Assuming equidistribution, the height of the smallest point should
be < 1

τ(S)
. Being a bit optimistic, this might lead to the expectation that m(S), the

height of the smallest Q-rational point on S, is always less than C
τ(S)

for a certain
absolute constant C.

1.3. –––– To test this expectation, we computed the Tamagawa number and as-
certained the smallest Q-rational point for each of the cubic surfaces given by

ax3 + by3 + 2z3 + w3 = 0

for a = 1, . . . , 3000 and b = 1, . . . , 300.

Thereby, we restricted our considerations to the case that

i) a and b are odd,

ii) there exists an odd prime p dividing a but not b such that 3 ∤ νp(a),

or

iii) there exists an odd prime p dividing b but not a such that 3 ∤ νp(b).

This guarantees that we are in the “First Case” according to the classification of
J.-L. Colliot-Thélène and his coworkers [CTKS].

Further, we assume that a > b + 3. The purpose of this condition is twofold.
The inequality a ≥ b is necessary in order to avoid duplications. Further, equations
such that |a − b| ≤ 3 lead to Q-rational points of height one. Thus, they are not of
much interest for investigations concerning the smallest point.

The results are summarized by the diagram below.

Figure 1: Height of smallest point versus Tamagawa number
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It is apparent from the diagram that the experiment agrees with the expecta-
tion above. The slope of a line tangent to the top right of the scatter plot is
indeed near (−1). However, we show in Section 8 that, in general, the inequality
m(S) < C

τ(S)
does not hold. The following remains a logical possibility.

1.4. Question. –––– For every ε > 0, does there exist a constant C(ε) such that,
for each cubic surface,

m(S) <
C(ε)

τ(S)1+ε
?

2 Peyre’s constant

2.1. –––– Recall that E. Peyre’s Tamagawa-type number is defined [PT, Defini-
tion 2.4] as

τ(S) := α(S)·β(S) · lim
s→1

(s − 1)tL(s, χPic(SQ)) · τH

(

S(AQ)Br
)

for t = rk Pic(S).

The factor β(S) is simply defined as

β(S) := #H1
(

Gal(Q/Q), Pic(SQ)
)

.

α(S) is given as follows [Pe, Définition 2.4]. Let Λeff(S) ⊂ Pic(S)⊗Z R be the cone
generated by the effective divisors. Identify Pic(S) ⊗Z R with Rt via a mapping
induced by an isomorphism Pic(S)

∼=−→ Zt. Consider the dual cone Λ∨
eff(S) ⊂ (Rt)∨.

Then,

α(S) := t · vol { x ∈ Λ∨
eff | 〈x,−K〉 ≤ 1 } .

L( · , χPic(SQ)) denotes the Artin L-function of the Gal(Q/Q)-representation
Pic(SQ)⊗ZC which contains the trivial representation t times as a direct summand.
Therefore, L(s, χPic(SQ)) = ζ(s)t · L(s, χP ) and

lim
s→1

(s − 1)tL(s, χPic(SQ)) = L(1, χP )

where ζ denotes the Riemann zeta function and P is a representation which does
not contain trivial components. [Mu, Corollary 11.5 and Corollary 11.4] show that
L(s, χP ) has neither a pole nor a zero at s = 1.

Finally, τH is the Tamagawa measure on the set S(AQ) of adelic points on S and
S(AQ)Br ⊆ S(AQ) denotes the part which is not affected by the Brauer-Manin ob-
struction.
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2.2. –––– As S is projective, we have

S(AQ) =
∏

ν∈Val(Q)

S(Qν).

τH is defined to be a product measure τH :=
∏

ν∈Val(Q) τν .

For a prime number p, the local measure τp is given as follows. Let a ∈ S(Z/pkZ)
and put U

(k)
a := { x ∈ S(Qp) | x ≡ a (mod pk) }. Then,

τp(U
(k)
a ) := det(1−p−1 Frobp | Pic(SQ)Ip)· lim

n→∞

#{ y ∈ S(Z/pnZ) | y ≡ a (mod pk) }
pn dimS

.

Here, Pic(SQ)Ip denotes the fixed module under the inertia group.

τ∞ is described in [Pe, Lemme 5.4.7]. In the case of a hypersurface defined by
the equation f = 0, this yields

τ∞(U) =
1

2

∫

CU
|x0|, ... ,|xn|≤1

ωLeray

for U ⊂ S(R). Here, ωLeray is the Leray measure on the cone CS(R) associated to
the equation f = 0.

The Leray measure is related to the usual hypersurface measure by the formula
ωLeray = 1

| grad f | ωhyp. It is an easy calculation to show that ωLeray is given by the
differential form 1

|∂f/∂x0| dx1 ∧ . . . ∧ dxn.

2.3. Remark. –––– In the case of diagonal cubic surfaces, there is an estimate
for m(S) in terms of τ(S). Namely, 1

τ(S)
admits a fundamental finiteness property.

More precisely, the following theorem is proven in [EJ4].

2.4. Notation. –––– Let a = (a0, . . . , a3) ∈ (Z\{0})4 be a vector. Then, we
denote by Sa the cubic surface in P3Q given by a0x

3
0 + . . . + a3x

3
3 = 0.

2.5. Theorem. –––– For each ε > 0 there exists a constant C(ε) > 0 such that

1

τ(Sa)
≥ C(ε) · Hnaive

(

1
a0

: . . . : 1
a3

)
1
3
−ε

for every a ∈ (Z\{0})4.

