Kummer surfaces and the computation of
the Picard group

Andreas-Stephan Elsenhans* and Jorg Jahnel?

Abstract

We test R. van Luijk’s method for computing the Picard group of a K3 sur-
face. The examples considered are the resolutions of Kummer quartics in P3.
Using the theory of abelian varieties, in this case the Picard group may be
computed directly. Our experiments show that the upper bounds provided
by R.van Luijk’s method are sharp when sufficiently large primes are used.
In fact, there are many primes which yield the exact value. However, for many
but not all Kummer surfaces V' of Picard rank 18, we have rk PiC(VE) > 20
for a set of primes of density > %

1 Introduction

1.1. —— For a general K3 surface V', the methods to compute the geometric
Picard group are limited up to now. As shown, for example in [vL] or [EJ1], it
is possible to construct a K3 surface with a prescribed Picard group. But when
a K3 surface is given, say, by an equation with rational coefficients, it is not en-
tirely clear whether its geometric Picard rank may be determined using the methods
presently known.

1.2. —— To be concrete, one may always establish a lower bound by specify-
ing divisors explicitly and verifying that their intersection matrix is nondegenerate.
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On the other hand, for upper bounds, the method of R. van Luijk is available which
is based on reduction modulo p. It is not at all clear whether the upper bounds
provided by van Luijk’s method are always sharp.

1.3. Remark. — Conjecturally, the Picard rank of a K3 surface over I, is
always even. In particular, if rk Pic(V@) is odd then there is no prime p of good
reduction such that rk Pic(Vf ) = rkPic(Vg). Even more, the rank over @ being
even or odd, there is no obvious reason why there should exist a prime number p
such that rk Pic(Vf ) is at least close to rk Pic(Ve). We will a prime p good if the
geometric Picard rank of the reduction modulo p does not exceed the Picard rank
over @ by more than one.

1.4. —— In this article, we report on our experiments concerning van Luijk’s
method on a randomly chosen sample of Kummer surfaces. Kummer surfaces are
particular K 3 surfaces allowing a two-to-one covering by an abelian surface. The geo-
metric Picard group of a Kummer surface is closely related to the Néron-Severi group
of the abelian surface. In practice, it may be computed this way.

Nevertheless, for testing van Luijk’s method, Kummer surfaces have big advan-
tages. Knowing the Picard ranks anyway, the usual question whether the lower
bound or the upper bound needs to be improved, does not appear. Further, us-
ing the particularities of a Kummer surface, one may massively optimize the point
counting step. In fact, it is very well possible to compute rk PiC(VE) for primes p
up to 10000.

1.5. —— Our sample consists of the resolutions of 9452 Kummer quartics.
For each of these surfaces, we computed the upper bounds which were found us-
ing the primes p < 997. It turned out that good primes existed in every example.
The upper bounds found turned out to be equal to the geometric Picard ranks in
all cases.

1.6. Question. —— Do there exist good primes for every K3 surface over 7

1.7. The method of van Luijk in detail. —— The Picard group of a K3 sur-
face is isomorphic to Z" where n may range from 1 to 20. An upper bound for the
Picard rank of a K3 surface may be computed as follows. One has the inequality

rk Pic(Ve) < rk Pic(Vg )

which is true for every smooth variety V' over ) and every prime p of good reduc-
tion [Fu, Example 20.3.6].

Further, for a K3 surface ¥ over the finite field F,, one has the first Chern
class homomorphism

c1: Pic(Vg,) — HE (Y, Qu(1))
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into [-adic cohomology. There is a natural operation of the Frobenius on
HE (Y5, Qu(1)). All eigenvalues are of absolute value 1. The Frobenius operation on
the Picard group is compatible with the operation on cohomology.

Every divisor is defined over a finite extension of the ground field. Conse-
quently, on the subspace Pic(”//E)(X)Z@l — Hézt(”i/@p, Q:(1)), all eigenvalues are roots
of unity. These correspond to eigenvalues of the Frobenius on HéQt("//E, Q) being
of the form p( for ¢ a root of unity. One may therefore estimate the rank of the
Picard group Pic(”//ﬁq) from above by counting how many eigenvalues are of this
particular form.

Doing this for one prime, one obtains an upper bound for rk PiC(VE) which is
always even. The Tate conjecture asserts that this bound is actually sharp. For this
reason, one tries to combine information from two primes. The assumption that the
surface would have Picard rank 2/ over @ and I, implied that the discriminants of
both Picard groups, Pic(Vg) and Pic(Vf ), were in the same square class. Note here
that reduction modulo p respects the intersection product. When combining infor-
mation from two primes, it may happen that one finds the rank bound 2[ twice
but the square classes of the discriminants are not the same. Then, these data are
incompatible with Picard rank 2/ over . There is a rank bound of (21 — 1).

1.8. Remark. —— There are refinements of the method of van Luijk described
in [EJ3] and [EJ5]. We will not test these refinements here.

