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Abstract. We study the number of rational points of bounded
height on a certain threefold. The accumulating subvarieties are
Zariski-dense in this example. The computations support an ex-
tension of a conjecture of Manin to this situation.

1. Introduction

The set of rational points on varieties is one of the central objects
in arithmetic geometry. For Fano varieties, many rational points are
expected (at least after an extension of the ground field). So one could
ask for the number of such points of bounded height. This leads to the
famous conjecture of Y. I. Manin [FMT].

Conjecture 1. (Manin) Let V be an arbitrary Fano variety and H
be the anticanonical height. Then, there exists a dense, Zariski open
subset V ◦ ⊂ V such that for each number-field K

#{x ∈ V ◦(K) | H(x) < B} ∼ C ·B logr B

holds. r is expected to be rk Pic(V )− 1.

To illustrate the choice of the Zariski open subset V ◦ ⊂ V we give an
example.

Example 2. A smooth cubic surface with 27 rational lines has Picard
rank 7. So we expect ∼ C · B log6 B rational points of height at most
B. But every line has ∼ CB2 rational points. In this case one chooses
V ◦ as the complement of the lines.

Examples such that the rational points in the exceptional set have the
same magnitude as the rational points in V ◦ are given in [EJ2] and [Ho].

The Manin conjecture is proven in a number of special cases. In the
case of high dimension and low degree, this can be done by using the
circle-method [Bi]. Beyond this, there are a lot of (theoretical and
numerical) results supporting this conjecture. On the other hand, we
have the following counterexample [BT]:
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Example 3. Let V ⊂ P3×P3 be the Fano variety

{([a : b : c : d], [x : y : z : w]) | ax3 + by3 + cz3 + dw3 = 0} .

The number of rational points over Q(ζ3) grows at least as fast as
B log3 B on each non-empty Zariski-open subset but the conjecture
predicts ∼ C B log B.

The point is that the fibers with a, b, c, d cubes are cubic surfaces with
Picard rank 7. On these fibers C B log6 B rational points are expected.
The lower bound B log3 B is proven. As these fibers form a Zariski-
dense subset we get a counterexample to the Manin conjecture.

At this point at least the following possibilities arise:

• The class of all Fano varieties is too big for a uniform conjecture.
• The value of the constant r has to be modified.
• The requirement of V ◦ to be Zariski open is too strong.

Remark 4. Aside from this counterexample several people have ex-
tended the conjecture. Most important is a conjectural value of the
constant C. This is expected to be a Tamagawa-type number intro-
duced by E. Peyre [Pe1]. (See below for more details.)

Furthermore, people have tried to construct a more precise asymp-
totic formula for the number of rational points [SD]. It is given by

BP (log B)+O(B
1
2
+ε). Here, P is a polynomial of degree rk Pic(V )−1

with leading coefficient C and ε is some value in (0, 1
2
). See [BBD] for

a proof in the case of a special singular cubic surface.

In this note we focus on varieties of the form

ax2 + by2 + l1(a, b)z2 + l2(a, b)w2 = 0 .(1)

in P1×P3. Here l1 and l2 are two linear forms. This example was
suggested by Emmanuel Peyre and Yuri Tschinkel during the arith-
metic and algebraic geometry conference of higher-dimensional vari-
eties (Bristol 2009). After a study of the geometry of these varieties
we will search for rational points and compare their number with the
predicted value.

For a numerical check of the Manin-Conjecture in simpler cases the
reader might consult [PT], [EJ2] or [EJ3]. Arguments and computa-
tions carried out in great detail there are only sketched in this note.

2. The Tamagawa number

For an arbitrary Fano variety, a conjectural value of C was introduced
by E. Peyre. It is an infinite product of Tamagawa type. We will recall
this constant in a special case, which is yet general enough for our
situation.
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More precisely, we will work over Q and we assume that the Galois
action on the Picard group of the variety is trivial. The latter implies
that we do not have to care about the Brauer-Manin-obstruction. Fur-
thermore, we will restrict to varieties given by a single equation in a
product of projective spaces. Then, C is given as the following product

C = α
∏

p∈P∪{∞}
τp .

For a prime p ∈ P the local factor τp is given by

τp =

(
1− 1

p

)rk Pic(V )

· lim
k→∞

#V (Z/pkZ)

pk dim V
.

