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Abstract

We report on our project to construct non-singular cubic surfaces over Q
with a rational line. Our method is to start with degree 4 Del Pezzo surfaces
in diagonal form. For these, we develop an explicit version of Galois descent.

1 Introduction

1.1. –––– The configuration of the 27 lines upon a smooth cubic surface is
highly symmetric. The group of all permutations respecting the canonical class
as well as the intersection pairing is isomorphic to the Weyl group W (E6) of or-
der 51 840.

When S is a cubic surface over Q, the absolute Galois group Gal(Q/Q) operates
on the 27 lines. This yields a subgroup G ⊆ W (E6). It is an open problem whether
each of the 350 conjugacy classes of subgroups of W (E6) may be realized by a cubic
surface over Q.

Exactly 172 of the 350 conjugacy classes fix a line. We constructed examples of
cubic surfaces over Q realizing each of these subgroups. The goal of this note is to
report on our investigations.

1.2. Remark. –––– The analogous question for Del Pezzo surfaces of degree 4 is
somewhat easier as it leads to subgroups of W (D5). B. È. Kunyavskij, A.N. Sko-
robogatov, and M.A. Tsfasman [KST] showed that every subgroup of W (D5) may
be realized by a surface defined over Q.
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2 Constructions

2.1. –––– Cubic surfaces with a rational line are closely related to Del Pezzo
surfaces of degree 4. Indeed, blowing down the line leads to a degree 4 Del Pezzo
surface having a rational point. On the other hand, blowing up a rational point on
a degree 4 Del Pezzo surface yields a cubic surface with a rational line. These two
constructions may easily be made explicit.

2.2. Constructions (Cubic surfaces versus Del Pezzo surfaces of degree 4). —–
Let a base field K be fixed once and for all.

i) For two linear forms l0, l1, suppose that the line l0 = l1 = 0 is contained in the cubic
surface S given by F (x0, . . . , x3) = 0. Then, F may be written as F = l0q0 + l1q1
for quadratic forms q0 and q1. The corresponding degree 4 Del Pezzo surface V is
given by q0 + l1x4 = q1 − l0x4 = 0.

ii) On the other hand, let a Del Pezzo surface V of degree 4 be given by
Q0(x0, . . . , x4) = Q1(x0, . . . , x4) = 0. If (0 : 0 : 0 : 0 : 1) ∈ V then Q0 and Q1

may be written as Q0 = q0 + l0x4 and Q1 = q1 + l1x4 for q0, q1 quadratic forms and
l0, l1 linear forms in x0, . . . , x3, only. The corresponding cubic surface S is given by
q0l1 − q1l0 = 0.

2.3. Remarks. –––– a) These two constructions are inverse to each other.

b) One may start construction ii) as well with arbitrary generators of the pencil
spanned by Q0 and Q1.

2.4. Fact. –––– Let A be a symmetric matrix representing the quadratic form
q0|l0=0. If the eigenvalues of A are z1, z2, z3 then there is a symmetric matrix rep-
resenting Q0 with eigenvalues (−1), 1, z1, z2, z3.

2.5. Corollary. –––– i) In particular, Q0 is of rank < 5 if and only if q0|l0=0 is
of rank <3. Hence, the five degenerate quadratic forms in the pencil [Q0, Q1] are in
one-to-one correspondence with the five tritangent planes through the line considered.

ii) If the eigenvalues of a symmetric matrix representing Q0 are 0, Z1, . . . , Z4 then
“l0 = 0” is a tritangent plane on S. The conic, defined by S on this plane, splits
into two lines over the field K(

√
Z1Z2Z3Z4).

2.6. Example. –––– Consider the case that Q0 := a0x
2
0 + . . . + a4x

2
4 and

Q1 := b0x
2
0+ . . .+b4x

2
4 are diagonal forms over the field K. Then, the five tritangent

planes correspond to the points ((−bi) : ai) ∈ P1 as (−biQ0 + aiQ1) is degenerate.
The conics split over the fields

K
(√∏

j ̸=i

(−biaj + aibj)
)

for i = 0, . . . , 4. Observe that the product of the five radicands is a perfect square.
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On the corresponding cubic surface, all 27 lines are defined over

L = K
(√∏

j ̸=0

(−b0aj + a0bj), . . . ,
√∏

j ̸=4

(−b4aj + a4bj)
)
.