3 A technical lemma

3.1. Sublemma. –––– a) (Good reduction)
If p ∤ 3a0 · . . . · a3 then the sequence

(

#S(a0,...,a3)(Z/pnZ)/p2n
)

n∈N is constant.
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b) (Bad reduction)

i) If p divides a0 · . . . · a3 but not 3 then the sequence
(

#S(a0,...,a3)(Z/pnZ)/p2n
)

n∈N
becomes stationary as soon as pn does not divide any of the coefficients a0, . . . , a3.

ii) If p = 3 then the sequence
(

#S(a0,...,a3)(Z/pnZ)/p2n
)

n∈N becomes stationary as
soon as 3n does not divide any of the numbers 3a0, . . . , 3a3.

3.2. Lemma. –––– a) For every a0, . . . , a3 ∈ Z\{0}, the infinite product

∏

p prime

τp

(

S(a0,...,a3)(Qp)
)

is absolutely convergent.

b) There are two positive constants C1 and C2 such that, for all a0, . . . , a3 ∈ Z\{0},
C1 <

∏

p prime
p∤3a0·····a3

τp

(

S(a0,...,a3)(Qp)
)

< C2 .

Proof. For a prime p of good reduction, Sublemma 3.1 shows

τp

(

S(a0,...,a3)(Qp)
)

= det
(

1 − p−1 Frobp | Pic(SQ)
)

· #S(a0,...,a3)(Fp)

p2
.

Further, for the number of points on a non-singular cubic surface over a finite field,
the Lefschetz trace formula can be made completely explicit [Ma, Theorem 27.1].
It shows #S(a0,...,a3)(Fp) = p2 + p · tr

(

Frobp | Pic(SQ)
)

+ 1.
Denoting the eigenvalues of the Frobenius on Pic(SQ) by λ1, . . . , λ7, we find

τp

(

S(a0,...,a3)(Qp)
)

= (1 − λ1p
−1)(1 − λ2p

−1) · . . . · (1 − λ7p
−1)

· [1 + (λ1 + · · · + λ7)p
−1 + p−2]

= (1 − σ1p
−1 + σ2p

−2 ∓ . . . − σ7p
−7)(1 + σ1p

−1 + p−2)

= 1 + (1 − σ2
1 + σ2)p

−2 − (σ1 − σ1σ2 + σ3)p
−3 ±

± . . . − (σ5 − σ1σ6 + σ7)p
−7 + (σ6 − σ1σ7)p

−8 − σ7p
−9

where σi denote the elementary symmetric functions in λ1, . . . , λ7.
We know |λi| = 1 for all i. Estimating very roughly, we have |σj| ≤ (7

j
) ≤ 7j

and see

1 − 99p−2 − 7·99p−3 − . . . − 77 ·99p−9 ≤ τp

(

S(a0,...,a3)(Qp)
)

≤
≤ 1 + 99p−2 + 7·99p−3 +. . .+ 77 · 99p−9.

I.e.,

1 − 99p−2 1

1 − 7/p
< τp

(

S(a0,...,a3)(Qp)
)

< 1 + 99p−2 1

1 − 7/p
.
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The infinite product over all 1 − 99p−2 1
1−7/p

(respectively 1 + 99p−2 1
1−7/p

) is conver-
gent.

The left hand side is positive for p > 13. For the small primes remaining, we need
a better lower bound. For this, note that a cubic surface over a finite field Fp always
has at least one Fp-rational point. This yields τp

(

S(a0,...,a3)(Qp)
)

≥ (1−1/p)7/p2 > 0.
�

3.3. Remark. –––– The correctional factors det
(

1 − p−1 Frobp | Pic(SQ)Ip
)

are all positive. Indeed, for a pair of complex conjugate eigenvalues, we have
(1 − λp−1)(1 − λp−1) = |1 − λp−1|2 > 0 and an eigenvalue of 1 or (−1) contributes
a factor 1 ± p−1 > 0. Consequently, we always have

(

1 − 1

p

)7

< det
(

1 − p−1 Frobp | Pic(SQ)Ip
)

<
(

1 +
1

p

)7

.

4 Splitting the Picard group

4.1. Motivation. –––– In the case of the diagonal cubic surface S(a0,...,a3) ⊂ P3Q,
given by a0x

3
0 + . . . + a3x

3
3 = 0 for a0, . . . , a3 ∈ Z\{0}, the 27 lines on S(a0,...,a3) may

easily be written down explicitly. Indeed, for each pair (i, j) ∈ (Z/3Z)2, the system

3
√

a0 x0 + ζ i
3

3
√

a1 x1 = 0
3
√

a2 x2 + ζj
3

3
√

a3 x3 = 0

of equations defines a line on S(a0,...,a3). Decomposing the index set {0, . . . , 3} dif-
ferently into two subsets of two elements each yields all the lines. In particular, we
see that the 27 lines may be defined over L = Q(ζ3,

3
√

a1/a0,
3
√

a2/a0,
3
√

a3/a0

)

.

It is classically known that the 27 lines on a smooth cubic surface gener-
ate its Picard group. Consequently, Pic(S(a0,...,a3)) is acted upon by the Galois
group Gal(L/Q). The goal of this section is to study the Galois module structure
on Pic(S(a0,...,a3)) more closely.

4.2. Fact. –––– Let p be a prime number and a0, . . . , a3 be integers not divisible
by p. Then,

#S(a0,...,a3)(Fp) =















p2 +
(

1 + χ3(a0a1a
2
2a

2
3) + χ3(a

2
0a

2
1a2a3)

+ χ3(a0a
2
1a2a

2
3) + χ3(a

2
0a1a

2
2a3)

+ χ3(a0a
2
1a

2
2a3) + χ3(a

2
0a1a2a

2
3)
)

p + 1 if p ≡ 1 (mod 3),

p2 + p + 1 if p ≡ 2 (mod 3).