At the infinite place we have the following formula

τ∞ =
(n− d + 1)(m− e + 1)

4

∫

CU∩N

ωLeray

for a variety in Pn×Pm given by a polynomial of bi-degree (d, e). Here,
CU is the affine cone given by the equation and N is [−1, 1]n+m+2.
Finally, α is given by

α = rk Pic(V ) · vol{x ∈ Λ∨eff | 〈x | −K〉 ≤ 1} .

Here Λ∨eff is the dual cone of the cone of effective divisors
Λeff(V ) ⊂ Pic(V )∨ ⊗ R = Rrk Pic(V ). Here, vol denotes the Lebesgue
measure on Pic(V )∨⊗R, normalized such that the primitive cell of the
lattice Pic(V )∨ is of measure 1.

3. Computation of the Tamagawa number

Now, we consider a variety of the form (1). Note that the Picard group
is isomorphic to Z2.

One local factor. At a place of good reduction, the local factor is

τp =

(
1− 1

p

)2
#V (Fp)

p3
.

At a place of bad reduction, the sequence in the definition becomes
stationary after a finite number of steps.

At a place of good reduction, #V (Fp) can be computed as follows. The
variety V is given by the equation ax2 +by2 + l1(a, b)z2 + l2(a, b)w2 = 0.
For a fixed point [a : b] ∈ P1 we get a quadric in P3. As we are at a
place of good reduction only the following three cases are possible.

i) The quadric is smooth and the discriminant is not a square. Then,
it has p2 + 1 points.

ii) The quadric is smooth and the discriminant is a square. Then, it
has p2 + 2p + 1 points.
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iii) The quadric is singular. Exactly one coefficient is zero. In this case,
we get (p + 1)p + 1 points. This happens exactly 4 times.

Summarizing, we get p2 + p+ 1 +
(

F (a,b)
p

)
p points on a fiber. Here, we

set F (a, b) := ab l1(a, b) l2(a, b).

We introduce the elliptic curve

E : u2 = F (a, b)

as a double cover of P1. Points on E with u 6= 0 correspond to split
quadrics. Thus we get the following formula

#V (Fp) = 4(p2 + p + 1) + (p2 + 1)(p + 1− 4) + (#E(Fp)− 4)p

= p3 + 2p2 + 2p + 1− pTp(E) .

Here, Tp(E) denotes the trace of Frobenius on E at p. Note that
|Tp(E)| < 2

√
p by Hasse’s theorem. This leads to

τp =

(
1− 2

p
+

1

p2

)
p3 + 2p2 + 2p + 1− pTp(E)

p3

= 1− 1

p2
− 1

p3
+

1

p5
− Tp(E)

(
1

p2
− 2

p3
+

1

p4

)
.

The infinite product. The infinite product of the local factors calcu-
lated above is absolutely convergent. The local factors have many sim-
ilarities with local factors of the L-series L of E and the Riemann zeta
function ζ. The local factor Lp(s) is given by (1− Tp(E)p−s + p1−2s)−1

at places of good reduction and ζp(s) is simply (1 − p−s)−1. Thus we
have ζ(s) =

∏
p ζp(s) and L(s) =

∏
p Lp(s). Extracting such factors

improves the convergence properties. We get

∏
p

τp =
L(3)2

ζ(2)ζ(3)2L(2)L(4)2

∏
p

ζp(2)ζp(3)2Lp(2)Lp(4)2

Lp(3)2
τp .

The factors of the new product are 1 + 2Tp(E)2

p5 + O(p−9/2).

In this way, we can evaluate the Euler product with a precision of
14 digits within a few minutes. Most of the time is used for the eval-
uation of the L-series. Here we use magma. See [Dok] for details of the
algorithm.

The infinite place. The factor at the infinite place is a 5-dimensional
integral on a compact domain. By using homogeneity we can reduce to
a or b equal 1 and 1 ∈ {x, y, z, w}. This is a sum of eight 3-dimensional
integrals. The summand for a = x = 1 is given by

∫∫∫
1

|y2 + l1(0, 1)z2 + l2(0, 1)w2| dy dz dw .
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The other seven cases are similar. The domain of integration for the
case a = x = 1 is given by

{
(y, z, w) ∈ [0, 1]3 |

∣∣∣∣
1 + l1(1, 0)z2 + l2(1, 0)w2

y2 + l1(0, 1)z2 + l2(0, 1)w2

∣∣∣∣ ≤ 1

}
.

