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Abstract. We describe some improved techniques for the computation of

short cosets. This speeds up the computation of Galois groups in magma.

1. Introduction

The computation of Galois groups of polynomials with rational coefficients in
modern computer algebra systems like magma [1] is based on the method of Stau-
duhar [10].

This method starts with an initial group G known to contain the Galois group
(e.g., G = Sym(n)). Then one computes the conjugacy classes of maximal sub-
groups of G. For each conjugacy class, one picks a representative U ⊂ G. By using
a relative invariant [6, Def. 2.2] I ∈ Z[X1, . . . , Xn] for U ⊂ G, one can detect all
the conjugates Ug of U that contain the Galois group. For more details and several
improvements, we refer to [5], [6], and [7]. Further techniques for the construction
of invariants are given in [4].

In the initial form, all the conjugacy classes of U ⊂ G have to be tested. In [6,
Sect. 5.2], the idea of short cosets was introduced. The starting point of this is
that the Stauduhar method works with complex or p-adic root approximations.
In the p-adic case p is an unramified prime. The local Galois group (generated
by complex conjugation or by the Frobenius) is a subgroup of the (global) Galois
group we are looking for. We denote by Gp the local subgroup generated by the
Frobenius element fp. Thus, one is interested in the short cosets

G//Gp
U := {g ∈ G//U | Gp ⊂ Ug} .

Here, G//U denotes a set of coset representatives of G/U . The direct computation
of the short cosets by the definition is only practical when the index of U ⊂ G is
small enough for a complete enumeration of the transversal. In practice, we do it
this way for subgroups of index up to 10000.

2. A method to compute short cosets

A faster way to compute the short cosets is given in [6, Algorithmus 5.12]. It
works as follows:

• Compute a list of representatives for the conjugacy classes of U .
• For each representative r, test whether it is conjugate in G to the generator

of Gp. I.e., look for an element g ∈ G such that g−1fpg = r.
• In case such a g exists it contributes {ag : a ∈ CG(fp)//CgUg−1(fp)} to the

short cosets.
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Here, CU (g) denotes the centralizer of g in U .

One obvious improvement is the use of homomorphisms. In case we have a
homomorphism φ : G −→ H such that Kern(φ) ⊂ U , we can solve the short coset
problem for φ(U) ⊂ φ(G) with the known subgroup φ(Gp). To get the short cosets
we are looking for, we take arbitrary preimages of the representatives found.

Remark. In practice, the limiting bottleneck of the method is the computation of
the conjugacy classes of U . In particular, if U is an intransitive or an imprimitive
group this can get slow. The point is that the orders of proper primitive groups are
never that big [3, Chap. 5].

The test of conjugacy of elements in permutation groups is done in magma by
the method described in [9]. It is completely sufficient for the groups, we have to
deal with.

3. Some examples and heuristics

In [6, Beispiel 5.9], the example of the primitive group PSL2(Fp) ⊂ Alt(p + 1)
of index (p− 2)! is given. In case the known subgroup is the cyclic group of order
(p+ 1), we get only one short coset. Thus, in this case the improvement is huge.

A naive statistical estimate would be as follows. A random element of G is con-
tained in U with probability 1

[G:U ] . If one assumes the elements fgp to be uniformly

distributed in G then one expects to find one short coset, independently of the
index of the subgroup.

Of course, this heuristic is very coarse. E.g., in case fp is the identity, cosets
and short cosets coincide. In case U is normal in G, we have either zero or [G : U ]
short cosets. Note that maximal normal subgroups are not that problematic as
their index is bounded by the degree of the permutation group.

An example where the short cosets do not work that well, independently of the
choice of the known cyclic subgroup, is given by G := PSL3(F4) ⊂ Alt(56). Let us
assume a polynomial with this Galois group is given. Then the Stauduhar method
will inspect the maximal subgroups of the alternating group Alt(56). A double-cover
G1 of G of index 55!

1440 ≈ 8.8 · 1069 will be found in Alt(56) as the only maximal
subgroup class that may contain the Galois group. In this case it is impossible to
pick a cyclic subgroup of G that results in less than 16602626880 ≈ 16 · 109 short
cosets for G1 ⊂ Alt(56). In the GAP and magma databases of primitive groups [2]
G and G1 are available via PrimitiveGroup(56,1) and PrimitiveGroup(56,4).

In an initial step the Galois group algorithm chooses the prime p and the p-adic
splitting field, it works with. By Chebotarev’s density theorem, it can choose the
known subgroup out of all cyclic subgroups of the Galois group. At this point,
the question for a good prime selection strategy arises. It should be based on an
expectation for the number of short cosets, we have to deal with.

The algorithm above gives a rough idea for this. If we assume that there are not
too many conjugacy classes in U then we have to minimize [CG(fp) : CgUg−1(fp)]
as we want to minimize the number of short cosets. If we estimate #CG(fp) by
#CSym(n)(fp) and #CgUg−1(fp) by #Gp, we get an idea how many short cosets
will be there.