1.9. Example. — Let V be a K3 surface of Picard rank 1. We denote by

V=XV

x>

(2

the n-fold cartesian product. Then, the Picard rank of V" is equal to n. Assum-
ing the Tate conjecture, one sees that the Picard rank of the reduction at an arbitrary
prime is at least 2n.

This shows that there is no good prime for V. Not knowing the decomposition
of V™ into a direct product, we could not determine the Picard rank.

The analytic discriminant — The Artin-Tate formula. For the final step
in 1.7, one needs to know the discriminant of the Picard lattice. One possibility to
compute this is to use the Artin-Tate formula.

1.10. Conjecture (Artin-Tate). —— Let V be a K3 surface over a finite
field F,. Denote by p the rank and by A the discriminant of the Picard group
of V; defined over F,. Then,

(T
clplinw (T—q)?
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Here, ® denotes the characteristic polynomial of Frob on Hézt(VE, Q). Finally,
Br(V) is the Brauer group of V.

1.11. Remarks. —— i) The Artin-Tate conjecture is proven for most K3 sur-
faces. Most notably, the Tate conjecture implies the Artin-Tate conjecture [Mil,
Theorem 6.1]. In these cases, #Br(V) is a perfect square.

On its part, the Tate conjecture is proven for K3 surfaces under various additional as-
sumptions. For example, it is true for elliptic K3 surfaces [ASD].

ii) In such a case, the Artin-Tate formula allows to compute the square class of
the discriminant of the Picard group over a finite field. No knowledge of explicit
generators is necessary.

2 Singular quartics

Singular quartic surfaces were extensively studied by the classical geometers of the
19th century, particularly by E. Kummer and A. Cayley. For example, the concept
of a trope is due to this period [Je].

2.1. Definition. —— Let V C P? be any quartic surface. Then, by a trope on V,
we mean a plane E such that V' N E is a double conic. This is equivalent to the
condition that the equation defining V' becomes a perfect square on E.

2.2. Remark. — A trope yields a singular point on the surface VV C (P3)Y
dual to V.

2.3. Lemma (Kummer). — A quartic surface without singular curves may
have at most 16 singular points. |

A classical family. A classification of the singular quartic surfaces with at least
eight singularities of type A; was given by K. Rohn [Ro]. In this article, we will deal
with one of the most important classical families.

2.4. Lemma (Kummer). —— A three-dimensional family of quartics in P such
that the generic member has exvactly 16 singularities of type A; and no others is
given by the equation

16kzyzw — ¢* = 0.

Here,

k:=a?+b+c—1—2abc,
¢ = 2%+ y* + 22+ w? 4 2a(yz + 2w) + 2b(zz + yw) + 2c(xy + 2w)

for parameters a, b, and c.



2.5. Remarks. —— i) We will write V{4 for the quartic corresponding to the
triple [a, b, c].

Up to isomorphism, this surface is independent of the order of a, b, c. Further, there is
the isomorphism Vi =, Vica—bq given by (z 1y : 2z :w) = ((—2) : (—y) : 2z 1 w).
ii) When one of the coefficients is equal to £1, V}, ) contains a singular line. For ex-
ample, the surfaces for a = %1 contain the singular line, given by z+aw = y+az = 0.

iii) On the generic fiber, there are twelve obvious singularities defined over quadratic
extensions of Q(a,b,c). These are given by z =y = 0, 22 + w? 4+ 2czw = 0 and the
analogous conditions with the roles of the variables interchanged. Further, there are
four singular points forming a Galois orbit.

iv) On a Kummer quartic, there are 16 tropes. Four of them are obvious. They are
explicitly given by the coordinate planes. Each trope passes through six of the
16 singular points and each singular point is contained in six tropes.

On an obvious trope, the conic is of discriminant 2abc + 1 — a? — b — 2 = —k.
Thus, these conics are nondegenerate except for the case that V' is non-reduced itself.

v) For a generic Kummer quartic, every singular point on V¥ comes from a trope.

3 The desingularization

3.1. Lemma. — Let m: V. — V be the desingularization of a normal quartic
surface V' such that all singularities are of type A1. Then, V is a K3 surface.

Proof. On the smooth part of V| the adjunction formula [GH, Sec. 1.1, Example 3]
may be applied as usual. As, for the canonical sheaf, one has Kps = 0(—4), this
shows that the invertible sheaf Qf s is trivial. Consequently, Ky is given by a linear
combination of the exceptional curves.

However, for an exceptional curve E, we have £? = —2. Hence, according to the
adjunction formula, Ky E = 0 which shows that K7y is trivial. The classification of
algebraic surfaces [Be} assures that V is either a K3 surface or an abelian surface.