The innermost integral can be evaluated by hand. The remaining
2-dimensional integral can be evaluated by using standard methods
from numerical analysis. Here, we apply an adaptive version of the
iterated Gauss-Legendre method. We expect a precision of at least six
decimal places.

4. Some subvarieties of the threefold

The quadric fibration. First recall the fibration into quadrics. A
fixed point [a : b] ∈ P1 leads to the quadric Va,b in P3. This quadric is
singular if and only if one of a, b, l1(a, b), l2(a, b) is zero.

The quadric is a split quadric (i.e., has Picard rank 2 over Q) if and
only if its discriminant is a square and it has a rational point.

Thus, a necessary condition for a quadric to be split is that it cor-
responds to a point on the elliptic curve E introduced above by the
equation u2 = ab l1(a, b) l2(a, b). Furthermore note that the map

[a : b ; u] 7→
(

a

b
,
l1(a, b)

b
,
l2(a, b)

b

)
∈ (

Q/Q2
)3

for [a : b ; u] ∈ E(Q) with u 6= 0 extends to a homomorphism

φ : E(Q) → (
Q∗/Q∗2)3

with kernel 2E(Q) [Si, Chap. X, Prop. 1.4].

This shows that if [a : b ; u] leads to a split quadric, than all points in
the coset [a : b ; u] + 2E(Q) lead to singular or split quadrics.

If E has positive rank and at least one split quadric exists then all
split quadrics form a Zariski-dense subset of the threefold. We will
give examples for this below.

An elliptic cylinder. Another interesting subvariety of V is the fol-
lowing. Rewrite the equation as aq1(x, y, z, w) + bq2(x, y, z, w) = 0.
From this we get the subvariety

P1×{[x : y : z : w] ∈ P3 | q1(x, y, z, w) = q2(x, y, z, w) = 0} .

This is the product of P1 and a genus 1 curve.

One could count the points on V (Fp) by checking whether
[x : y : z : w] ∈ P3 leads to a point or a line on V . This leads to
the observation that this genus 1 curve has the same Frobenius trace
as the elliptic curve E given above. Further one can check that both
curves have the same j-invariant. But it may happen that only one of
the curves has a rational point.
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5. Counting rational points

The point counting algorithm. Our variety V is given by the equa-
tion

ax2 + by2 + l1(a, b)z2 + l2(a, b)w2 = 0

in P1×P3. Because of symmetry we restrict to non-negative values
for x, y, z, w. Points with one zero are counted with weight 1

2
. Points

with two or three zeros are counted with weight 1
4

or 1
8
.

Recall that the anticanonical height is given by the formula

H([a : b ; x : y : z : w]) = Hnaive([a : b])Hnaive([x : y : z : w])2 .

For a point of bounded height, at least one of the factors is small. This
observation leads to the following splitting. Choose a search bound B
and an auxiliary bound A.

For all [a : b] ∈ P1 with Hnaive([a : b]) < A, search for rational points

on the quadric Ca,b of naive height at most
√

B
H([a:b])

.

For all points [x : y : z : w] ∈ P3 with Hnaive([x : y : z : w]) <
√

B
A
,

solve the linear Diophantine equation for [a : b]. If this is the zero
equation we get a line on the elliptic cylinder. If it is not the zero
equation we get a point. We take it if the height is below B

H([x:y:z:w])2
.

The optimal value of the auxiliary bound A depends on details of the
implementation and the machine. We took A = 400 for B = 108.
Searching for points on Ca,b is fast and easy. Just apply the ideas
of [EJ1], [EJ2] and [EJ4]. Some optimizations are possible by using
congruences.

Rational points on subvarieties. Recall that the Manin conjecture
is proven for degree 2 surfaces. It leads to ∼ CB points of height at
most B on non-split and ∼ CB log B points on split quadrics.

The singular fibers lead to ∼ CB log B points of anticanonical height
at most B on V .

Counting points on the elliptic cylinder means counting points on the
elliptic curve itself. As the heights of rational points on elliptic curves
grow fast we get ∼ CB2 rational points on the elliptic cylinder with
anticanonical height at most B on V .

Numerical results. To get an overview of the different phenomena we
list all the data for three examples. Choosing examples is always more
or less random. Here we take examples with a considerable proportion
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of points on the split and the singular quadrics.

V1 : ax2 + by2 + (a− b)z2 + (a− 2b)w2 = 0

V2 : ax2 + by2 + (2a− b)z2 + (−6a + b)w2 = 0

V3 : ax2 + by2 + (−91a− 92b)z2 + (99a + 100b)w2 = 0

We apply the point search algorithm described above. Points on the
elliptic cylinder were excluded from the count. We counted the points
in each height-interval of length 105 up to 108. Some of the values are
listed in Tables 1 and 2.