Here, in the case p ≡ 1 (mod 3), χ3 : F∗
p → C denotes a cubic residue character.
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Proof. If p ≡ 2 (mod 3) then every residue class modulo p has a unique cubic root.
Therefore, the map S(a0,...,a3)(Fp) → P2(Fp) given by (x : y : z : w) 7→ (x : y : z)
is bijective. This shows #S(a0,...,a3)(Fp) = p2 + p + 1.

Turn to the case p ≡ 1 (mod 3). It is classically known that, on a degree m
diagonal variety, the number of Fp-rational points for p ≡ 1 (mod m) may be deter-
mined using Jacobi sums. The formula given follows immediately from [IR, Chap-
ter 10, Theorem 2] together with the well-known relation g(χ3)g(χ2

3) = p for cubic
Gauß sums. �

4.3. Lemma. –––– Let a0, . . . , a3 ∈ Z\{0}. Then, for each prime p such that
p ∤ 3a0 · . . . · a3,

χPic(S
(a0,...,a3)Q )(Frobp) = tr

(

Frobp | Pic(S
(a0,...,a3)Q ) ⊗Z C)

=















χ3(a0a1a
2
2a

2
3) + χ3(a

2
0a

2
1a2a3)

+ χ3(a0a
2
1a2a

2
3) + χ3(a

2
0a1a

2
2a3)

+ χ3(a0a
2
1a

2
2a3) + χ3(a

2
0a1a2a

2
3) + 1 if p ≡ 1 (mod 3),

1 if p ≡ 2 (mod 3).

Proof. As we have good reduction, the trace of Frobp on Pic(S
(a0,...,a3)Q ) ⊗Z C

is the same as that of Frob on Pic(S
(a0,...,a3)Fp

) ⊗Z C. Further, the Lefschetz trace
formula [Ma, Theorem 27.1] shows

#S(a0,...,a3)(Fp) = p2 + p · tr
(

Frob
∣

∣ Pic(S
(a0,...,a3)Fp

) ⊗Z C)+ 1.

The explicit formulas for the numbers of points given in Fact 4.2 therefore yield
the assertion. �

4.4. Notation. –––– Let A ∈ Z be an integer, K := Q(ζ3,
3
√

A), G := Gal(K/Q),
H := Gal(K/Q(ζ3)), and χ : H → C∗ a primitive character. Then, we write
νK := indG

H(χ) for the induced character and VK for the corresponding G-rep-
resentation.

If K is of degree three over Q(ζ3) then VK is an irreducible rank two represen-
tation of G ∼= S3. Otherwise, K = Q(ζ3). Then, VK ∼= C⊕M splits into the direct
sum of a trivial and a non-trivial one-dimensional representation of H ∼= Z/2Z.

We will freely consider VK as a Gal(Q/Q)-representation.

4.5. Lemma. –––– Let A be any integer. Then, for a prime p not dividing A,
we have

νQ(ζ3,3
√

A)(Frobp) =

{

χ3(A) + χ3(A) if p ≡ 1 (mod 3),
0 if p ≡ 2 (mod 3).

Proof. The primitive character is unique up to conjugation by an element of G.
Therefore, the induced character λ is well-defined.
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The Kummer pairing allows to make a definite choice for χ as follows. Fix an
embedding σ : Q(ζ3) → C. Then, put χ(g) := σ

(

g( 3
√

A)/ 3
√

A
)

.
If p ≡ 2 (mod 3) then p remains prime in Q(ζ3). This means, Frobp acts non-

trivially on Q(ζ3). I.e., Frobp ∈ G\H . Since H is a normal subgroup in G, the
induced character vanishes on such an element.

For p ≡ 1 (mod 3), we have that (p) splits in Q(ζ3). Let us write (p) = pp.
The choice of p is equivalent to the choice of a homomorphism ι : 〈ζ3〉 → F∗

p .
The Frobenius Frobp is determined only up to conjugation, we may choose
Frobp = Frobp ∈ H . Then, directly by the definition of an induced character,
νQ(ζ3,3

√
A)(Frobp) = χ(Frobp) + χ(Frobp). We need to show that χ(Frobp) = χ3(A)

or χ(Frobp) = χ3(A).
For this, by the choice made above, we have χ(Frobp) := σ

(

Frobp(
3
√

A)/ 3
√

A
)

.
After reduction modulo p, we may write Frob( 3

√
A)/ 3

√
A = ( 3

√
A)p/ 3

√
A = A

p−1
3 .

Therefore, Frobp(
3
√

A)/ 3
√

A = ι−1(A
p−1
3 ) which shows χ(Frobp) = σ(ι−1(A

p−1
3 )).

That final formula is a definition for a cubic residue character at A. �

4.6. Theorem. –––– Let a0, . . . , a3 ∈ Z\{0}. Then, the Gal(Q/Q)-representa-
tion Pic(S

(a0,...,a3)Q ) ⊗Z C splits into the direct sum

Pic
(

S
(a0,...,a3)Q )

⊗Z C ∼= C⊕VK1 ⊕VK2 ⊕VK3

for K1 := Q(ζ3,
3
√

a0a1a2
2a

2
3), K2 := Q(ζ3,

3
√

a0a2
1a2a2

3), and K3 := Q(ζ3,
3
√

a0a2
1a

2
2a3).

Proof. We will show that the representations on both sides have the same character.
For that, by virtue of the Cebotarev density theorem, it suffices to consider the values
at the Frobenii Frobp for p ∤ 3a0 · . . . · a3.

For the representation on the left hand side, χPic(S
(a0,...,a3)Q )(Frobp) has been com-

puted in Lemma 4.3. For the representation on the right hand side, Lemma 4.5
shows that exactly the same formula is true. �

4.7. Corollary. –––– Let a0, . . . , a3 ∈ Z\{0} be integers, consider

V (a0,...,a3) := Pic
(

S
(a0,...,a3)Q )

⊗Z C,

as a Gal(Q/Q)-representation, and let χ(a0,...,a3) be the associated character.
Put K1 := Q(ζ3,

3
√

a0a1a
2
2a

2
3), K2 := Q(ζ3,

3
√

a0a
2
1a2a

2
3), and K3 := Q(ζ3,

3
√

a0a
2
1a

2
2a3).