Further, a standard application of the theorem on formal functions implies
R'm.0y = 0. Hence, Xalg(V) = Xalg(V) = 2. This shows that V is actually a
K3 surface O

2. Remarks. —— i) For the assertion of the lemma, it is actually sufficient to
assume that the singularities of V' are of types A, D, or E [Li].

ii) In general, the desingularization of a normal quartic surface is a K3 surface, a
rational surface, a ruled surface over an elliptic curve, or a ruled surface over a
curve of genus three [IN]. The latter possibility is caused by a quadruple point.
The existence of a triple point implies that surface is rational. It is, however, also
possible that there is a double point, not of type A, D, or E. Then, V is rational
or a ruled surface over an elliptic curve.



3.3. Lemma. — Let 7: V — V be the desingularization of a proper surface V.
having only Ai-singularities.

a) Then, the exceptional curves define a nondegenerate orthogonal system in Pic(V).

b) In particular, the Picard rank of V is strictly bigger than the number of singu-
larities of V.

Proof. a) The exceptional curves have self-intersection number (—2) and do not
meet each other.

b) For H the hyperplane section, 7*0y (H) is orthogonal to the exceptional curves.
]

4 Abelian surfaces and Kummer quartics

Let A be an abelian surface. Denote by ¢: A — A the involution given by p — (—p).
Then, the quotient A/~ for ~ := {(p, #(p)) | p € A} has precisely 16 singular points.
We call such a quotient an abstract Kummer surface.

4.1. Fact. —— Let A be an abelian surface and V' be the resolution of the corre-
sponding Kummer surface. Then, 1k Pic(Vg) = rk NS(Ag) + 16.

Proof. The canonical injection ¢: H*(V(C),Z) — H*(A(C),Z) is bijective onto
(Ey,...,Eg)*. As 1t respects the (1,1)-classes, the assertion follows. Observe that
base change to C does not change the Picard and Néron-Severi ranks. U

4.2. Lemma. —— Let V be a quartic surface with precisely 16 singular points of
type Ay and no others. Then, V is isomorphic to an abstract Kummer surface.

Proof. As shown in Lemma 3.1, the desingularization V is a K3 sur-
face.  We have to show that V admits a double cover ramified exactly at
the 16 exceptional curves Ei, ..., FEig. This is equivalent to the assertion that
O(FEy + -+ Eg) € Pic(V) is divisible by two.

Consider, more generally, the set C' of all Q-divisors D = ¢ By +- - -+c16 16 which

define an element of Pic(V'). Clearly, ¢1,...,c16 € %Z as, otherwise, the intersection
numbers with Ey, ..., F1g would not be integers. Thus, C' defines a sub-vector space
C of

16 16
@D LiZE; | PZE; = ;.
i=1 i=1
We claim dim C' > 5. Indeed, otherwise, the lattice C' C Pic(‘7) had a basis contain-
ing twelve of the standard elements F\, ..., Eyg. As the quotients H*(V, Z)/ Pic(V)
and Pic(V)/C have no torsion, the same applies to H*(V,Z). But then, the
22 x 22-matrix of the cup product form contains a 12 x 12-block of entirely even en-
tries. This is a contradiction to the unimodularity of H?(V,Z).
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Further, every vector in C'is a sum of precisely eight or 16 standard basis vectors.
In fact, if it is a sum of [ basis vectors then it defines a double cover W’ of V' ramified
at exactly [ of the 16 exceptional curves F, ..., Fig. Its minimal model W, obtained
by blowing down the [ exceptional curves, clearly has trivial canonical class. It is
therefore either an abelian surface, xiop(W) = 0, or a K3 surface, xiop(W) = 24.
But a direct calculation shows yiop(W) = 48 — 31.

Finally, it is a well-known result from coding theory [HP, Theorem 2.7.4] that
there is no five-dimensional subspace of 3¢ such that every non-zero vector has
exactly eight components equal to 1. Indeed, adding the vector (1,1,...,1) would
yield a code contradicting the optimality of the [16, 5, 8]-Hadamard code. Some more
details are given in [Ni]. O

4.3. —— Consider the particular case that A = J(C') is the Jacobian of a curve C
of genus two. Then, a projective model of the corresponding Kummer surface may
be obtained as follows.

For r a Weierstra8 point of C, put 6 := {[z] — [r] | € C} C J(C). This is
an ample divisor on the Jacobian J(C) such that #* = 2. The Riemann-Roch
theorem shows dim I'(J(C), 260) = 4. Hence, 26 defines a morphism ¢: J(C') — P3
of degree eight. Actually, ¢ is a two-to-one map inducing an embedding of J(C') /~.
The image of ¢ is a quartic surface.

4.4. —— It is a classical result that every Kummer quartic V' may be constructed
from a genus-2 curve C'in this way. We may therefore ask for an explicit construction
of such a curve from a given Kummer quartic. This may indeed be done as follows.

Construction. i) There are 16 tropes. We choose one of them which we call D.

ii) The intersection V N D is a double conic. Let I be the underlying reduced curve.
Six of the singular points on V' are contained in /.

iii) Take the double cover C' of I ramified at these six points. This is a genus-2 curve.