Number of points V1 V2 V3

at all 593147.75 910514 313622
on singular quadrics 262910.75 276816 111
on split quadrics 0 121182.5 263390
on non-split quadrics 330237 512515.5 50121

Table 1: Number of rational points of anticanonical height below 105

Number of points V1 V2 V3

at all 923032815.25 1545094531.75 468691343.75
on singular quadrics 377837495.25 404003678 173805
on split quadrics 0 183375308 381163936.5
on non-split quadrics 545195320 957715545.75 87353602.25

Table 2: Number of rational points of anticanonical height below 108

We approximate the number of rational points by functions of the form
c1B log(B)+c2B using the least-square method. The RMS-error of the
approximations is always below 0.03%. The results are listed in table 3.
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Set of points Number of points of height below B
on V1 at all 0.477469B log(B) + 0.436195B

without singular quadrics 0.312111B log(B)− 0.297472B
on non-split quadrics 0.312111B log(B)− 0.297472B

on V2 at all 0.925062B log(B)− 1.588194B
without singular quadrics 0.742798B log(B)− 2.272602B
on non-split quadrics 0.652422B log(B)− 2.441540B
on split quadrics 0.090376B log(B) + 0.168938B

on V3 at all 0.225190B log(B) + 0.538876B
without singular quadrics 0.225028B log(B) + 0.540088B
on non-split quadrics 0.054220B log(B)− 0.125521B
on split quadrics 0.170809B log(B) + 0.665609B

Table 3: Experimental formulas for the number of rational points

The values of the Tamagawa numbers are listed in table 4.

V1 V2 V3

α 0.25 0.25 0.25
τ∞ 2.8331245 3.2014086 0.34700116∏

p τp 0.441828484431 0.819836740267 0.627048795633
CPeyre 0.3129388 0.6561581 0.05439666

Table 4: Approximated values of Tamagawa numbers

Conclusion. We observe a good coincidence of Peyre’s constant and
the leading coefficient for the approximated formula of the number of
rational points outside the elliptic cylinder on smooth non-split fibers.

The split-quadrics. Now we take a closer look on the split quadrics.

The split quadrics for V2 are given by

(a, b) ∈ { (1,−2), (1,−48), (1,−6), (1, 3), (1, 4), (4,−1), (9, 50),

(25, 54), (49,−1058), (169, 867), (289, 676), (529,−294),

(3600,−36481), (36481,−43200), (43681, 116162),

(58081, 262086), (8958049, 52911076),

(13227769, 26874147), (17497489,−837218), . . . } .

The split quadrics for V3 are given by

(a, b) ∈ { (1,−1), (1,−25), (4900,−8019), (96100,−107811),

(101761,−198025), (261121,−259081),

(504100,−527571), (2989441,−2961841), . . . } .
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As the coefficients of these quadrics grow fast, the density of rational
points decreases fast. In the search range only the first two split-
quadrics on V3 have rational points.

We calculate
∑ τ(Ca,b)

Hnaive([a:b])
. I.e., we compute the sum of the Tamagawa-

numbers of the split-quadrics. The convergence of the series is fast. The
smallest contribution of a quadric listed above is of magnitude 10−16.
The sum over these quadrics is very close to the limit. For V2 (resp.
V3) this sum is approximately 0.0903666 (resp. 0.170788).

Conclusion. We observe a good coincidence of the sum of the Tam-
agawa numbers of the split quadrics and the leading coefficient of the
experimental formula for the number of rational points in these fibers.

6. Discussion

The computations show that the Manin conjecture as presented in the
introduction does not hold for quadratic bundles, as it allows only to
exclude Zariski-closed sets like the the singular fibers and the elliptic
cylinder. For this the smooth split fibers contain to many points and
the predicted number of points is to small.

The examples suggest the following possibilities:

• Modify the formula for the expected number of rational points.
I. e., add a term for the contribution of the split-fibers.

• Allow the exceptional set to be a thin Zariski-dense part of
the variety. For examples fibers given by rational points on an
elliptic curve.

For a theoretic treatment, compare E. Peyre’s talk Freedom and good-
ness, given at the the conference Arithmetic and algebraic geometry of
higher-dimensional varieties, Bristol, September 2009.
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