Then, for the Artin conductor Nχ(a0,...,a3) of χ(a0,...,a3), we have

N2
χ(a0,...,a3) = D(K1)D(K2)D(K3)/(−27),

where

D(K) :=

{

Disc(K/Q) if [K : Q(ζ3)] = 3,
−27 if K = Q(ζ3).
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Proof. We have to show N2
νK = D(K)/(−3). Assume first that [K : Q(ζ3)] = 3.

Then, the conductor-discriminant formula [Ne, Chapter VII, Section (11.9)] shows
Disc(K/Q) = NCNMN2

νK and −3 = Disc(Q(ζ3)/Q) = NCNM which together yield
the assertion. In the opposite case, we have VK = C⊕M and NνK = NCNM = −3.

�

4.8. Lemma. –––– Let a and b be integers different from zero. Then,

∣

∣Disc
(Q(ζ3,

3
√

ab2)/Q)∣∣ ≤ 39a4b4.

Proof. We have, at first,

∣

∣Disc
(Q(ζ3,

3
√

ab2)/Q)∣∣ ≤ ∣

∣Disc
(Q(ζ3)/Q)∣∣3 · Disc

(Q(
3
√

ab2)/Q)2
= 27 · Disc

(Q(
3
√

ab2)/Q)2.
Further, by [Mc, Chapter 2, Exercise 41], we know

∣

∣Disc
(Q(

3
√

ab2)/Q)∣∣ ≤ 33a2b2.
This shows

∣

∣Disc
(Q(ζ3,

3
√

ab2)/Q)∣∣ ≤ 39a4b4. �

4.9. Corollary. –––– Let a0, . . . , a3 ∈ Z\{0} be integers and χ(a0,...,a3) the char-
acter associated to the Gal(Q/Q)-representation

V (a0,...,a3) := Pic
(

S
(a0,...,a3)Q )

⊗Z C .

Then, for the Artin conductor Nχ(a0,...,a3), we have the estimate

|Nχ(a0,...,a3)| ≤ 312(a0 · . . . · a3)
6.

Proof. Lemma 4.8 shows |D(Ki)| ≤ 39(a0 · . . . · a3)
4 for i = 1, 2, and 3. The as-

sertion follows immediately from this. �

5 The computation of the L-function at 1

5.1. –––– We now return to the particular diagonal cubic surfaces treated in the
numerical experiment. Cf. Section 1.3 for a description of our sample.

5.2. Lemma. –––– For a, b ∈ Z\{0}, consider in P3Q the diagonal cubic surface

S = S(a,b,2,1). Assume that S fulfills condition 1.3.i), ii), or iii).

i) Then, rk Pic(S) = 1.

ii) Furthermore, there is the relation

lim
s→1

(s − 1)L(s, χPic(SQ)) = L(1, νK1)L(1, νK2)L(1, νK3)

for K1 = Q(ζ3,
3
√

4ab), K2 = Q(ζ3,
3
√

2ab2), and K3 = Q(ζ3,
3
√

4ab2).
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Proof. i) The assumptions imply that 4ab, 2ab2, and 4ab2 are three non-cubes.
In particular, the Gal(Q/Q)-representations VK1 , VK2, and VK3 are irreducible of
rank two.

Further, a standard application of the Hochschild-Serre spectral sequence en-
sures that Pic(S) ⊆ Pic(SQ)Gal(Q/Q) is always a subgroup of finite index. There-
fore, it suffices to verify that rk Pic(SQ)Gal(Q/Q) = 1. For this, we note that,
by Theorem 4.6, Pic(SQ)Gal(Q/Q)⊗ZC splits into a trivial and three irreducible
Gal(Q/Q)-representations.

ii) Note again that χPic(SQ) = 1 + νK1 + νK2 + νK3 . The assertion follows directly
from [Ne, Chapter VII, Theorem (10.4).ii)]. �

5.3. Observations. –––– i) The character νKi is induced by a non-trivial char-
acter of the group Gal(Ki/Q(ζ3)) of order three. Therefore, by [Ne, Chapter VII,
Theorem (10.4).iv)], we may understand L(s, νKi) as the Artin L-function overQ(ζ3)
associated to that character.

ii) Further, Ki/Q(ζ3) is an abelian extension. Then, [Ne, Chapter VII, Theo-
rem (10.6)] shows that L(s, νKi) coincides with the Hecke L-function given by the
generalized Dirichlet character of order three modulo 4ab, 2ab2, or 4ab2 over Q(ζ3).
An elementary proof of this fact requires the cubic reciprocity low [IR].

5.4. Remarks. –––– i) As L(1, νKi) is not given by an absolutely convergent se-
ries, we cannot evaluate it directly.

ii) One could apply the analytic class number formula to compute L(1, νKi). This ap-
proach is, however, not practical for half a million L-functions.

5.5. Notation. –––– From now on, we will denote the generalized Dirichlet char-
acter of order three modulo A by νA and its conductor by m ∈ Z[ζ3]. Further, we
write N : Q(ζ3) → Q for the norm map.

5.6. –––– We complete the L-function by putting

Λ(s, νA) := (−3N(m))s/2 2

(2π)s
Γ(s)L(s, νA) .

The completed L-function is connected with a theta function via a Mellin transform.
One has

Λ(s, νA) =

∞
∫

0

f(t) ts/2 dt

t

where f is the function defined by

f(t) :=
1

6

∑

a∈Z[ζ3]

νA(a)e
− 2π

|3m|N(a)
√

t
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for t > 0. The connection to the Hecke theta-function associated to Z[ζ3] and νA is
given by

f(t) :=
1

6
θ(i

√
t, νA) .