4.5. Remark. —— This construction clearly yields a genus-2 curve C on the
abelian surface A. The Albanese property of the Jacobian guarantees that A is
at least isogenous to J(C'). They are actually isomorphic to each other.

4.6. Fact. — Let V be an abstract Kummer surface. Then, the Gal(F,/F,)-
module HéQt(VE, Qu), is reducible. A direct summand is isomorphic to HéQt(AE, Q)
for A the abelian surface covering V. Its complement is described by the Galois
operation on the 16 singular points. U

4.7. Remark (Frobenius eigenvalues for Kummer surfaces). —— In order to de-
termine the eigenvalues of the Frobenius on Hgt(VE, @), the usual method is to
count the points on V' defined over F, and some of its extensions and to apply the
Lefschetz trace formula [Mi2, Chapter VI, Theorem 12.3].
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For Kummer surfaces, there is, however, a by far better method. In fact, 16 eigen-
values are determined by the operation of Frobenius on the 16 singular points. Fur-
ther, for A isogenous to the Jacobian J(C), we have HZ (Ag, Qi) = A*H{ (Cg, Qu).
Thus, in order to determine the remaining six eigenvalues, it suffices to count the
points on C. This is faster as the problem is reduced to dimension one.

4.8. Proposition. — Let A be an abelian surface. Suppose that End(A) is an
order of a real quadratic number field. Then, Tk NS(A) = 2.

Proof. According to [Mul, sec.21, Appl.III], one has NS(A)®@Q = (End(A)@Q)!
where 1 denotes the Rosati involution. As that is positive [Mul, sec. 21, Theorem 1],
it cannot be the conjugation on a real quadratic number field. Hence, § = id which
implies the assertion. U

4.9. Remark. —— If the real multiplication is by an order in @Q(v/d) then the dis-
criminant of the Néron-Severi lattice is of square class (—d). Indeed, [Mul, sec. 21,
Thm. 1] shows that, for H ample, ®(H)H is a scalar multiple of Tr(®?). Work-
ing with ® = 1 and ® = 1 4+ v/d, we find the intersection matrix ( (1id)2((}+§ll ) of
determinant (—16d).

4.10. Proposition. —— Let A be an abelian surface over Q). Suppose that A
has an endomorphism N defined only over a quadratic extension F = Q(v/D).
Then, for every prime p, inert in F' and of good reduction, the following is true.

If X is an eigenvalue of Frob, on Hi(Ag , Qi) then (=) is an eigenvalue, too.

Proof. N induces an endomorphism of Ay, which we denote by N. Clearly, N is
defined over I, but not over I,. This means, in the endomorphism ring R, of AIF ,
we have Frobp 1 N Frob,: = N but the analogous statement for Frob, is not true.
Thus, under the operatlon of Frob,. by conjugation on Rp, N is in the
(+1)—eigenspace. For the operation of Frobp, this decomposes into a (41)-eigenspace
and a (—1)-eigenspace. The latter is nonzero as N is not fixed under conjugation
by Frob,. Hence, there is some J € R, anticommuting with Frob,. This implies
the assertion. O

4.11. Corollary. —— Let V be a Kummer surface over @ covered by the abelian
surface A. Suppose that A has an endomorphism N defined only over a quadratic

extension F = Q(V/D).
Then, for every prime p, inert in F and of good reduction, rk Pic(Vg ) >20.

Proof. In fact, it is possible that the Frobenius eigenvalues on Hj (A T, Q) are j:\/_
and :i:z\/_ This yields Picard rank 22 over [F,. Except for thls case, the Frobenius
eigenvalues must be £\ and £\ for a suitable )\ € C. On Hgt(A]F , (Ql) this leads to
the eigenvalues p and (—p), both with multiplicity two, as well as (—A?) and (—\?).
The Picard rank is at least 20. O



5 The tetrahedroid

The tetrahedroid is another family of quartic surfaces studied in the 19th century.
It was first considered by A. Cayley.

5.1. Lemma (Cayley). —— A family of quartics in P> such that every member
has exactly 16 Ai-singularities and no others is given by the equation

0 a3 2?2 23 23
xp 0 afy agy ag
det | 3 a2, 0 a?yal; | =0.
a(2)2 a%z 0 @%3
3 ags afy azz 0

for parameters ap1, apz, ao3, 12, @13, a2s 7# 0.

5.2. Remarks. —— i) We will write T, ags.a03,a19,a15,a25] fO the quartic corre-
sponding to the particular coefficient vector (ag1, age, ags, a1z, ais, ass).

ii) Let the group G2 operate on the parameters according to the rule

(iaj, k, l)[%ha027a03>a12,@13,a23] = [ijamaikGOQ,ilaoz’,,jkam,jl%& kl@z:&] .

Then, the quartics defined by a whole orbit are all isomorphic to each other. Conse-
quently, the tetrahedroid defines only a two-dimensional family in the moduli stack
of all K3 surfaces. Actually, it is a subfamily of the Kummer quartics.