Indeed, the subgroup of W (E6) stabilizing a line is clearly of order 51840/27 = 1920.
It is actually the semi-direct product T o S5, where T ⊂ (Z/2Z)5 is the subgroup
of order 16 formed by the elements having an even number of components equal
to 1. As Gal(Q/L) stabilizes not only the five tritangent planes but also the lines
on them, it must act through the trivial subgroup of T o S5.

2.7. Construction (Explicit Galois descent). —– LetA be a commutative étale
algebra of degree 5 over Q and ι0, . . . , ι4 : A → C be the five embeddings.

i) For general a,b ∈A, the equations ι0(a)x
2
0+· · ·+ι4(a)x

2
4 = ι0(b)x

2
0+· · ·+ι4(b)x

2
4 = 0

define a Del Pezzo surface V of degree 4 over Q.

ii) Let l be a linear form in five variables with coefficients in A. Then, by symmetry,
the quadratic forms ι0(a)(l

ι0)2+ · · ·+ ι4(a)(l
ι4)2 and ι0(b)(l

ι0)2+ · · ·+ ι4(b)(l
ι4)2 have

rational coefficients. If lι0 , . . . , lι4 are linearly independent then we have a Del Pezzo
surface V0 of degree 4 over Q such that its base change to Q is isomorphic to V .

2.8. Remarks. –––– a) This construction is analogous to [EJ1, Theorem 6.1].

b) The five tritangent planes on V0 correspond to the points ((−ιi(b)) : ιi(a)) ∈ P1.
Hence, the Galois operation on them is the same as that on the embeddings ιi.

c) When a ̸= 0, the conic on the tritangent plane corresponding to ((−ιi(b)) : ιi(a))
splits into two lines over the field

Q
(
ιi(−b/a),

√∏
j ̸=i

(−ιi(b)ιj(a) + ιi(a)ιj(b))
)
. (1)

The radicand may be rewritten as N(a) ιi(a
3 δA/Q(−b/a)), where δA/Q denotes the

different of an element of A.

2.9. –––– Thus, given a subgroup G ⊆ T oS5, there is the following strategy
to construct a cubic surface S over Q such that Gal(Q/Q) operates via G on the
27 lines.

Strategy. i) Find a number field K, normal over Q, such that Gal(K/Q) ∼= G.
Identify the normal subextension K ′ ⊆ K such that Gal(K ′/Q) is the image G′ of G
in S5 [MM].

ii) Find five elements r0, . . . , r4 ∈ K ′ with the properties below.

r0, . . . , r4 are permuted by G′ exactly via the embedding G′ ⊆ S5. Further, the
square roots ±

√
r0, . . . ,±

√
r4 are elements of K and acted upon by G according to

the embedding G ⊆ ToS5.

Put p(T ) := (T − r0) · . . . · (T − r4) and A := Q[T ]/(p). This is a commutative étale
algebra of degree 5 over Q with a distinguished element r := (T mod (p)).
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iii) Choose x ∈ A and put d := δA/Q(x). Set a := dr and b := −xa.

iv) Execute Construction 2.7 for a, b ∈ A. On the Del Pezzo surface V0 found, search
for a Q-rational point. If none is found then go back to step iii). Otherwise, deter-
mine the cubic surface S.

2.10. Remarks. –––– a) The properties required in ii) imply
√
r0 · . . . ·

√
r4 ∈ Q.

I.e., N(r) is a perfect square.

b) The construction yields N(a)a3 δA/Q(−b/a) = N(a)(d2r)2r. As the product of the
five radicands in (1) is a square, the norm of a is a perfect square automatically.

3 Examples

3.1. –––– There are 172 conjugacy classes of subgroups of W (E6) that fix a line.
We constructed examples for each such group.

Actually, 81 of the 172 classes also stabilize a double-six and 49 of the 172 classes
stabilize a pair of Steiner trihedra. 34 classes do both. Thus, examples for 96 of
the 172 conjugacy classes had been constructed before [EJ1, EJ2]. The remaining
76 classes were of interest.