Inspecting the convergence properties of the series, we see that it converges very
rapidly for t ≫ 0 while convergence is arbitrarily slow for t close to zero.

The functional equation

θ(−1/z, νA) =
z

i
θ(z, νA)

interchanges the ranges of good and bad convergence. Hence, this equation should
be used to compute f(t) for t small.

To be more precise, we split the half line [0,∞) into two parts and write

Λ(s, νA) =

u
∫

0

f(t) ts/2 dt

t
+

∞
∫

u

f(t) ts/2 dt

t
.

Applying the functional equation of the Hecke theta function to the first sum-
mand yields

Λ(s, νA) =
1

6

∑

a∈Z[ζ3]

2νA(a)

(

[ |3m|
2πN(a)

]1−s
∞
∫

2πN(a)
|3m|

1√
u

e−xx−sdx

+

[ |3m|
2πN(a)

]s
∞
∫

2πN(a)
|3m|

√
u

e−xxs−1dx

)

(1)

for each u > 0. This is an absolutely convergent infinite series.

5.7. Remark. –––– The idea to evaluate an L-function at an arbitrary
point s ∈ C using a series analogous to (1) goes back, at least, to A. F. Lavrik [La].
Descriptions of this method may also be found in [St], [Co, Section 10.3], and [Do].

5.8. Remark. –––– The relation of Λ(s, νA) to a theta function is a particular
case of the very general [Ne, Chapter VII, Theorem (8.3)]. In comparison with the
general case, many simplifications do occur, mainly because Q(ζ3) is an imaginary
quadratic number field of class number 1. Note that Q(ζ3) has discriminant (−3)
and precisely six units.

5.9. Remark. –––– In more generality, the functional equation of a Hecke
theta function is of the form

θ(−1/z, ν) =
τ(ν)

√

N(m)

z

i
θ(z, ν) .

11



Here, τ(ν) is the Gauß sum associated to the character ν [Ne, Chapter VII, Defini-
tion (7.4)].

In our case, it is immediate from the definition that τ(νA) is real. Further, [Ne,
Chapter VII, Theorem (7.7)] shows that |τ(νA)| =

√

N(m) such that the coefficient
of the functional equation is ±1.

Actually, the sign is always positive. Indeed, a direct calculation shows

ζQ(3√A)(s) = L(s, νA)ζ(s) .

Further, in the functional equation of the Dedekind zeta function, the sign is al-
ways positive [Ne, Chapter VII, Corollary (5.10)].

5.10. Remarks. –––– i) The convergence of the series (1) is optimal when u is
close to 1. Calculations using different values of u may be used for checks [Do].

ii) The number of summands required for a numerical approximation is about C|m|.
The constant C depends on the precision required.

5.11. Remark. –––– There are a number of obvious ideas to optimize the com-
putations.

i) The summand for a depends only on the ideal (a). Hence, the summands arise in
groups of six. We calculate only once for each group.

ii) Both integrals depend only on N(a) and |m|. Thus, we evaluate them only once
for each pair (N(a), |m|).
iii) The computation of the generalized Dirichlet characters νA is sped up using their
multiplicativity in A. For a concrete value a ∈ Z[ζ3], we first use Euler’s criterion
to compute νp(a) for all prime numbers p less than 3000. Having tabulated these
values, the calculation of all the characters νA at a is done rapidly.

Since we are interested in the evaluation of many L-functions at s = 1, some more
possibilities for optimization do arise.

iv) Actually, the first integral is the integral exponential function and the second
one is just an exponential function. The numerical evaluation of the integral expo-
nential function could be done by a combination of the power series expansion with
a continued fraction expansion [PFTV].

However, there is another method which is better. The arguments of the integral
exponential function we meet lie in a rather small range. This range was split up
into even smaller intervals. On each interval, we used a polynomial approximation.

5.12. –––– We organized the computations as follows. In a first step, we enu-
merated all the radicands A for which L(1, νA) had to be computed. We sorted
the list and eliminated all repetitions. In addition, for each radicand, we stored its

12



prime decomposition for later use. The resulting list consisted of 557 270 radicands.
Only 214 285 different conductors occurred.

Then, we evaluated L(1, νA) for all the radicands A occurring. We used for-
mula (1) for u = 1 and u = 1.2. To evaluate the series numerically, we worked with
64-bit hardware floats and used backward summation. The differences between the
two results were always negligible. The whole computation of the values of L took
around four days.

In Table 1 below, we present a few of the values computed. The first two lines
represent the absolutely largest and the absolutely smallest value of L, we found.
The three other lines all correspond to conductor 5 380 206 which is the largest
conductor appearing in our list. For this maximal conductor, we worked in the
summation with all a ∈ Z[ζ3] such that N(a) ≤ 38 276 797. For smaller conductors,
according to Remark 5.10.ii), less summands were used.

Radicand A L(1, νA) using u = 1 L(1, νA) using u = 1.2 . . . using class number formula

166 249 4.419 173 379 082 995 4.419 173 379 082 997 4.419 173 379 082 996 519 114 130

102 044 100 0.596 117 703 616 924 0.596 117 703 616 918 0.596 117 703 616 923 884 079 232

3 586 804 0.888 154 374 767 605 0.888 154 374 767 607 0.888 154 374 767 604 963 111 775

536 227 198 0.946 251 759 020 570 0.946 251 759 020 576 0.946 251 759 020 569 971 686 643

1 072 454 396 1.437 503 627 427 445 1.437 503 627 427 447 1.437 503 627 427 445 188 453 952

Table 1: Some values of the L-functions at s = 1

6 Computing the Tamagawa numbers

6.1. Lemma. –––– For a, b ∈ Z\{0}, consider in P3Q the diagonal cubic surface

S = S(a,b,2,1). Assume that S fulfills condition 1.3.i), ii), or iii).

i) Then, α(S) = 1 and β(S) = 3.

ii) Furthermore, one has precisely

τH

(

S(AQ)Br
)

=
1

3
τH

(

S(AQ)
)

.