5.3. Remarks. —— a) The sixteen singularities are (0 : £ag; : faps : Faps3),
(£apr : 0: xagp : £ag3), (Fage : £age : 0: £ags), and (Fagg : £aq3 : £ags : 0).

b) The four planes, given by tassz; + aj3z2 £ ajpx3 = 0, clearly contain six singular
points each. For example, ((£ap1) : 0 : a1z : (—a13)), ((£ap2) : a2 : 0 : (—ags)), and
((£ap3) : ar3 : (—ags) : 0) satisfy the equation agzx; + ajzzs + ajaxs = 0. There are
twelve more tropes obtained in an analogous manner by distinguishing the first,
second, or third coordinate instead of the zeroth one.

c¢) Besides the tropes, there are four other particular planes related to this family
of quartics. Actually, the coordinate planes contain exactly four singularities each.
As these form a tetrahedron, they gave to this family its name. There are no planes
containing exactly four singular points on a general Kummer quartic.

5.4. Proposition. — Let E; and F5 be two elliptic curves. Fiz an isomorphism
of groups ¢: Ey[2] — Es[2] and let

A= (B x Ey)/((z,¢(x)) | = € Er[2])

be the corresponding abelian surface, covered four-to-one by Ei X Ejs.

Then, the Kummer surface corresponding to A is given by a tetrahedroid.



Proof. We describe the elliptic curves as intersections of two quadrics in P3,

Eiy: 23 =ux3—13, 2i=u23— K23,

Byt yi =y —ys, yi=uo— rayi.
We have j(E;) = 256(k? — k1 + 1)%/k3(k1 — 1)? and the analogous formula for Es.
Thus, these equations define general families of elliptic curves. The morphism

Ey x By — ng ((350 NV IV I 353), (yo Y1 Y2 Z/3)) = (:L’ng S T1Y1 L T3Y2 - l"oyo)

is generically eight-to-one onto the tetrahedroid Tj /=1, /rs vri=T,i, /51 O
5.5. Remark. —— It is not hard to see that every tetrahedroid is obtained from

two elliptic curves in this way.

5.6. Proposition (Kummer quartics with two coefficients equal). —
Let V := Vigaq be the Kummer quartic for the coefficients [a,a,c|. Then, V is
linearly isomorphic to the tetrahedroid

T[\/c+1,\/c—1,X\/c—1,X\/c—1,\/c—1,”7 Vf;jr(f‘”] )

Here, X is a solution of the equation X? 4+ 2aX + 1 = 0.

Proof. The isomorphism from the tetrahedroid to V' is given explicitly by the linear
map P3 — P3,

(ty:ty it ty) > ((—ta—B=)  (—+558) - (b — 5= - (h+4=58)) . O

5.7. Remark. —— One might ask to determine the two elliptic curves Ei, Fs
which correspond to Vi, e, i.e., those satisfying (E; x Ey)/((z,¢(x))) = Vigaq-
This leads to a simple calculation but the explicit formulas become rather lengthy.
Interestingly, the two j-invariants are defined in the quadratic field extension

Q(a,c)(V4a? — 2¢ — 2). They are conjugate to each other.

5.8. Remarks. —— i) The case of three equal coefficients is even more special.
In some sense, the quartics Vi, 44 are tetrahedroids in three distinct ways.

It turns out that, in this situation, the resulting elliptic curves are related by an
isogeny of order 3. In fact, it is easy to check that the resulting pair of j-invariants
is a zero of the third classical modular polynomial.

Consequently, the Picard rank of a Kummer surface with three equal coefficients
is at least 19. The additional divisor leading to a Picard rank higher than 18 is
the image of the graph of the 3-isogeny under the two-to-one covering described in
Proposition 5.4.
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ii) There is another case which is particular. Consider the quartics Vo . Then, the
j-invariants of the corresponding elliptic curves are defined in Q(c) and, hence, equal

. . 3 2
to each other. We have j(E) = j(E,) = 128c+8610c12000c18000,

Consequently, the Picard rank of a Kummer surface with two coefficients zero is at
least 19. The additional divisor leading to a Picard rank higher than 18 is the image
of the diagonal.

6 Experiments — The Picard ranks over Q

A sample of Kummer surfaces. We inspected the Kummer surfaces Vi,
given by the Kummer coefficients a,b,c = —30,...,30. Because of symmetry, the
considerations were restricted to the case |a| < b < c¢. Recall that one may always
change the signs of two coefficients simultaneously. Hence, b,¢ > 0 was assumed.
The coefficient vectors [3,3,17], [2,2,7], and [2,7,26] as well as those containing
+1 were excluded from the sample as the corresponding surfaces have singularities
of types worse than A;.