After naive trials and an extensive search through surfaces with small coefficients,
only six of the 76 classes remained open. For these, we applied Strategy 2.9.

3.2. Remark. –––– In Strategy 2.9, we regularly run into reiteration, because
there were no Q-rational points on the Del Pezzo surfaces of degree 4.

3.3. –––– The list containing our examples of cubic surfaces is available
on the second author’s web page at http://www.uni-math.gwdg.de/jahnel/

Arbeiten/Kub Fl/list rat ger.txt. The numbering of the subgroups is that cre-
ated by GAP, version 4.4.12.

3.4. Example. –––– As a conclusion, let us show how Strategy 2.9 works on a
particular example. We consider the subgroup of number 107.

Abstractly, this is a group G of order 16. Its center is isomorphic to the Klein
four-group. The operation on the 27 lines causes orbits of lengths 1, 2, 4, 4, and 16.
On the two orbits of size four, G acts via two different quotients, both isomorphic
to the dihedral group D4 of order eight. The operation on the five tritangent planes
through the rational line is via a quotient G′ of order four. The orbits are of sizes
1, 2, and 2.

i) An example of a field with Galois group G is the composite K := K1K2 of
K1 := Q

(√
3±

√
3
)
and K2 := Q

(√
−9±

√
6
)
. Then, the subfield corresponding

to G′ is K ′ = Q(
√
3,
√
6) = Q(

√
2,
√
3). Observe that both fields K1 and K2

contain K ′. Further, both are extensions of Q of type D4.
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ii) Thus, we chose r0, . . . , r4 to be 2, 3±
√
3, and −9±

√
6. This yields

p(T ) = (T − 2)[(T − 3)2 − 3][(T + 9)2 − 6] .

iii) We worked with x := r = (T mod (p)).

iv) The biggest coefficient of the resulting del Pezzo surface V0 is 524 391 211 895 464.
An isomorphic surface is given by the equations

4x2
0 + 10x0x1 + 20x0x2 − 112x0x3 − 134x0x4 + 7x2

1 − 26x1x2 − 134x1x3

− 148x1x4 − 2x2
2 + 140x2x3 − 2x2x4 + 10x2

3 − 38x3x4 − 323x2
4

= 47x2
0 − 18x0x1 + 10x0x2 − 188x0x3 − 178x0x4 + 63x2

1 − 22x1x2 + 376x1x3

− 86x1x4 + 71x2
2 − 580x2x3 + 146x2x4 − 364x2

3 − 296x3x4 − 21x2
4 = 0 .

Here, a point search in magma with an initial height limit of 100 shows 14 ratio-
nal points. Blowing up (8 : −13 : 4 : 2 : −3) leads to a cubic surface with coeffi-
cients up to 3 838 320. Reembedding gives us the final result, the cubic surface V
with the equation

2x2y + 6x2z − 4xy2 + 6xyz + 4xyw − 10xz2 − 4xzw − 7xw2 + 2y3 − 9y2z

− 4y2w + 4yz2 − 26yzw + 6yw2 + z3 + 10z2w − 7zw2 − 5w3 = 0 .

3.5. Remark. –––– The rational line on V connects (5 : 0 : 0 : −7) with
(0 : 5 : 10 : 2).

3.6. Remark. –––– There are actually a few more particularities characterizing
the subgroup of number 107.

a) First of all, the two D4 extensions K1 und K2 become cyclic over the same
quadratic field Q(

√
2).

b) On the other hand, over Q(
√
3) and Q(

√
6), they are of Kleinian type. How-

ever, there is yet another oddity. While Gal(K1/Q(
√
3)) operates on the corre-

sponding four lines via two disjoint two-cycles, Gal(K2/Q(
√
3)) acts on its orbit by

double-transpositions. Over Q(
√
3) instead of Q(

√
6), the situation is vice versa.

To realize such a behaviour, it was essential to choose r1 in Q(
√
3) fulfilling

N(r1) ∈ 6(Q∗)2 and r3 in Q(
√
6) such that N(r3) ∈ 3(Q∗)2.
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