Proof. i) On a cubic surface, the self-intersection number of the canonical divisor K
is equal to 3 which is square-free. Therefore, rk Pic(S) = 1 immediately implies
that Pic(S) = 〈K〉. This is enough to ensure α(S) = 1.

β(S) can be computed using the method described in Yu. I. Manin’s book [Ma,
Proposition 31.3]. Let F ⊂ Div(S) the free abelian group over the 27 lines, F0 ⊂ F
the subset of principal divisors, and N : F → F the norm map under the operation
of the Galois group G on F . Then, Yu. I. Manin states that

H1
(

Gal(Q/Q), Pic(SQ)
) ∼= Hom

(

(NF ∩ F0)/NF0,Q/Z).
13



We have a group G of order 6, 18, or 54. If #G = 54 then G decomposes the 27 lines
into three orbits of nine lines each. In this case, an easy calculation shows that

Hom
(

(NF ∩ F0)/NF0,Q/Z) ∼= Z/3Z .

The smaller groups might lead to the decomposition types [3, 6, 9, 9] or [3, 3, 3, 6, 6, 6].
A calculation in GAP shows Hom

(

(NF ∩ F0)/NF0,Q/Z) ∼= Z/3Z in these cases, too.

ii) This is known by the work of J.-L. Colliot-Thélène and his coworkers [CTKS,
Proof of Proposition 2]. �

6.2. Corollary. –––– For a, b ∈ Z \ {0}, consider the diagonal cubic surface
S = S(a,b,2,1). Assume that S fulfills condition 1.3.i), ii), or iii).

Then, for E. Peyre’s Tamagawa-type number, one has

τ(S) = lim
s→1

(s − 1)L(s, χPic(SQ)) ·
∏

p prime

τp

(

S(Qp)
)

· τ∞
(

S(R)
)

.

6.3. The factor at the infinite place. –––– Since S is a diagonal cubic surface,
the projection from the cone CS(R) to the (y, z, w)-space is one-to-one. Therefore,

τ∞
(

S(R)
)

=
1

6 3
√

a

∫∫∫

(y,z,w)∈[−1,1]3

|x(y,z,w)|≤1

1

(by3 + 2z3 + w3)2/3
dy dz dw .

Further, we have

|x(y, z, w)| =
3

√

|by3 + 2z3 + w3|
a

≤ 3

√

b|y|3 + 2|z|3 + |w|3
a

.

Since |y| ≤ 1, |z| ≤ 1, |w| ≤ 1, and a > b + 3, it turns out that the condition
|x(y, z, w)| ≤ 1 is actually empty. The integral in the formula for τ∞(S(R)) depends
only on b. We are left with just 300 different integrals.

A linear substitution leads to 300 integrals of the same function on an increasing
sequence of integration domains. Hence, this sequence can be computed incremen-
tally. Doing this, the first integrals (for b = 1, 2, and 3) are critical since the
integrand is singular in the domain of integration. Thus, they should not be com-
puted naively. We evaluated them using the approach described in [EJ3].

6.4. Computation of the Euler product. –––– By Lemma 3.2, the Euler
product is absolutely convergent and, for the relative error, we have the estimate
∣

∣

∣

∣

∏

p≥N
p≡1 (mod 3)

(

1 ± 99p−2 1

1 − 7/p

)

·
∏

p≥N
p≡2 (mod 3)

(

1 − 1

p3

)

− 1

∣

∣

∣

∣

≤ 99/2

N log N
+ O

(

1

N log2 N

)
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if all bad primes are below N . In particular, the approximation by the finite product
over all primes up to 106 leads to a relative error of less than 4·10−6.

The computation of the Euler products was done according to their definition.
An optimization which is worth a mention is that we ran the outer loop over the
prime numbers and the inner loops over a and b. The whole computation of the
Euler products took a quarter of an hour.

7 Searching for the smallest solution

7.1. –––– Now, we are in the position to explain how Figure 1 was generated.
Besides computing the Tamagawa type numbers, we had to determine the smallest
solution for each of the equations

ax3 + by3 + 2z3 + w3 = 0

where a and b are in the ranges a = 1, . . . , 3000 and b = 1, . . . , 300 and fulfill the
conditions formulated in 1.3.

For this, our strategy was very similar to that of M. Vallino as described
in [CTKS, p. 79/80]. More concretely, we worked in several stages, thereby raising
the search bound for the remaining equations from stage to stage.

The algorithms we used are slight modifications of [EJ1, Algorithm 27]. We dealt
with the decoupling ax3 + 2z3 = −by3 − w3.

7.2. Description of the method. –––– i) In a first stage, we worked with a
search bound of 100 and ran the algorithm simultaneously on all the 900 000 equa-
tions for a = 1, . . . , 3000 and b = 1, . . . , 300. For exactly 69 074 of these equations,
no solution was found. Among them, 67 787 fulfilled the congruence conditions
formulated in 1.3. In this list, there were only a few duplications. 65 314 of the
equations obeyed the limitation a > b + 3, too.

For these, we ran a test for p-adic solvability. It turned out that only 18 424 of the
remaining 65 314 equations were solvable in Qp for every prime p.

ii) We executed the second stage with the corresponding pairs. They were read from
a file. The searching algorithm was run separately for each equation. We worked
with search bounds of 200, 400, and 800 and stopped when a solution was found.