6.1. —— For each surface V in the sample, first, using Construction 4.4, we
determined the genus-2 curve C' such that V' is the Kummer surface corresponding
to J(C). Then, for every prime number below 1000, we counted the numbers of
points on C over I, and F,.. From these data, we computed the characteristic
polynomial of the Frobenius on the étale cohomology of the resolution V.

From the characteristic polynomial, we read off the rank of Pic(VE) and, using
the Artin-Tate formula 1.10, computed its discriminant. Note that every Kum-
mer surface is elliptic [Be, Chapter IX, Exercise6]. Hence, the Artin-Tate formula
is applicable.

The Picard ranks over QQ. A generic Kummer surface is of geometric Picard
rank 17. In the case that two Kummer coefficients are of the same absolute value,
the surface is a tetrahedroid. Then, the Picard rank is at least 18. Thus, we
distinguished between these two cases. The possibilities that all three coefficients
coincide, at least up to symmetry, or that two coefficients vanish were treated as
being somehow exceptional.

Being a bit sloppy at first, in the first case we tested whether an upper bound
of 17 is provable by van Luijk’s method while in the second case we awaited an
upper bound of 18. The table below shows the distribution of the biggest prime
which had to be considered in order to prove the expectation.
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prime [ F#cases finished [ Fcases left ]

[ prime [ F#cases finished [ Fcases left

7 57 7656 5 156 1495
11 287 7369 7 66 1429
13 713 6656 11 193 1236
17 1229 5427 13 253 983
19 1308 4119 17 288 695
23 1215 2904 19 132 563
29 1004 1900 23 117 446
31 759 1141 29 116 330
37 551 590 31 82 248
41 320 270 37 81 167
43 143 127 41 73 94
47 59 68 43 24 70
53 28 40 47 18 52
59 17 23 53 15 37
61 6 17 59 13 24
67 3 14 61 6 18
73 1 13 67 3 15
83 1 12 71 2 13

73 4 9
79 2 7
101 1 6

Table 1: Distribution of the biggest prime used for rank 17 (left) and rank 18 (right)

The 18 examples left. Let us take a closer look at the Kummer quartics left.

6.2. Examples. — Among the Kummer quartics the coefficients of which had
three distinct absolute values, twelve examples remained. For these, only a rank
bound of 18 could be established. Using magma, we calculated the corresponding
genus-2 curves C; and determined their periods at high precision.

i) Consider the Kummer quartics for the coefficient vectors [2,3,13], [—3,4,19],
[—3,5,11], [-2,7,23], [-2,8,17], [-2,9,14], and [0,4, 7].

In these cases, it turned out that the Jacobians J(C;) are isogenous to products of
two elliptic curves. Hence, the geometric Picard ranks are indeed equal to 18.

The isogenies are all of degree 16. Their kernels are groups of type Z/47Z x 7./AZ.
The j-invariants of the elliptic curves are conjugate to each other in quadratic num-
ber fields. We summarize them in the table below.

[ vector ] J1,72 l

[ 2, 3,13 . [38155£16152V/2]

-3, 4,19] o [10827832£3997841/—2]
[-3, 5,11] == [17903+64596/—1]

2000

[-2, 7,23] | 2000 [—614135+4744012/=2]
-2, 8,17] 5200 [—50045+:45683+/—3]

(=2, 9,14] | £50—[3275527214+229629540/—1]
[0, 4 7] 0= [17903+64596+/—1]

Table 2: j-invariants of the corresponding elliptic curves

ii) Consider the Kummer quartics given by the coefficient vectors [2,7,17], [2,9, 26],
2,17, 26], [3,9, 19], and [0, 8, 15].
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Here, our calculations showed that the corresponding abelian surfaces have real

multiplication by orders in Q(v/2), Q(v/3), Q(v5), Q(v/5), and Q(v/5), respectively.
This implies that the Picard ranks are equal to 18.

The non-trivial endomorphisms are expected to defined over the quadratic number

fields Q(v/30), Q(v11), Q(v/—=2), Q(v/—1), and Q(v/2). In fact, the primes leading
to Picard rank 18 are all split for the corresponding field. Compare Corollary 4.11.

6.3. —— Consider the Kummer quartics for the coefficient vectors [5,5,17],
2,2,17], [—4,4,9], [-3,7,7], [-2,11,11], and [0,5,5]. For these, the situation is
as follows.

One finds rank 20 at several primes. Various discriminants appear such that a rank
bound of 19 is established.

As two of the Kummer coefficients are equal, the corresponding abelian surfaces are
isogenous to products of two elliptic curves. Specializing the calculation discussed in
Remark 5.7, one may determine the corresponding j-invariants. It turns out in every
case that the corresponding elliptic curves are isogenous to each other. Thus, we
have Picard rank 19. The isogenies are of degrees 2, 3, 4, and 5.

6.4. Examples. —— Let us present two of these examples in detail.

i) Let 77 be the Kummer quartic for the coefficient vector [5,5,17]. We find rank 20
at p =05, 7,13, 17, 19, 23, 29 and several other primes. The rank bound 19 is proven
as many distinct discriminants occur.