It turns out to be a good prime choosing strategy to pick a prime such that this
estimate is small.
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4. The new method

Lemma. Let Gp, U0 ⊂ G0 be two subgroups and φ : G0 → H be a homomor-
phism such that φ(U0) = φ(G0). We denote by G the subgroup φ−1(φ(Gp)) =
〈Gp,Kern(φ)〉 and put U := U0 ∩ G. Then short cosets for U ⊂ G with known
subgroup Gp are short cosets for U0 ⊂ G0 with known subgroup Gp.

Gp ⊂ G = φ−1(φ(Gp)) ⊂ G0
φ→→ H

∪ ∪ →→
U = G ∩ U0 ⊂ U0

Remark. One can think of G = φ−1(φ(Gp)) = 〈Gp,Kern(φ)〉 as the smallest
subgroup of G0 that contains Gp and can be defined using φ.

Proof of the lemma. Let gU0 be a coset of U0 ⊂ G0. Then φ(g) ∈ φ(G0) = φ(U0).
Thus, there is an element u ∈ U0 such that φ(g) = φ(u). Now, g and gu−1 represent
the same U0-coset. As gu−1 ∈ Kern(φ) ⊂ G, we see that each coset G0/U0 can be
represented by an element of G. From now on, we assume all coset representatives
of G0/U0 to be choosen in G.

Let g1, g2 ∈ G. The following shows that g1 and g2 represent the same G/U -coset
if and only if they represent the same G0/U0-coset

g1U = g2U ⇐⇒ g−11 g2 ∈ U ⇐⇒ g−11 g2 ∈ U0 ∩G⇐⇒ g−11 g2 ∈ U0 .

As Ug ⊂ Ug0 for all g ∈ G, it remains to show Gp ⊂ Ug0 ⇒ Gp ⊂ Ug. This is
done as follows

Gp ⊂ Ug0 =⇒ Gp ⊂ Ug0 ∩G
g∈G
=⇒ Gp ⊂ Ug0 ∩Gg =⇒ Gp ⊂ (U0 ∩G)g =⇒ Gp ⊂ Ug.

�

Remarks. The lemma shows that we can solve the short coset problem for U0 ⊂
G0 by solving it for the subgroups U ⊂ G. In practice, one needs a source for
homomorphisms.

As we deal with permutation groups, it is obvious to take the action on one
orbit of an intransitive group. Further, for each orbit, one can take the action on
all block systems. Other quotients of G0 that are easy to handle are the abelian
quotient G0/[G0, G0] = G0/G

′
0 or G0/G

′′
0 .

In case we found a good homomorphism that led to a proper subgroup G of G0,
one can repeat the homomorphism search, as the smaller group may have more
orbits or other block systems. Further, the iterated treatment of abelian quotients
and G0/G

′′
0 exhausts the solvable quotient of G0.

When a further reduction to smaller subgroups is no longer possible, we use the
old algorithm to get the short cosets.

5. An Example

Let us inspect the computation of the Galois group of the polynomial f = t63 +
t7 + 128. The stem field L := Q[t]/(f) has the obvious subfield K := Q[u]/(u9 +
u + 128). This is an generic Sym(9) field. From this, we get Sym(7) o Sym(9) as
starting group that contains the Galois group.

The relative extension L/K has the Galois hull K[ 7
√
u, ζ7]. Thus, a smaller

supergroup of the Galois group is AGL1(F7) o Sym(9). We take a closer look at
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the computation of the short cosets in the descent step between these two wreath
products.

A first search for homomorphisms leads to the projection of the wreath products
to S9. As it stays surjective when we restrict to the subgroup, it can be used. Thus,
the lemma allows us to replace Sym(9) by the cyclic group GK,p generated by the
Frobenius element in the Galois group of K.

Next, we can use the sign homomorphism of Sym(7), which gives us the solvable
quotient of the remaining group. Thus, we take

φ : Sym(7) oGK,p −→ {±1}9 oGK,p

to construct an even smaller subgroup for the short coset problem. Finally, we
have to compute the conjugacy classes of a group of order 3177120186324 instead
of order 147572911771296399360.

The final result is the group

{(x1, . . . , x9) ∈ F9
7|
∑
xi = 0}o ((Z/7Z)? × Sym(9)) .

Here, the condition
∑
xi = 0 relates to the fact that the constant term of f is a

7th power. Further, (Z/7Z)? is the Galois group of the 7th cyclotomic field. All
the remaining descent steps are done with the direct computation of short cosets
as all subgroups are of moderate index.

The computation of the Galois group with magma 2.20 uses 2 GB of memory and
takes 850 to 1350 seconds on one core of an Intel Core i7-3770 CPU with 3.4GHz.
The variation is a result of random elements in other parts of the algorithm. Using
the old short coset algorithm, we need 3.5 GB of memory. Running magma in
profile mode shows that we reduce the running time of the short coset function
from 680 to 125 seconds.

Finally, note that, as we reach the wreath product AGL1(F7) o Sym(9) our al-
gorithm replaces a non-solvable group by a solvable one. Thus, more special algo-
rithms can be used.
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