Only 113 equations remained unsolved by that stage.

iii) In most of these cases, there was a prime p such that 2 is a cubic non-residue
modulo p dividing both a and b. This enforces that both z and w must be divisible
by p. We used these strong divisibility conditions when working with search bounds
of 4000 and 20 000.

15



7.3. Remark. –––– Actually, in the last stage, there were only three equa-
tions remaining for which no solution had been found with a search bound
of B = 4000. They are represented by the pairs (a, b) = (2321, 211),
(2331, 222), and (a, b) = (2641, 278). The corresponding smallest solutions are
(−125,−884, 4220,−211), (−389, 64, 4033, 1813), and (−1023,−458, 11 259,−695),
respectively.

7.4. Remark. –––– Altogether, there are exactly 849 781 cubic surfaces fulfilling
the congruence conditions and limitations given in 1.3. It turned out that 46 890 of
them are p-adically unsolvable for some prime p ≡ 1 (mod 3). Each of the remaining
cubic surfaces admits a Q-rational point.

Thus, there are no counterexamples to the Hasse principle in our sample. This co-
incides with J.-L. Colliot-Thélène’s conjecture that, for smooth cubic surfaces, the
Brauer-Manin obstruction is the only obstruction to the Hasse principle.

7.5. Remark. –––– It should be noticed that [EJ1, Algorithm 27] itself would
not work very well on this problem, at least not on the first stage. The point is
that there are some numbers which appear as values of the expressions ax3 + 2z3

and (−by3 − w3), many times. Whether we chose one side or the other, we had a
hash function which was quite far from being uniform.

Our idea to overcome this difficulty was to replace hashing by sorting. We gen-
erate sorted lists of all values taken by the expressions on the two sides. We look
for coincidences by a procedure similar to a step of Mergesort.

8 A negative result

8.1. –––– For an integer q 6= 0, denote by S(q) ⊂ P3Q the cubic surface given by
qx3 + 4y3 + 2z3 + w3 = 0 and let

m(S(q)) := min {Hnaive(x : y : z : w) | (x : y : z : w) ∈ S(q)(Q)}

be the smallest height of a Q-rational point on S(q). We want to compare m(S(q))
with the Tamagawa type number τ (q) := τ(S(q)).

8.2. Lemma. –––– There is a constant C with the following property.

For each pair (a, b) of natural numbers satisfying gcd(a, b) = 1, there exists a prime
number p ≡ a (mod b) such that p < C ·b5.5.

Proof. This is Linnik’s Theorem in the version of R. Heath-Brown [HB]. �

8.3. Theorem. –––– Assume the Generalized Riemann Hypothesis. Then, there
is no constant C such that

m(S(q)) <
C

τ (q)
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for all q ∈ Z\{0}.
Proof. We will construct a sequence {qi}i∈N of primes such that qi ≡ 1 (mod 72)
and m(S(qi)) τ (qi) → ∞ for i → ∞. The proof will consist of several steps.

First step. It is sufficient to verify that

m(S(qi)) · lim
s→1

(s − 1)L(s, χ
Pic(S

(qi)Q )
) ·
∏

p prime

τp

(

S(qi)(Qp)
)

· τ∞
(

S(qi)(R)
)

→ ∞.

Since qi ≡ 1 (mod 72), the prime qi is odd. Hence, the surface S fulfills condi-
tion 1.3.ii). The claim follows directly from Corollary 6.2.

Second step. For the height of the smallest point, we have m(S(q)) ≥ 3
√

q
7
.

There are no rational solutions of the equation 4y3+2z3+w3 = 0 as this is impossible,
2-adically. |x| ≥ 1 yields |4y3 + 2z3 + w3| ≥ q and max{|y|, |z|, |w|} ≥ 3

√

q
7
.

Third step. For |q| ≥ 7, one has τ∞
(

S(q)(R)
)

= 1
3
√

|q|
I where I is independent of q.

This was shown in section 6, above.

Fourth step. There is a positive constant C such that
∏

p prime

τp

(

S(q)(Qp)
)

> C for
every prime q ≡ 1 (mod 72).

By Lemma 3.2, we have C1 > 0 such that

∏

p prime
p 6=2,3,q

τp

(

S(q)(Qp)
)

> C1.

It, therefore, remains to give lower bounds for the factors τ2

(

S(q)(Q2)
)

, τ3

(

S(q)(Q3)
)

,

and τq

(

S(q)(Qq)
)

.

As 2 ∤ q, by virtue of Sublemma 3.1 we have, τ2

(

S(q)(Q2)
)

= 1
27 · #S(q)(Z/8Z)

64
. Fur-

ther, #S(q)(Z/8Z) ≥ 1 since q ≡ 1 (mod 8) implies (1 : 0 : 0 : (−1)) ∈ S(q)(Z/8Z).

Similarly, τ3

(

S(q)(Q3)
)

= (2
3
)7 · #S(q)(Z/9Z)

81
. Again, q ≡ 1 (mod 9) makes sure

that (1 : 0 : 0 : (−1)) ∈ S(q)(Z/9Z) and #S(q)(Z/9Z) ≥ 1.
For the prime q, we argue a bit differently. First,

det
(

1 − q−1 Frobp | Pic(S
(q)Q )Iq

)

≥ (1 − 1/q)7 ≥ (72/73)7.

Furthermore, the reduction of S(q) modulo q is the cone over the elliptic curve given
by 4y3 + 2z3 + w3 = 0. Therefore, on S(q) there are at least (q − 2

√

q + 1)(q − 1)
smooth points defined over Fq. As Hensel’s lemma may be applied to them, we get

lim
n→∞

#S(q)(Z/qnZ)

q2n
≥ (q − 2

√

q + 1)(q − 1)

q2
>
(

1 − 2
√

q

)(

1− 1

q

)

≥ 72

73

(

1− 2√
73

)

.
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Fifth step. There is a sequence {qi}i∈N of primes such that qi ≡ 1 (mod 72)
and [lims→1 (s − 1)L(s, χ

Pic(S
(qi)Q )

)] → ∞ for i → ∞.