Further, as two of the Kummer coefficients are equal, the corresponding abelian
surface is isogenous to a product of two elliptic curves. Specializing the calculation
discussed in Remark 5.7, one finds the j-invariants j; = % and j; = %&1104.
The pair (j1,j2) is a zero of the fifth modular polynomial. Hence, between the two

elliptic curves, there is an isogeny of order five. We have Picard rank 19.

ii) Let Ty be the Kummer quartic for the coefficient vector [2,2,17]. For this surface,
we find rank 20 at p =7, 11, 13, 17, 23, 29 and several other primes. Many distinct
discriminants appear. Hence, the rank bound 19 is proven.

Here, the two j-invariants are defined in Q(y/—5). They are the roots of the poly-

nomial X? + 21128f3800X + 1693633388000. Again, the corresponding elliptic curves turn

out to be 5-isogenous. This confirms Picard rank 19.

Expected rank 19. In the case of three equal coefficients or two coefficients equal
to zero, we know that the Picard rank is at least equal to 19. In 84 of the 88 surfaces,
the reductions modulo p provided an upper bound of 19. The biggest prime which
had to be used was 37.

The cases [0,0,0], [-5,5,5], [-2,2,2], and [7,7,7] remained. Here, the corre-
sponding elliptic curves have complex multiplication. This shows that the corre-
sponding Kummer surfaces indeed have geometric Picard rank 20.
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6.5. Examples. —— Consider, for example, the case [7,7,7]. Then, the two
j-invariants are the roots of the polynomial X2 —37018076625X +153173312762625.
The corresponding elliptic curves have complex multiplication by an order

in Q(v—15).

Testing isomorphy. As a byproduct of the computations, we tried to prove that
the surfaces in our sample are pairwise non-isomorphic. For this, it would suffice to
show that, for each pair of surfaces, there exists a prime where both have good reduc-
tion, but the geometric Picard groups differ in rank or discriminant. Actually, the
data for p < 59 contained enough information for this but there were 41 pairs of
surfaces which could not be separated.

The point here is that the test actually tries to prove that the corresponding
abelian surfaces are non-isogenous. But in these 41 cases, the surfaces are isogenous
to each other. To be more precise, we found 17 pairs, four triples, and two quadruples
of mutually isogenous abelian surfaces.

6.6. Example. —— The abelian surfaces corresponding to Viz29 and V3319
are isogenous. Hence, the test described above has no chance to work.

In fact, Vjg,29) is covered eight-to-one by £y X E, while V33 19] is covered eight-
to-one by E3 x Ey for j(E;),j(E,) the zeroes of X2  HLUIZ x| 589752096832 o),

2 225
j(E3),j(E,) the zeroes of X2 — 281015072 x4 1500060185404187%. It is easy to check

2025 164025
that E; and FEj3, as well as E, and Ej, are connected by isogenies of order four.
Hence, E; x Fy and E3 x E, are 16-isogenous.

An isomorphism between the quotients as described in Proposition 5.4 would

yield a 16-isogeny

Ey X By — Ey x Ey/((z,¢(2)) | © € Ex[2]) = E3 x Ey/{(z,¢/(2)) | x € E3[2])
— E3 X E4,

too. But, in its kernel, there are the 2-torsion points (z, ¢(z)) for x € E;[2] which
are clearly not in the kernel of the direct product of two 4-isogenies. This shows
that Vjp29) and V33 19] are not isomorphic, either.

Testing isomorphy II. For each of the 41 pairs, we numerically calculated the
periods of the corresponding abelian surfaces. From these, we determined a mini-
mal isogeny. It turned out that the surfaces corresponding to the coefficient vectors
[—3,7,7] and [0, 5, 5] were actually isomorphic to each other. This was, however, the
only such case among the critical pairs.

Summary. We considered the resolutions of 9452 Kummer quartics with exactly
16 singularities of type A;. It turned out that the upper bounds for the Picard ranks
provided by the reductions modulo p were sharp in every case. However, at several
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examples, rather large primes up to p = 101 had to be considered. We had Picard
rank 17, 7701 times, Picard rank 18, 1657 times, and Picard rank 19, 90 times.
Further, there were four surfaces of Picard rank 20 in the sample.

7 Some more statistics

7.1. Example (All primes less than 10000 for a typical surface). ——
Let us take a closer look at a particular example. We selected the surface with
Kummer coefficients [3, 11, 21] but many others would be representative, as well.

There are only five primes p < 10000 such that the reduction modulo p of Vi3 11 21
is not a quartic having 16 singular points of type A;. These are 2, 3, 5, 11, and 17.
In the range considered, 1224 primes lead to a reduction of Picard rank 18. Fur-
ther, there are 69 primes leading to a reduction of rank 20. These seem to be
rather equidistributed within the range, the smallest one being 7, the largest one
being 9677. Finally, there is the prime 4583 which leads to a reduction of Picard
rank 22.

In the cases of reduction to Picard rank 18, we found 586 different square classes
for the discriminant. As for many of the surfaces in our sample, the most frequent
square class was (—1). In the example selected, it appeared 376 times.

Discriminants — The special case of rank 17. In the special case of a rank-
17 surface, we counted how many distinct discriminants occurred when reducing to
surfaces of Picard rank 18 modulo various primes. There are 168 prime numbers
in our computational range. For a fixed surface, between 44 and 89 distinct square
classes of discriminants were found.

number of surfaces

600 +
400+

200+

25 50 75 100

number of discriminants

Figure 1: Number of distinct discriminants at primes with reduction to rank 18

In total, we found 541 distinct discriminants. Some discriminants occurred only for
one surface and one prime. On the other hand, the discriminant (—1) appeared
134553 times. The surfaces with Kummer coefficients [—3,9,17] and [—3, 10, 29]
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both had the most repetitions for one discriminant. This was discriminant (—1)
occurring 43 times.

The average value for a prime. For simplicity, let us restrict our considerations
to surfaces of Picard rank 17. For every prime number p, we counted how many
of the surfaces in our sample had good reduction modulo p. We determined the
proportion of those having reduction to rank >18. The results are visualized by the
graph below. According to this graph, the proportion is close to \% for C' =~ 2.

probability of rank > 18
100%-

80%-
60%
40%-

20%1 *u_

251 503 751 997

prime numbers

Figure 2: Distribution of the proportion of the surfaces with reduction to rank > 18

The average value for a surface. On the other hand, for every surface in the
sample, we counted how many primes below 1000 lead to a reduction of geometric
Picard rank 18 over IF,. Let us visualize the result in a histogram.

800
number of surfaces
6001

400+

200+

25 50 75 100 125 150

number of primes with reduction to rank 18

Figure 3: Distribution of the number of the primes with reduction to rank 18

The histogram clearly suggests that there are two kinds of examples. For the first
kind, the probability that the reduction has rank 18 is between 1/4 and 1/2. For the
second kind, this probability is between 3/4 and 1.
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It turns out that most of the examples with two Kummer coefficients equal
(up to sign) belong to the first kind. The only examples in the first group not
being of this form are given by the coefficient vectors [3,9,19], [2,3,13], [2,7,17],
2,9,26], [2,17,26], [-3,4,19], [-3,5,11], [~2,7,23], [~2,8,17], [~2,9,14], [0,4,7],
and [0, 8, 15]. Further, there are some examples with two coefficients equal belong-
ing to the second group. These are [3,3,9], [3,3,15], [4,4,13], [4,4,23], [4,4,29],
[6,6,21], [7,7,25, [8.8,29], [2.2,5], [~6,6,27], [~5.5,23], [~4,4,19], [~3,3,15],
[—2,2,11], and [~2,2, 25].

An explanation. For the tetrahedroid case, an explanation is given by the fol-
lowing fact.

7.2. Fact. — Let Vi, 0q be a Kummer surface with two coefficients equal. Sup-
pose that 4a® — 2c — 2 is not a perfect square.

Then, for every prime p, inert in F and of good reduction, rk Pic(VE) >20.

Proof. The corresponding abelian surface is isogenous to the product of two
elliptic curves. As noticed in Remark 5.7, the j-invariants are two elements
conjugate in Q(v4a? —2c—2). Reducing the surface modulo a prime inert
in Q(v4a?> — 2c — 2) leads to two elliptic curves isogenous via the Frobenius en-
domorphism. This shows that all inert primes yield an upper bound of at least 20
for the geometric Picard rank. O

7.3. Questions. —— i) For asurface V, put Ny (B) := #{p € Py | p < B} where
Py := #{p prime | rk Pic(VE) > 18 or V has bad reduction at p }.

Is there a monotonously decreasing function hy such that

Ny(B) ~ /hV(t) dt?

logt

Can hy be given explicitly?

ii) Suppose that rk Pic(Vg) = 17. Does then hy converge versus 0 for ¢ — oo?
The graph in Figure 2 might suggest that hy (t) = C—\/‘g for a constant Cy. Is hy
perhaps independent of V7

iii) For a fixed Kummer surface of geometric Picard rank 17, are there infinitely
many primes with reduction to rank 187 Are there infinitely many primes with
reduction to rank > 187

7.4. Remark. —— In relation with these questions, the reader might want to
consult [MP], for example Conjecture 5.1 formulated there.

17



7.5. Remark. —— When 1k Pic(Vg) = 18, the situation is typically different.
For example, when two Kummer coefficients are equal, we saw in Fact 7.2 that

B Via,a,c]

has density at least % unless 4a® — 2¢ — 2 is a perfect square. According to

Proposition 4.10, the same is true when the abelian surface corresponding to V' has
real multiplication by an endomorphism defined over a proper extension of .
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