Since rk Pic(S(qi)) = 1, the representation Pic
(

S
(qi)Q )

⊗ZC contains exactly one triv-
ial summand. Hence,

L
(

s, χ
Pic(S

(qi)Q )

)

= ζ(s) · L(s, χ
(qi)
0 )

for χ
(qi)
0 the character of a representation V

(qi)
0 not containing trivial components.

Our goal is, therefore, to show L(1, χ
(qi)
0 ) → ∞ for i → ∞.

For each i ∈ N, denote by Pi the i-th prime number p such that p ≡ 1 (mod 3).
We define qi to be the smallest prime such that

qi ≡ 1 (mod 72P1 · . . . · Pi) .

From this, we clearly have that qi > 72P1 · . . . · Pi → ∞ for i → ∞.
Furthermore, by Chebyshev, we know that

72P1 · . . . · Pi ≤ 72eθ(Pi) < 72e(2 log 2)Pi .

Hence, Lemma 8.2 shows

qi ≤ C1 · (72e(2 log 2)Pi)5.5 = C2e
(11 log 2)Pi

for certain constants C1 and C2.
Corollary 4.9 gives us an estimate for the Artin conductor of the charac-

ter χ(qi,4,2,1) which is the same as that of χ
(qi)
0 . We see

N
χ

(qi)
0

≤ 312(a0 · . . . · a3)
6 = 31286q6

i ≤ C3 e(66 log 2)Pi

for another constant C3. Consequently,

log N
χ

(qi)
0

≤ (66 log 2)Pi + log C3.

We observe that (log N
χ

(qi)
0

)1/2 ≤ Pi for i sufficiently large. We assume from now
on that this inequality is fulfilled.

Recall from Theorem 4.6 that V
(qi)
0 is actually the direct sum of representations

which are induced from one-dimensional characters. By consequence, it is known
that the Artin L-function L( · , χ

(qi)
0 ) is entire. Since we also assume the Generalized

Riemann Hypothesis, we may apply the estimate of W.Duke [Du, Proposition 5].
It shows

log L(1, χ
(qi)
0 ) =

∑

p<(log N
χ
(qi)
0

)1/2

χ
(qi)
0 (Frobp) p−1 + O(1).
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Here,
χ

(qi)
0 (Frobp) = χ

Pic(S
(qi)Q )

(Frobp) − 1.

For p ≡ 2 (mod 3), this yields χ
(qi)
0 (Frobp) = 0. On the other hand, for

p ≡ 1 (mod 3), we have, by virtue of Lemma 4.3,

χ
(qi)
0 (Frobp) = χ3(16q) + χ3(32q2) + χ3(32q) + χ3(16q2) + χ3(64q) + χ3(8q

2)

= χ3(q) + χ3(2q) + χ3(4q) + χ3(q
2) + χ3(2q

2) + χ3(4q
2)

=
(

1 + χ3(2) + χ3(4)
)(

χ3(q) + χ3(q
2)
)

.

This may be written down in an explicit form as

χ
(qi)
0 (Frobp) =















0 if p ≡ 2 (mod 3) ,
0 if p ≡ 1 (mod 3) and

(

2
p

)

3
6= 1 ,

6 if p ≡ 1 (mod 3),
(

2
p

)

3
= 1, and

(

qi

p

)

3
= 1 ,

−3 if p ≡ 1 (mod 3),
(

2
p

)

3
= 1, and

(

qi

p

)

3
6= 1 .

Modulo all primes p ≡ 1 (mod 3), p < (log N
χ

(qi)
0

)1/2 ≤ Pi, the number qi was
constructed to be a cubic residue. Further,

χ
(qi)
0 (Frob3) 3−1

is of absolute value at most 2. Thus,

log L(1, χ
(qi)
0 ) = 6

∑

p≡1 (mod 3)

( 2
p)3

=1

p<(log N
χ
(qi)
0

)1/2

1

p
+ O(1) .

By the Cebotarev density theorem, the set of all primes such that p ≡ 1 (mod 3)

and
(

2
p

)

3
= 1 is of density 1

6
. We, therefore, have log L(1, χ

(qi)
0 ) → ∞ as soon as we

may guarantee N
χ

(qi)
0

→ ∞.

Since only a trivial character is missing, we have, by Corollary 4.7,

N
χ

(qi)
0

= Nχ
Pic(S

(qi)Q )
= |D(K1)D(K2)D(K3)/27 |1/2 ≥ |D(K3)/27 |1/2

where, by choice of the coefficients, K3 = Q(ζ3,
3
√

64qi) = Q(ζ3,
3
√

qi). There is
the estimate

|D(K3)| =
∣

∣Disc
(Q(ζ3,

3
√

qi)/Q)∣∣
= Disc

(Q( 3
√

qi)/Q)2 · ∣∣N(Disc
(Q(ζ3,

3
√

qi)/Q( 3
√

qi)
))
∣

∣

≥ Disc
(Q( 3

√

qi)/Q)2.
According to [Mc, Chapter 2, Exercise 41], we know

∣

∣Disc
(Q( 3

√

qi)/Q)∣∣ ≥ 3q2
i . �
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8.4. Remark. –––– Note that the estimate for L(1, χ
(qi)
0 ) is the only point where

we used the Generalized Riemann Hypothesis.
Observe, in particular, that we work with a version of Linnik’s Theorem which

is true, unconditionally. Here, the Generalized Riemann Hypothesis would lead to
the much better exponent 2 + ε. This improvement is, however, not necessary for
our particular application.
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